JPH0434565B2 - - Google Patents

Info

Publication number
JPH0434565B2
JPH0434565B2 JP59175140A JP17514084A JPH0434565B2 JP H0434565 B2 JPH0434565 B2 JP H0434565B2 JP 59175140 A JP59175140 A JP 59175140A JP 17514084 A JP17514084 A JP 17514084A JP H0434565 B2 JPH0434565 B2 JP H0434565B2
Authority
JP
Japan
Prior art keywords
cresol
resin
molecular weight
reaction
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59175140A
Other languages
Japanese (ja)
Other versions
JPS6155113A (en
Inventor
Yoshitomo Nakano
Masumi Kada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP17514084A priority Critical patent/JPS6155113A/en
Publication of JPS6155113A publication Critical patent/JPS6155113A/en
Publication of JPH0434565B2 publication Critical patent/JPH0434565B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、注型材、ガラス繊維補強用樹脂ワニ
ス、粉体塗料用樹脂に適した高分子量クレゾール
ノボラツクエポキシ樹脂およびその製造方法に関
する。本発明の樹脂の硬化物は、耐熱性、機械的
強度に富むので、本発明の樹脂は電気機器封止
剤、航空機構造材料として有用である。 〔従来の技術〕 エポキシ樹脂は優れた耐熱性、機械強度、電気
特性を有することから塗料、電気絶縁材、注型
材、構造材等の分野で広く用いられている。 これらエポキシ樹脂は一般にビスフエノールA
とエピクロルヒドリンから製造される1分子に約
2個のエポキシ基を有するビスフエノールAのジ
グリシジルエーテルが広汎に用いられている(特
開55−118920号、同58−74726号、同58−74727
号、特公昭32−1548号、英国特許第1001364号
等)。 近年、小型電気製品、LSI,IC,宇宙航空機器
の発達に伴ない、より耐熱性、機械強度の高い硬
化物を与えるエポキシ樹脂が要求され、一分子中
に3個以上のエポキシ基を有するいわゆる多官能
エポキシ樹脂が用いられるようになつてきた。多
官能エポキシ樹脂を用いると、硬化反応後の架橋
密度が高くなる為に機械特性、電気特性が向上す
る。 かかる多官能のエポキシ樹脂として、メチレン
ジアニリンのテトラエポキシド、ジアミノジフエ
ニルメタンのテトラエポキシド、テトラフエノー
ルエタンのテトラグリシジルエーテル等が知られ
ているが、これらのエポキシ樹脂は分子量も低
く、一分子中のエポキシ基の数もたかだか4であ
り、耐熱温度も高々200℃を若干越える硬化物し
か得られていない。更に分子内にアミノ基を有す
るエポキシ樹脂は保存性が悪くゲル化し易く、ま
た吸水性が高い欠点を有する。 更に、多官能のエポキシ樹脂としては、フエノ
ールノボラツク樹脂のポリエポキシド(例えばエ
ピコート154油化シエルエポキシ(株)商品名)、
