JPH0434610B2 - - Google Patents

Info

Publication number
JPH0434610B2
JPH0434610B2 JP30012887A JP30012887A JPH0434610B2 JP H0434610 B2 JPH0434610 B2 JP H0434610B2 JP 30012887 A JP30012887 A JP 30012887A JP 30012887 A JP30012887 A JP 30012887A JP H0434610 B2 JPH0434610 B2 JP H0434610B2
Authority
JP
Japan
Prior art keywords
gas
waste gas
flow rate
blowing
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP30012887A
Other languages
Japanese (ja)
Other versions
JPH01142015A (en
Inventor
Nobuyasu Sakanashi
Mitsuo Yoneda
Hiroshi Yamane
Katsumi Hachiga
Takao Terada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Nippon Steel Corp
Original Assignee
Fuji Electric Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Nippon Steel Corp filed Critical Fuji Electric Co Ltd
Priority to JP30012887A priority Critical patent/JPH01142015A/en
Publication of JPH01142015A publication Critical patent/JPH01142015A/en
Publication of JPH0434610B2 publication Critical patent/JPH0434610B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、酸素転炉におけるイナート(不活
性)ガス生成制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the production of inert (inert) gas in an oxygen converter.

〔従来の技術〕[Conventional technology]

酸素転炉においては良く知られているように、
吹錬にともなつて発生する一酸化炭素などの燃焼
性ガスを未燃焼のまま回収する方法が採用されて
いる。この方法は通常、未燃焼廃ガス回収方法と
称され、その制御手段としては炉口圧と大気圧と
の差圧、つまりフード内圧力を検出し、該フード
内圧力があらかじめ設定された値になるように制
御装置を介して集塵器に設けられたダンパを制御
する方法、即ち炉口圧制御と呼ばれる方法が一般
に用いられている。
As is well known in oxygen converters,
A method is used to recover combustible gases such as carbon monoxide generated during blowing in an unburned state. This method is usually called an unburned waste gas recovery method, and its control means is to detect the pressure difference between the furnace mouth pressure and atmospheric pressure, that is, the pressure inside the hood, and keep the pressure inside the hood at a preset value. A method is generally used in which a damper provided in a precipitator is controlled via a control device, that is, a method called furnace mouth pressure control.

ところで、転炉吹錬の操業においては、吹錬中
にはCO濃度の高いガスが発生し、非吹錬中には
空気を吹い込むために吹錬の初期及び末期にこれ
らのガスが混在する可能性がある。そして、同一
ガス中における一酸化炭素(CO)及び酸素
(O2)等の混合比率によつては爆発の危険がある
ために、吹錬の初期及び末期には、イナート(不
活性)ガスを規定量生成することが不可欠となつ
ている。
By the way, in the operation of converter blowing, gas with a high concentration of CO is generated during blowing, and during non-blowing, these gases are mixed at the beginning and end of blowing because air is blown into the process. there is a possibility. Since there is a risk of explosion depending on the mixing ratio of carbon monoxide (CO) and oxygen (O 2 ) in the same gas, inert (inert) gas is used at the beginning and end of blowing. It has become essential to produce a specified amount.

その方法として従来は専らオペレータの経験と
勘により、手動にてスカートを操作し、適当に空
気を吸入させ、イナートガスを生成させているの
が普通であり、このため自動的な操業及びイナー
トガスの生成量の確認がなされないでいた。
Conventionally, the conventional method was to manually operate the skirt, draw in air appropriately, and generate inert gas, based solely on the operator's experience and intuition. The quantity was not confirmed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

すなわち、吹錬初期および末期にイナートガス
を効率良く作ることが、ガス回収設備の安全運転
とガス回収率向上のための重要な課題となつてい
る。しかるに、従来はスカート操作をオペレータ
に委ねているため、正確かつ安定な操業が出来な
い、と云う人手によるもの特有の問題がある。
That is, efficiently producing inert gas at the initial and final stages of blowing is an important issue for safe operation of gas recovery equipment and improvement of gas recovery rate. However, in the past, the skirt operation was left to the operator, so there was a problem unique to manual operations: accurate and stable operation was not possible.