オルトクレゾールノボラツク樹脂のポリエポキシ
ド(例えばEOCN104S日本化薬(株)商品名)
等が耐熱性や高強度が必要とされる絶縁塗料、半
導体封止材料、FRTP構造材、プリント配線基板
等に実用化されている。これらエポキシ樹脂の原
料のフエノールノボラツクまたはクレゾールノボ
ラツクの数平均分子量は250〜1000であり、次式
で示される。 〔式中、RはHまたはCH3であり、mは1〜3
である〕 3核体から5核体であることから、このエポキ
シ樹脂の分子量は高々約1400である。従つて、こ
れらのエポキシ樹脂の硬化物の耐熱温度も高々
200℃であり、より耐熱性の高いエポキシ樹脂の
出現が望まれているのが実情である。 〔発明が解決しようとする問題点〕 本発明は、耐熱性が230℃以上であり、機械的
強度の優れた硬化物を与える多官能エポキシ樹脂
を提供することを目的とする。 〔問題点を解決する解決手段〕 硬化物の耐熱性を向上させるのには、原料のク
レゾールノボラツクがより多核体であればより多
くのエポキシ基を有するエポキシ樹脂が得られる
知見のもとに、先に本発明者が出願を行つたエー
テルやケトン等の有機溶剤に可溶な数平均分子量
が1500以上で、軟化点が120℃以上の線状ノボラ
ツク樹脂(特願昭59−116510号、同59−131864号
明細書参照)をポリフエノール原料とし、これに
エピクロルヒドリンを苛性ソーダの存在下に反応
させることにより本発明の目的である耐熱性の優
れた硬化物を与えるエポキシ樹脂が提供できる。 〔発明の構成〕 本発明の第1は、エポキシ当量が176〜280であ
り、N,N−ジメチルアセトアミド溶媒中で蒸気
圧法により測定した数平均分子量が2000〜7000の
線状高分子量クレゾールノボラツクエポキシ樹脂
を提供するものである。 本発明のエポキシ樹脂は、次式によつて示すこ
とができる。 〔式中、Rはオルソ又はパラ位に結合している
CH3であり、nは繰返し数である〕 本発明の第2は、軟化点が120℃以上、N,N
−ジメチルアセトアミド溶媒中で蒸気圧法により
測定した数平均分子量が1500以上の線状高分子量
クレゾールノボラツク樹脂とエピハロヒドリンと
をアルカリ金属水酸化物の存在下で反応させてエ
ポキシ当量が176〜280であり、N,N−ジメチル
アセトアミド溶媒中で蒸気圧法により測定した数
平均分子量が2000以上の線状高分子量クレゾール
ノボラツクエポキシ樹脂を製造する方法を提供す
るものである。 (クレゾールノボラツク樹脂) エポキシ樹脂の原料であるクレゾールノボラツ
ク樹脂は、先願の明細書に記載されるように、オ
ルトクレゾールまたはオルトクレゾールとパラク
レゾールをモル比で10:0〜1:9の割合で混合
した混合クレゾールとアルデヒドとを、炭素数が
3〜12の脂肪族アルコール、炭素数が3〜6のグ
リコールエーテル、ベンジルアルコールおよび炭
素数が2〜6の脂肪族カルボン酸より選ばれた溶
媒中で酸性触媒の存在下に重縮合させることによ
り得られ、軟化点が120℃以上、N,N−ジメチ
ルアセトアミド溶媒中で蒸気圧法により測定した
数平均分子量が1500以上の線状高分子体である。 (クレゾール) アルデヒドと反応させるクレゾールは、オルソ
クレゾール単独であつても、その90モル%未満、
好ましくは30〜70モル%をパラクレゾールに置き
かえてもよい。パラクレゾールの使用は、樹脂の
耐熱性の向上に寄与するが、樹脂の溶剤に対する
溶解性を低下させる。 (アルデヒド) アルデヒドとしては、ホルムアルデヒドまたは
加熱分解によりホルムアルデヒドを発生するトリ
オキサンもしくはパラホルムアルデヒドを用い
る。特に、反応系内の水分含有量を低下させるた
め、トリオキサン又はパラホルムアルデヒドが好
ましい。 フエノール類、1モルに対し、ホルムアルデヒ
ドは0.7〜1.5モル、好ましくは0.9〜1.3モルの割
合で用いる。アルデヒドが少ないと低分子量のク
レゾールノボラツク樹脂しか得られない。また、
多量に用いると樹脂がゲル化しやすい。 (溶媒) 反応溶媒として用いられるアルコールは、高沸
点でノボラツク樹脂の溶解性の良いものが適当で
あり、プロパノール、プタノール、アミルアルコ
ール、ヘキサノール、メトキシエタノール、エト
キシエタノール、ブトキシエタノールのようなグ
リコールエーテル類、ベンジンアルコール等があ
げられる。 また、有機カルボン酸としてはギ酸、酢酸、プ
ロピオン酸、酪酸等があげられる。 溶媒は、クレゾール100重量部に対し、150〜
300重量部の割合で用いる。 (酸性触媒) 触媒としては、塩酸、硝酸、硫酸、リン酸、ト
ルエンスルホン酸、蓚酸、メタンスルホン酸、過
塩素酸等のプロトン酸が使用される。特開昭57−
113号、同56−92908号公報で好ましいとしている
三弗化ホウ素、三弗化ホウ素エーテル錯体、三塩
化アルミニウム、四塩化スズ、塩化亜鉛等のルイ
ス酸は不適である。 触媒は、クレゾール100重量部に対し、0.01〜
20重量部、好ましくは1〜15重量部の割合で用い
る。 (重縮合反応) 反応は、原料のクレゾール、アルデヒド、溶
媒と触媒を反応容器内に仕込み、攪拌しながらゆ
つくりと加熱し、反応温度に達せさせるか、原
料のクレゾールと反応溶剤と触媒を仕込み、反応
温度に達しさせた後、アルデヒドを触媒と共にア
ルコール又はカルボン酸溶媒に溶解した溶液を添
加するか、原料のクレゾールとアルデヒドと溶
媒を反応容器内に仕込み、攪拌しながら反応温度
近くまで加熱し、触媒又は酸触媒を溶解した溶媒
を滴下するか、いずれかの方法で行う。 オルトクレゾール・パラクレゾールのランダム
共重合樹脂を製造する場合は、あらかじめ両クレ
ゾールを良く混合しておく必要がある。 反応は、95℃以上、好ましくは105℃〜150℃に
て行う。低温では反応の進行が遅く、高温ではゲ
ル分が発生し易い。 反応系内の水分が多いとホルムアルデヒドが副
反応で消費され、重合に使われる量が減り、分子
量が増加しない。また高分子量ノボラツク樹脂は
水分含有量が多いと溶媒に不溶となり、析出して
不均一系反応となるので高分子化し難くなる。水
分含有量は15重量%以下好ましくは10重量%以下
で反応を行う。水と共沸し、分離ができる例えば
n−ブタノールのような溶剤を用いて環流しなが
ら反応と共に生成する水を除きながら反応させる
のも有効である。 (精製) 反応終了後のクレゾールノボラツク樹脂の分離
は、溶媒として水に可溶な溶剤、例えばメトキシ
エタノール、エトキシエタノール、酢酸、ギ酸等
を用いた場合は、10〜20倍量の水中に投入し、水
に不溶な樹脂として再沈回収する。また、溶媒と
して水に不溶な溶媒を用いた場合は、触媒を水洗
や中和により除いた後、溶媒を溜去し、溶融樹脂
を抜出すことにより回収する。 (クレゾールノボラツク樹脂) オルトクレゾールノボラツク樹脂は、酢酸、プ
ロピオン酸等のカルボン酸;メタノール、エタノ
ール、ブタノール等のアルキルアルコール類;ア
セトン、メチルエチルケトン、メチルイソブチル
ケトン、シクロヘキサノン等のケトン類;酢酸エ
チル、酢酸ブチル等のエステル類;テトラヒドロ
フランやジオキサンの様なエーテル類;メトキシ
エタノールやブトキシエタノール等のグリコール
エーテル類に易溶である。 また、これら各種溶媒に易溶であり、不溶なゲ
ル分は全く見られないことから得られた樹脂は線
状の高分子である。 メチルエチルケトンを溶剤としたVPOによる