したがつて、本発明はオペレータの勘と経験に
もとづく手動操作を不用とし、吹錬初期および末
期におけるイナートガス生成を自動的に、かつ必
要な量だけ生成することを目的とする。
Therefore, an object of the present invention is to eliminate the need for manual operations based on the operator's intuition and experience, and to automatically generate inert gas in the necessary amount at the initial and final stages of blowing.

〔問題点を解決するための手段〕[Means for solving problems]

転炉廃ガス処理における吹錬の初期および末期
の各々でイナートガスを生成すべく、廃ガスの流
量計測量とその分析値にもとづき廃ガスの燃焼率
と流量目標値とを計算により求め、燃焼率が100
%となるよう廃ガスの流量制御を行なう。
In order to generate inert gas at the initial and final stages of blowing in converter waste gas treatment, the combustion rate and target flow rate of waste gas are calculated based on the measured flow rate of waste gas and its analysis value, and the combustion rate is calculated. is 100
The flow rate of waste gas is controlled so that the

〔作用〕[Effect]

(1) 吹錬直後から着火までは2DCダンパを規定開
度1とする。
(1) From immediately after blowing until ignition, set the 2DC damper to the specified opening degree of 1.

(2) 着火から一定時間T1は規定開度3とし、廃
ガスを十分燃焼させる。
(2) For a certain period of time T 1 after ignition, set the specified opening to 3 to ensure sufficient combustion of the waste gas.

(3) 上記の(2)の規定開度の3の終了後、廃ガス中
のCOガスを全て燃焼させるだけの空気を炉口
から吸引できるような廃ガス流量制御を行う。
この廃ガス流量制御の目標流量を計算するた
め、炉内発生ガスの予測計算を行う。
(3) After completion of the specified opening degree 3 in (2) above, control the exhaust gas flow rate so that enough air can be drawn from the furnace mouth to burn all the CO gas in the exhaust gas.
In order to calculate the target flow rate of this waste gas flow rate control, a prediction calculation of the gas generated in the furnace is performed.

(4) 廃ガス分析値を監視しつつ、イナートガスの
生成を確認する。
(4) Check the generation of inert gas while monitoring the waste gas analysis values.

(5) 必要十分なイナートガス生成後は炉内圧制御
を行い、廃ガスの炉口燃焼を極力抑え、廃ガス
のCO濃度を高め、早くガス回収に入る。
(5) After generating the necessary and sufficient inert gas, control the pressure inside the furnace, suppress combustion of the waste gas at the furnace as much as possible, increase the CO concentration of the waste gas, and begin gas recovery quickly.

(6) 吹錬末期に、スカート上昇開始後の一定時間
T2後、廃ガスを十分燃焼させ、イナートガス
を生成するために、流量制御を行う。この廃ガ
ス流量制御の目標流量を計算するため、炉内発
生ガスの予測計算を行う。
(6) At the end of blowing, for a certain period of time after the skirt starts rising.
After T 2 , the flow rate is controlled in order to sufficiently burn the waste gas and generate inert gas. In order to calculate the target flow rate of this waste gas flow rate control, a prediction calculation of the gas generated in the furnace is performed.

(7) OGストツプ(吹錬停止)後は、規定開度2
とする。
(7) After OG stop (stopping blowing), the specified opening is 2.
shall be.

の如き手順にて操業を行なう。The operation is carried out according to the following procedure.

〔実施例〕〔Example〕

第1図は本発明の実施例を説明するためのタイ
ムチヤート、第2図は本発明が適用される転炉廃
ガス処理装置を示すシステム構成図である。
FIG. 1 is a time chart for explaining an embodiment of the present invention, and FIG. 2 is a system configuration diagram showing a converter waste gas treatment apparatus to which the present invention is applied.

まず、第2図を参照して、転炉廃ガス処理装置
(OG)の構成概要から説明する。転炉1の中に
屑鉄と溶けた鉄銑2を入れた後、ランス3を通し
て高圧酸素を吹きつけて精錬(これを吹錬とい
う。)を行い、吹錬終了後、転炉1を傾けて出鋼
する。この吹錬の際、ランス3から吹き込まれた
酸素ジエツトは溶けた鉄銑のCと反応し、COに
富む大量の廃ガスを発生する。一方、酸素ジエツ
トの鋼浴の衝突面は非常に高温になり、鋼浴の
Feが気化するため多量の酸化鉄粉も発生する。
従つて、廃ガス処理装置としては大量、高温の廃
ガスを冷却する設備と集塵する設備とに分けられ
る。このようにして発生した高温、多塵の大量の
廃ガスは、誘引送風機11により吸引されて煙道
内を流れるわけであるが、その際、例えば冷却水
管群からなるガス冷却器7において冷却された
後、1次集塵器6において粗いダストの捕集がな
され、続く2次集塵器8において微細なダストの
最終集塵がなされ、かくして除塵清浄化された廃
ガスは誘引送風機11を経て、図示されないガス
ホルダ等に燃料として回収される。ところで、転
炉1においては吹錬の中期には大量の廃ガスを発
生するが、その初期や末期においては発生量は少
ない。また、吹錬中において副原料を投入した
り、ランス3から吹きつける酸素の量を変えても
廃ガスの発生量は変動する。このような廃ガス発
生量の変動により、フード5内のガス圧も変動す
る。そこで、フード5内のガス圧が適当な範囲内
に収まるよう、廃ガスの流量制御が行なわれてい
る。すなわち、フード5内のガス圧(炉内圧、炉
圧)を検出し、炉圧発信器12から調節計14へ
送る。調節計14では、予め設定されている設定
値とガス圧を比較し、その偏差が零になるように
操作出力信号をダンパ操作部15に送り、2次ダ
ンパ9の開閉動作を制御して廃ガス流量を調節す
る。
First, an overview of the configuration of the converter waste gas treatment device (OG) will be explained with reference to FIG. After putting scrap iron and molten iron pig 2 into the converter 1, high-pressure oxygen is blown through the lance 3 to perform refining (this is called blowing).After blowing, the converter 1 is tilted. To tap steel. During this blowing, the oxygen jet blown from lance 3 reacts with the carbon in the molten iron pig, producing a large amount of waste gas rich in CO. On the other hand, the impingement surface of the steel bath of the oxygen jet becomes very hot, and the steel bath
As Fe vaporizes, a large amount of iron oxide powder is also generated.
Therefore, waste gas treatment equipment can be divided into equipment that cools large amounts of high-temperature waste gas and equipment that collects dust. A large amount of high-temperature, dusty waste gas generated in this way is sucked in by the induced blower 11 and flows through the flue. After that, coarse dust is collected in the primary dust collector 6, and final collection of fine dust is performed in the subsequent secondary dust collector 8, and the thus dust-removed and purified waste gas passes through the induced blower 11. It is recovered as fuel in a gas holder (not shown) or the like. By the way, in the converter 1, a large amount of waste gas is generated during the middle stage of blowing, but the amount generated is small at the early stage and final stage. Moreover, even if auxiliary raw materials are added during blowing or the amount of oxygen blown from the lance 3 is changed, the amount of waste gas generated varies. Due to such fluctuations in the amount of waste gas generated, the gas pressure within the hood 5 also fluctuates. Therefore, the flow rate of the waste gas is controlled so that the gas pressure within the hood 5 falls within an appropriate range. That is, the gas pressure (furnace pressure, furnace pressure) in the hood 5 is detected and sent from the furnace pressure transmitter 12 to the controller 14 . The controller 14 compares the gas pressure with a preset value, and sends an operation output signal to the damper operation unit 15 so that the deviation becomes zero, and controls the opening/closing operation of the secondary damper 9 to eliminate waste. Adjust gas flow rate.