数平均分子量は1500〜5000であり、テトラヒドロ
フランを溶剤としたゲルパーミユエーシヨンクロ
マトグラフで重量平均分子量と数平均分子量の比
Qを測定したところ、1.5〜12であつた。 また、この樹脂は顕微鏡にて樹脂粉末が流動し
透明となる温度を測定する軟化点測定法で120℃
〜300℃の軟化点を示した。 一方、オルトクレゾールとパラクレゾールの混
合物から得られたクレゾールノボラツク樹脂は、
ランダム共重合物であり、テトラヒドロフラン、
ジオキサン等のエーテル類やジメチルアセトアミ
ド、ジメチルホルムアミドに可溶であり、不溶な
ゲル分は全く見られないことから、得られた樹脂
は線状の高分子である。 溶剤への溶解性はオルトクレゾールとパラクレ
ゾールのモル比、分子量により変化する。パラク
レゾールのモル比が高い程、分子量が高い程難溶
となる。例えば、パラクレゾールとオルトクレゾ
ールのモル比が5/5で軟化点が145℃以上の樹脂
は、アセトンやメチルエチルケトン等のケトン
類;メトキシエタノールやエトキシエタノール等
のグリコールエーテル類;酢酸エチル等のエステ
ル類;エピクロルヒドリンには可溶であるが、メ
タノール、エタノール等のアルコール類には難溶
となる。 パラクレゾールをエトキシエタノール中、パラ
フオルムアルデヒドと硫酸触媒で重合すると軟化
点が300℃を越える線状高分子量パラクレゾール
ノボラツク樹脂が生成する。しかし、この樹脂は
溶剤への溶解性が悪く、テトラヒドロフラン、ジ
オキサン、ジメチルホルムアミド、ジメチルアセ
トアミドを除く上述の溶剤には難溶である。 〔エポキシ樹脂〕 上記高分子量の線状クレゾールノボラツク樹脂
にエピハロヒドリンを反応させてポリグリシジル
エーテルを製造する方法には次の2通りの方法が
ある。 (1) クレゾールノボラツク樹脂と過剰のエピハロ
ヒドリンとをアルカリ金属水酸化物の共存下に
反応させ、クレゾールノボラツク樹脂へのエピ
ハロヒドリンの付加反応と、エポキシ環を形成
する閉環反応とを同時に行つてポリグリシジル
エーテルを製造する一段法 (2) クレゾールノボラツク樹脂と過剰のエピハロ
ヒドリンとをホスホニウム塩または四級アンモ
ニウム塩等の触媒の存在下で付加反応させ、次
いでアルカリ金属水酸化物を添加して閉環反応
を行なつてポリグリシジルエーテルを製造する
二段法。 この二法のうち、後者の二段法の方が収率がよ
り高いことと、得られるポリグリシジルエーテル
中の高分子量体の含量が低いことから一段法より
好ましい。 前記一段法において、反応は60〜150℃、好ま
しくは80〜120℃の範囲の温度で行われる。クレ
ゾールノボラツク樹脂に含まれるフエノール性
OH1当量に対するエピハロヒドリンの配合量は
2倍〜20倍モル、好ましくは8倍〜12倍モルであ
る。またアルカリ金属水酸化物はクレゾールノボ
ラツク樹脂のフエノールの水酸基に対して少なく
とも等モル、好ましくは1.05〜1.5モル倍量使用
する。 また、後者の二段法においては、前段の付加反
応は40〜150℃、好ましくは70〜140℃で行われ、
後段の閉環反応は20〜150℃、好ましくは40〜80
℃で行われる。触媒の量はクレゾールノボラツク
樹脂に対して0.1〜5モル%、エピハロヒドリン
及びアルカリ金属水酸化物の量は一段法と同様で
ある。 一段法、及び二段法における後段の閉環反応は
常圧又は減圧下(50〜200mmHg)で、生成する
水をエピハロヒドリンとの共沸により連続的に系
外に除去しながら行つてもよい。 これらの反応終了後、反応液を過助剤(例え
ばセライト等)を用いて過して副生する塩を除
去した後、未反応のエピハロヒドリンを減圧回収
し、生成物を得るか又は反応液を減圧して未反応