廃ガス回収量向上のために行なわれる密閉操業
では、スカート4を炉口に密着するまで降下さ
せ、さらに密閉性を高めるため外側シール19を
閉める。
In a closed operation performed to improve the amount of waste gas recovered, the skirt 4 is lowered until it comes into close contact with the furnace mouth, and the outer seal 19 is closed to further improve the sealing performance.

次に、本発明の実施例を第1図を参照して説明
する。なお、本発明は2次集塵器ダンパを操作端
とした廃ガス流量制御、炉内圧制御に関するもの
であるから、2次集塵器ダンパの動作を中心に説
明する。
Next, an embodiment of the present invention will be described with reference to FIG. Since the present invention relates to waste gas flow rate control and furnace internal pressure control using a secondary dust collector damper as an operating end, the operation of the secondary dust collector damper will be mainly described.

同図からも明らかなように、非吹錬中でも誘引
送風機は運転中であり、2次集塵器ダンパは比較
的小開度の規定開度1とされている。吹錬開始
後、転炉内で着火現象が起きる。これ以後、2次
集塵器ダンパは大開度の規定開度3で一定時間
(T1秒)運転する。規定開度にするのは、廃ガス
の発生量の変化が激しすぎるため制御が難しいの
と、炉口から大気を十分に吸引し、廃ガスを全て
燃焼させるためである。T1秒後廃ガス流量制御
を行う。この廃ガス流量制御を行う目的は、OG
ダクトにN2とCO2を主成分とする不活性なガス
(イナートガス)を必要十分な量だけ生成し、ガ
ス回収に入るための準備を行う事にある。即ち、
ガス回収を行うガスはCO濃度が高く、O2濃度の
低いガスであり、このガスがO2濃度の高いガス
と混合しないようにするため、イナートガスで
OGダクトを置換しておく。
As is clear from the figure, the induced fan is in operation even during non-blowing, and the secondary precipitator damper is set to a relatively small specified opening of 1. After the start of blowing, an ignition phenomenon occurs inside the converter. After this, the secondary precipitator damper operates for a certain period of time (T 1 second) at the specified large opening of 3. The reason for setting the specified opening degree is that it is difficult to control because the amount of waste gas generated changes too rapidly, and to ensure that sufficient air is sucked in from the furnace mouth and all the waste gas is combusted. T Control the exhaust gas flow rate after 1 second. The purpose of this waste gas flow control is to
The purpose is to generate the necessary and sufficient amount of inert gas (inert gas) whose main components are N 2 and CO 2 in the duct and prepare it for gas recovery. That is,
The gas to be recovered is a gas with a high CO concentration and a low O 2 concentration, and in order to prevent this gas from mixing with the gas with a high O 2 concentration, an inert gas is used.
Replace the OG duct.

この流量制御を効率よく行うには、炉内発生の
COガスを完全燃焼(炉内燃焼率λ=1)するだ
けのO2を炉口からの吸引空気によつてまかなう。
吸引空気量が不足すると廃ガス中にCOが残り、
吸引空気量が過術であると廃ガス中にO2が残る。
イナートガスの成分は、次式によつて定義され
る。
In order to efficiently control the flow rate, it is necessary to
Suction air from the furnace mouth supplies enough O 2 to completely burn the CO gas (in-furnace combustion rate λ = 1).
If the amount of suction air is insufficient, CO remains in the waste gas,
If the amount of suction air is excessive, O 2 will remain in the waste gas.
The components of the inert gas are defined by the following equation.

XC0+(K×XH2)12.5% … かつ XO25.5% … ここで、 XC0:CO% XH2:H2% XO2:O2% K:定数 である。従つて、廃ガス流量制御の目標流量は、
炉内から発生する廃ガスが炉口からの吸引空気に
よつて燃焼し、CO、H2、O2ガス成分が上記、
を同時に満すガス流量となる。このためには炉
内発生ガス量の推定を行い、燃焼結果の廃ガス流
量を計算する必要があり、次にその計算式を示
す。
X C0 + (K×X H2 ) 12.5 % ... and X O2 5.5 % ... Here, X C0 : CO % Therefore, the target flow rate for waste gas flow control is:
The waste gas generated from inside the furnace is combusted by the suction air from the furnace mouth, and the CO, H 2 and O 2 gas components are
The gas flow rate satisfies the For this purpose, it is necessary to estimate the amount of gas generated in the furnace and calculate the flow rate of the exhaust gas as a result of combustion.The calculation formula is shown below.

VN2 E(k)=Fex(k−τ/Δt)・XN2(k) −VCB N2(k)−VPS N2(k)−VP N2 … VCO E(k)=Fex(k−τ/Δt)・XCO(k) +42/79・VN2 E(k) … VCO2 E(k)=Fex(k−τ/Δt)・XCO2(k) 42/79・VN2 E(k) … dOs(k)=FO2(k−τ/Δt) −{1/2VCO E(k)+VCO2 E(k)} … γ(k)=VCO2 E(k)/{1/2VCO E(k)} (1≧γ(k)≧0) … dOs f(k)=Ni=1 ai・dOs(k−i+1) … γf(k)=Ni=1 bi・γ(k−i+1) … Fex G(k)={2−γf(k)} ×{FO2(k)−dOs f(k)} … Fex f(k)=(1+79/42γf(k))Fex G(k) … 各記号等の意味は次のとおりである。V N2 E (k)=F ex (k−τ/Δt)・X N2 (k) −V CB N2 (k)−V PS N2 (k)−V P N2 … V CO E (k)=F ex (k-τ/Δt)・X CO (k) +42/79・V N2 E (k) … V CO2 E (k)=F ex (k−τ/Δt)・X CO2 (k) 42/79・V N2 E (k) … dO s (k)=F O2 (k−τ/Δt) −{1/2V CO E (k)+V CO2 E (k)} … γ(k)=V CO2 E (k )/{1/2V CO E (k)} (1≧γ(k)≧0) … dO s f (k)= Ni=1 ai・dO s (k−i+1) … γ f (k) = Ni=1 bi・γ(k−i+1) … F ex G (k)={2−γ f (k)} ×{F O2 (k)−dO s f (k)} … F ex f (k)=(1+79/42γ f (k)) F ex G (k)... The meanings of each symbol are as follows.