のエピハロヒドリンを回収した後、水に難溶性の
有機溶媒、例えば、メチルイソブチルケトン、シ
クロヘキサノン等に溶解し、この溶液を水または
温水と接触させて食塩等の無機不純物を水相に溶
解し、その後有機溶媒を留去して精製を行なう。
またはジオキサン、テトラヒドロフランの様な水
溶性溶剤中で脱塩酸し、5〜10倍量の水中に攪拌
しながら樹脂溶液を投入し再沈精製してもよい。 原料のエピハロヒドリンとしては、たとえばエ
ピクロヒドリン、エピプロモヒドリン、β−メチ
ルエピクロヒドリン及びβ−メチルエピプロモヒ
ドリン等があげられる。 また、アルカリ金属水酸化物としては水酸化カ
リウム、水酸化ナトリウムが挙げられる。 更に、二段法において前段の付加反応に使用さ
れる触媒としては、第四級アンモニウム塩、ホス
フアイト等があげられる。第四級アンモニウム塩
としては、たとえばテトラメチルアンモニウムク
ロリド、テトラエチルアンモニウムブロミド、ト
リエチルメチルアンモニウムクロリド、テトラエ
チルアンモニウムアイオダイド、セチルトリエチ
ルアンモニウムブロミド等があげられる。ホスフ
アイトとしてはトリフエニルホスホニウムハライ
ド(たとえばアイオダイド、ブロミド、クロリ
ド)、トリフエニルエチルホスホニウムジエチル
ホスフエイトおよびホスホネイト等があげられ
る。特に好ましい触媒はテトラメチルアンモニウ
ムクロリド又はテトラエチルアンモニウムブロミ
ドである。 このようにして製造された高分子量クレゾール
ノボラツクエポキシ樹脂は、ジオキサン又はジメ
チルアセトアミドを溶剤とした蒸気圧法(VPO)
により測定した数平均分子量が2000〜7000を示す
ものである。また、顕微鏡にて樹脂粉体が軟化、
流動し透明となる温度を測定する軟化点測定法
で、100℃から最高300℃を越える軟化点を示すも
のである。 この線状高分子量クレゾールノボラツクエポキ
シ樹脂は、ジオキサン、ジメチルアセトアミド、
テトラヒドロフラン、メチルエチルケトン、クロ
ホルム、シクロヘキサノン等の有機溶剤に溶解す
る。 このクレゾールノボラツクエポキシ樹脂は、単
独で、又は他のエポキシ化合物と併用してエポキ
シ樹脂としての用途に供することができる。すな
わち、このクレゾールノボラツクエポキシ樹脂を
単独で、又はこれに他のエポキシ化合物の1種又
は2種以上を併用して、適当な硬化剤で硬化(架
橋)反応をさせれば、耐熱性、可撓性、耐衝撃性
に富む硬化物となる。併用される他のエポキシ化
合物には格別の制限がなく、用途等に応じて種々
のエポキシ化合物が併用される。その併用される
他のエポキシ化合物としては、たとえばビスフエ
ノールA若しくはブロモビスフエノールA等のポ
リグリシジルエーテル類;フタル酸、シクロヘキ
サンジカルボン酸等のポリグリシジルエステル
類、又はアニリン若しくはトルイジン等とのポリ
グリシジルアミン類等があげられ、これらはエポ
キシ化合物中の10〜80重量%の割合で、本発明の
高分子量クレゾールノボラツクエポキシ樹脂と併
用される。 (硬化剤) このクレゾールノボラツクエポキシ樹脂を硬化
させる硬化剤としては既知のエポキシ樹脂におけ
ると同様な種々の硬化剤が使用できる。たとえ
ば、脂肪族アミン類、芳香族アミン類、複素環式
アミン類、三フッ化ホウ素等のルイス酸及びそれ
らの塩類、有機酸類、有機酸無水物類、尿素若し
くはそれらの誘導体類、及びポリメルカプタン類
等があげられる。その具体例としては、たとえば
ジアミノジフエニルメタン、ジアミノジフエニル
スルホン、2,4−ジアミノ−m−キシレン等の
芳香族アミン;2−メチルイミダゾール、2,
4,5−トリフエニルイミダゾール、1−シアノ
エチル−2−メチルイミダゾール等のイミダゾー