Fex(k−τ/Δt):吸引廃ガス流量実績 XN2(k):廃ガス中のN2濃度 XCO2(k):廃ガス中のCO2濃度 XCO(k):廃ガス中のCO濃度 VCB N2(k):底吹N2流量 VPS N2(k):P.SパージN2流量 VP N2:OGパージN2流量(const) VN2 E(k):吸引空気中N2流量 VCO2 E(k):炉内発生CO2流量 VCO E(k):炉内発生CO流量 FO2(k−τ/Δt):酸素流量実績 dOs(k):Os変化値実績 γ(k):炉内燃焼率実績 dOs f(k):Os変化値推定 γf(k):炉内燃焼率推定 Fex G(k):炉内発生ガス流量推定 Fex f(k):目標吸引ガス流量 ai、bi:予測係数 N:予測処理指数 τ:分析の遅れ時間 Δt:演算周期 すなわち、第2図の流量計18を介して得られ
る廃ガス流量実績Fex(k−τ/Δt)、ランス3を介 して得られる酸素流量実績FO2(k−τ/Δt)、ガス 分析計17を介して得られる廃ガス中のN2濃度
XN2(k)、CO2濃度XCO2(k)、およびCO濃度XCO(k)、
底吹N2流量VCB N2(k)、P.SパージN2流量VPS N2(k)、OG
パージN2流量(const)VP N2、予測係数ai、bi、
予測処理指数N、分析の遅れ時間τ、および演算
周期Δtから、〜式の演算を順次行うとゝも
に、式において燃焼率γf(k)を100%にするため
の目標吸引ガス流量Fex f(k)を求め、これを設定値
とする廃ガス流量制御を行いつつ、廃ガスの濃度
を監視しつづける。そして、式、で示される
廃ガス濃度が一定時間以上続けば、イナートガス
生成は十分であると判断し、イナートガス生成の
ための廃ガス流量制御を終了し、廃ガスのCO成
分を高めるための炉圧制御に入る。この炉圧制御
は、炉口付近での炉内圧を大気圧にほぼ等しくな
るように制御するものであり、極力大気を吸引せ
ず、廃ガスを燃焼させない方法をとる。スカート
を下限まで下げるには30秒程度必要とするため、
イナートガス生成制御の途中から下げ始める。ガ
ス回収条件に廃ガス濃度が入つており、例えば
CO%40%かつO2%1%となると、回収指令
を発生するようにしている。
F ex (k-τ/Δt) : Actual flow rate of suction waste gas N2 ( k ): N 2 concentration in waste gas CO concentration V CB N2 (k): Bottom blowing N2 flow rate V PS N2 (k): PS purge N2 flow rate V P N2 : OG purge N2 flow rate (const) V N2 E (k): N in suction air 2 Flow rate V CO2 E (k): Flow rate of CO 2 generated in the furnace V CO E (k): Flow rate of CO generated in the furnace F O2 (k-τ/Δt): Actual oxygen flow rate dO s (k): O s change value Actual γ(k): Actual in-furnace combustion rate dO s f (k): Estimated O s change value γ f (k): Estimated in-furnace combustion rate F ex G (k): Estimated in-furnace generated gas flow rate F ex f (k): Target suction gas flow rate ai, bi: Prediction coefficient N: Prediction processing index τ: Analysis delay time Δt: Calculation period In other words, actual waste gas flow rate F ex ( k-τ/Δt), actual oxygen flow rate F O2 obtained via lance 3 (k-τ/Δt), N2 concentration in waste gas obtained via gas analyzer 17
X N2 (k), CO 2 concentration X CO2 (k), and CO concentration X CO (k),
Bottom blow N2 flow rate V CB N2 (k), PS purge N2 flow rate V PS N2 (k), OG
Purge N2 flow rate (const) V P N2 , prediction coefficient ai, bi,
From the prediction processing index N, the analysis delay time τ, and the calculation period Δt, the calculations in the formulas are performed in sequence, and the target suction gas flow rate F to make the combustion rate γ f (k) 100% is calculated in the formula. The exhaust gas concentration is continued to be monitored while determining ex f (k) and controlling the exhaust gas flow rate using this as the set value. If the concentration of waste gas expressed by the formula continues for a certain period of time, it is determined that inert gas generation is sufficient, the control of the waste gas flow rate for inert gas generation is terminated, and the furnace is turned on to increase the CO content of the waste gas. Enter pressure control. This furnace pressure control is to control the pressure inside the furnace near the furnace mouth to be approximately equal to atmospheric pressure, and takes a method of not sucking in the atmosphere as much as possible and preventing waste gas from being combusted. It takes about 30 seconds to lower the skirt to the lower limit,
Start lowering in the middle of inert gas generation control. The gas recovery conditions include the waste gas concentration, e.g.
When CO% reaches 40% and O 2 % reaches 1%, a recovery command is issued.