ル若しくはイミダゾール置換体またはこれらと有
機酸との塩;フマル酸、トリメリツト酸、ヘキサ
ヒドロフタル酸等の有機カルボン酸;無水フタル
酸、無水エンドメチレンテトラヒドロフタル酸、
無水ヘキサヒドロフタル酸等の有機酸無水物;ジ
シアンジアミド、メラミン、グアナミン等の尿素
誘導体;トリエチレンテトラミン、ジエチレント
リアミン、キシリレンジアミン、イソホロンジア
ミン等の脂肪族ポリアミン類及びこれらのエチレ
ンオキシド、プロピレンオキシド等のエポキシ化
合物もしくはアクリロニトリル、アクリル酸等の
アクリル化合物などとの付加物等が使用できる。 また、フエノールノボラツク樹脂、クレゾール
ノボラツク樹脂、テトラヒドロキシフエニルエタ
ン等の多価フエノール類を硬化剤とし、これと、
必要に応じて促進剤としてアミン類とを硬化剤と
して用いることができる。 さらにこの高分子量クレゾールノボラツクエポ
キシ樹脂には、前記硬化剤のほかに、必要に応じ
て可塑剤、有機溶剤、反応性希釈剤、増量剤、充
てん剤、補強剤、顔料、難燃化剤、増粘剤及び可
撓性付与剤等の種々の添加剤を配合することがで
きる。 本発明のクレゾールノボラツクエポキシ樹脂
は、従来不可能とされた線状高分子量体であり、
今まで知られているクレゾールノボラツクエポキ
シ樹脂に比して高分子量であり、軟化点も高い。
それゆえ、本発明の線状高分子量クレゾールノボ
ラツクエポキシ樹脂の硬化物は、従来のものに比
べて耐熱性と強度が優れている。したがつて、こ
のクレゾールノボラツクエポキシ樹脂は、積層
材、成形材料、接着剤、塗料の分野に利用するこ
とができる。 すなわち、このエポキシ樹脂、硬化剤を含む硬
化性樹脂組成物をテトラヒドロフラン、メチルエ
チルケトン等の溶剤に溶解したワニスをガラス布
に含浸、乾燥してプリプレグとし、さらに銅箔と
数枚のプリプレグを重ねて加熱プレスすることに
より、プリント配線基板用銅張り積層板を製造す
ることが出来る。 また、この組成物に硬化促進剤、シリカ等の充
填材、滑剤を加え、加温したロール上で混練する
ことにより成形用コンパウンドが製造される。こ
のコンパウンドは、さらにトランスフアー成形機
等を用いて成形され半導体封止や機械部品に使用
される。 更に、この硬化性樹脂組成物に、ナイロン、ポ
リエステル、ポリビニルブチラール、カルボキシ
ル基含有ブタジエンニトリルゴム等の樹脂を配合
し、必要に応じ充填材を加えることにより接着剤
を製造することができる。 また、更に、高分子オルトクレゾールノボラツ
クエポキシ樹脂、硬化剤、硬化促進剤に、充填材
を加え、加熱ロールで混練し、冷却後粉砕機で粉
砕し、篩で分級して粉体塗料を調製することが出
来る。 次に、本発明を実施例により更に詳細に説明す
る。 〔ノボラツク樹脂の製造例〕 例 1 O−クレゾール108g、パラフオルムアルデヒ
ド32gおよびエチルセロソルブ240gを硫酸10g
と共に反応器内に入れ、攪拌しながら115℃で4
時間反応を行つた。 反応終了後、17gのNaHCO3と水30gを加え
て中和した後、高速に攪拌しながら水2中に反
応液を投入し、沈澱してくる樹脂を別後乾燥し
て樹脂115gを得た。 この樹脂は、メタノール、エタノール、フタノ
ール、オクタノール、メチルセロソルブ、エチル
セロソルブ、テトラヒドロフラン、ジオキサン、
アセトン、メチルエチルケトン、酢酸エチル、エ
ピクロルヒドリンに可溶であり、ゲル分は見受け
られなかつた。 この樹脂の分子量を蒸気圧法(メチルエチルケ
トン中40℃)で測定したところ、数平均分子量は
2600であつた。また、顕微鏡法により求めた樹脂
の軟化点は155℃であつた。更に、テトラヒドロ
フラン溶液のゲルパーミユエーシヨンクロマトグ