次に、吹錬末期のイナートガス生成制御につい
て説明する。吹錬が終了する時期は計算機による
自動判定またはオペレータによる手動判定が行わ
れており、それより少し前にスカート上昇指令が
入る。スカートが上昇を開始してから一定時間
T2後に、廃ガスを炉口からの吸引空気により完
全燃焼し、イナートガスを生成する。この目的は
吹錬終了前にOGダクトをイナートガスで置換
し、吹錬終了時に炉口から空気を吸収してもOG
ダクト内で爆発させないためである。つまり、吹
錬末期のイナートガス生成制御においても必要な
事は吹錬初期のイナートガス生成制御と同じであ
り、廃ガス流量の設定値には式で得られる計算
結果を用いる。この廃ガス流量制御はOGストツ
プ指令が入るまで続き、OGストツプ後は中開度
の規定開度2に入る。スカート上昇指令は、吹錬
終了までに十分なイナートガス生成が可能なタイ
ミングにて与えられる事は勿論である。
Next, inert gas generation control at the final stage of blowing will be explained. The timing at which blowing ends is determined automatically by a computer or manually by an operator, and a command to raise the skirt is issued a little before that time. A certain amount of time after the skirt starts rising
After T 2 , the waste gas is completely combusted by suction air from the furnace mouth to generate inert gas. The purpose of this is to replace the OG duct with inert gas before the end of blowing.
This is to prevent an explosion inside the duct. In other words, what is required in the inert gas generation control at the end of blowing is the same as the inert gas generation control at the beginning of blowing, and the calculation result obtained by the formula is used for the set value of the waste gas flow rate. This waste gas flow rate control continues until the OG stop command is input, and after the OG stop, the specified opening degree 2, which is a medium opening degree, is entered. It goes without saying that the skirt raising command is given at a time when sufficient inert gas can be generated by the end of blowing.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、OG設備におけるガス回収
の安全性確立のために必要なイナートガス生成制
御を自動的に行うことができ、必要十分なイナー
トガス生成を極力短時間で行えるので、ガス回収
量増大につながら利点がある。
According to this invention, it is possible to automatically perform the inert gas generation control necessary to ensure the safety of gas recovery in OG equipment, and to generate the necessary and sufficient inert gas in the shortest possible time, which increases the amount of gas recovered. There are advantages to being connected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施列を説明するためのタ
イムチヤート、第2図は本発明が適用される転炉
廃ガス処理装置を示すシステム構成図である。 符号説明、1……転炉、2……溶銑、3……ラ
ンス、4……スカート、5……フード、6……1
次集塵器、7……ガス冷却器、8……2次集塵
器、9……2次ダンパ、10……ベンチユリ、1
1……誘引送風機、12……炉圧発信器、13…
…スカート位置計、14……調節計、15……ダ
ンパ操作器、16……演算器、17……ガス分析
計、18……廃ガス流量計。
FIG. 1 is a time chart for explaining one embodiment of the present invention, and FIG. 2 is a system configuration diagram showing a converter waste gas treatment apparatus to which the present invention is applied. Code explanation, 1...Converter, 2...Hot metal, 3...Lance, 4...Skirt, 5...Hood, 6...1
Secondary dust collector, 7... Gas cooler, 8... Secondary dust collector, 9... Secondary damper, 10... Bench lily, 1
1... Induced blower, 12... Furnace pressure transmitter, 13...
... Skirt position meter, 14 ... Controller, 15 ... Damper operating device, 16 ... Calculator, 17 ... Gas analyzer, 18 ... Waste gas flow meter.

Claims (1)

【特許請求の範囲】[Claims] 1 転炉廃ガス処理における吹錬の初期および末
期の夫々でイナートガスを生成すべく、廃ガスの
流量計測値とその分析値とにもとづき廃ガスの燃
焼率と流量目標値とを演算により求め、燃焼率が
100%となるよう廃ガス流量制御を行うことを特
徴とする転炉廃ガス処理におけるイナートガス生
成制御方法。
1. In order to generate inert gas at each of the initial and final stages of blowing in converter waste gas treatment, the combustion rate and flow rate target value of the waste gas are calculated by calculation based on the measured flow rate value of the waste gas and its analysis value, The combustion rate
An inert gas generation control method in converter waste gas treatment, characterized by controlling the waste gas flow rate so that the flow rate is 100%.
JP30012887A 1987-11-30 1987-11-30 Method for controlling inert gas generation in converter exhaust gas treatment Granted JPH01142015A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30012887A JPH01142015A (en) 1987-11-30 1987-11-30 Method for controlling inert gas generation in converter exhaust gas treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30012887A JPH01142015A (en) 1987-11-30 1987-11-30 Method for controlling inert gas generation in converter exhaust gas treatment