ラフ分析によるQ値は3.0であつた。 例 2 p−クレゾール54g、o−クレゾール54g、パ
ラホルムアルデヒド32g、及びエチルセロソルブ
240gを硫酸10gと共に反応器に入れ、攪拌しな
がら115℃で4時間反応させた。反応終了後17g
のNaHCO3と水30gを加えて中和した後、高速
に攪拌中の水2中に反応液を投入し、沈殿した
樹脂を別し、乾燥して115gのノボラツク樹脂
を得た。 この樹脂の蒸気圧法(メチルエチルケトン、40
℃)によるMnは2800、テトラヒドロフラン溶液
のゲルパーミユエーシヨンクロマトグラフ分析に
よるQ値は2,4、顕微鏡法による軟化点は200
℃以上であつた。 また、この樹脂はアセトン、メチルエチルケト
ン、メトキシエタノール、エトキシエタノール、
テトラヒドロフラン、ジオキサン、ジメチルホル
ムアミド、ジメチルアセトアミド、酢酸エチル、
エピクロルヒドリンに可溶であつた。 例 3 o−クレゾール108g、パラフオルムアルデヒ
ド29.3g、n−ブタノール240gをp−トルエン
スルホン酸15gと共に反応器に入れ攪拌しながら
110℃〜115℃の温度で4時間反応した。このとき
生成する水を分離器を用いて系外に除きながら反
応した。 反応終了後NaHCO317gを含む300gの水で中
和洗浄後ブタノール相を分離し、加熱してブタノ
ールを溜去し190℃にて樹脂を抜出し冷却して115
gの樹脂を得た。 このo−クレゾールノボラツク樹脂の数平均分
子量は1900、軟化点は130℃であつた。 実施例 1 製造例1で得た高分子量o−クレゾールノボラ
ツク樹脂60g、エピクロルヒドリン462.5gおよ
びテトラメチルアンモニウムブロミド4.0gを三
つ口フラスコ内に仕込み、攪拌しながら環流下
(117℃)で2時間反応を行つた。 その後、反応溶液を60℃に冷却し水分離器をつ
け、水酸化ナトリウム42gを加え、減圧下(150
〜100mmHg)で閉環反応を行つた。生成する水
はエピクロルヒドリンとの共沸により連続的に系
外に除去しながら生成水が18mlに達した時点で反
応を終了した。 未反応のエピクロルヒドリンを0.1〜50mmHg、
60〜110℃で回収し、ジオキサン120gを加えて生
成物を溶解し、副生した塩化ナトリウムを別し
た後、さらに水1に攪拌しながら投入し、再沈
して樹脂を別、乾燥した。 生成した樹脂のエポキシ当量は230、顕微鏡法
による軟化点は126℃であつた。また、蒸気圧法
による数平均分子量は3950であつた。 この樹脂は、テトラヒドロフラン、ジオキサ
ン、ジメチルホルムアミド、ジメチルアセトアミ
ド、メチルエチルケトン、シクロヘキサノン、酢
酸メトキシエチル、クロロホルムには可溶であ
り、ベンゼン、トルエン、キシレン、メタノー
ル、エタノール、ブタノール、メトキシエタノー
ル、エトキシエタノール、ブトキシエタノールに
は不溶であつた。 この生成物の赤外吸収スペクトルを第1図に示
す。 実施例 2,3 前記製造例2,3で得られた高分子量クレゾー
ルノボラツク樹脂を各60g用いる他は実施例1と
同様にして高分子量クレゾールノボラツクエポキ
シ樹脂を製造した。 このエポキシ樹脂のエポキシ当量は各235,225
であり、顕微鏡法による軟化点は各200℃以上、
105℃であつた。また、蒸気圧法による数平均分
子量は各4200,2850であつた。 比較例 1 o−クレゾール108g、37%ホルマリン73gお
よび濃塩酸0.1mlを反応器に入れ、85℃で1時間、
さらに4時間環流しながら反応させた。 反応後、水100gを加え、樹脂を沈降させ水を
デカンテーシヨンにて除いた後、100mmHgの減
圧下、脱水を行い、150℃で溶融樹脂を取出し、
固化後粉