Publications (2)

Publication Number Publication Date
JPH01142015A JPH01142015A (en) 1989-06-02
JPH0434610B2 true JPH0434610B2 (en) 1992-06-08

Family

ID=17881067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30012887A Granted JPH01142015A (en) 1987-11-30 1987-11-30 Method for controlling inert gas generation in converter exhaust gas treatment

Country Status (1)

Country Link
JP (1) JPH01142015A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3964261A1 (en) 2020-09-03 2022-03-09 B dot Medical Inc. Charged particle irradiation apparatus
EP4056230A1 (en) 2021-03-10 2022-09-14 B dot Medical Inc. Patient shuttle system and irradiation system for particle therapy

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100476810B1 (en) * 2000-11-15 2005-03-18 주식회사 포스코 Method for measuring caloric value of exhaust gas in a converter
JP6102348B2 (en) * 2013-03-04 2017-03-29 新日鐵住金株式会社 Recovery method of converter exhaust gas
JP6264943B2 (en) * 2014-02-28 2018-01-24 新日鐵住金株式会社 Converter decarburization processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3964261A1 (en) 2020-09-03 2022-03-09 B dot Medical Inc. Charged particle irradiation apparatus
EP4056230A1 (en) 2021-03-10 2022-09-14 B dot Medical Inc. Patient shuttle system and irradiation system for particle therapy

Also Published As

Publication number Publication date
JPH01142015A (en) 1989-06-02

Similar Documents

Publication Publication Date Title
JPH0434610B2 (en)
CN107630120B (en) method for adjusting converter second venturi throat
EP0793071A2 (en) Furnace waste gas combustion control
US3190747A (en) System for recovering waste gases from a metal refining zone
CN107604123A (en) A kind of method for effectively improving RECOVERY OF CONVERTER GAS quality and quantity
JP3804526B2 (en) Converter exhaust gas recovery equipment and recovery method
EP0190644B2 (en) Convertor pressure control device in convertor waste gas disposing device
JPS5839204B2 (en) Furnace pressure control device in converter waste gas treatment equipment
JPS6043886B2 (en) Waste gas recovery method in converter waste gas treatment equipment
US4314694A (en) Method for controlling exhaust gases in oxygen blown converter
JP2515094B2 (en) Operation method of converter exhaust gas treatment equipment
JP4238603B2 (en) Converter furnace port pressure control method and control apparatus
JP3775238B2 (en) Converter exhaust gas recovery equipment and recovery method
JPS6310204B2 (en)
RU1778192C (en) Operating process of sinter plant cum blast-furnace shop complex
JPS62177113A (en) System for controlling furnace pressure for converter waste gas treatment device
US3409283A (en) Apparatus for treating exhaust gases from an oxygen converter
CA1092361A (en) Method for controlling exhaust gases in oxygen blown converter
SU1018978A1 (en) Method for controlling pressure under movable part of converter port
JPS583004B2 (en) Gas pressure control system in the hood of converter waste gas treatment equipment
JPS5846527B2 (en) Furnace mouth pressure control method in converter waste gas treatment equipment
SU711108A1 (en) Method of oxygen convertor process control
JPS6156222A (en) Method for controlling waste gas recovery
JP3627957B2 (en) Control device for CO concentration in furnace exhaust gas
JPS58120707A (en) Controlling method for recovering of converter waste gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees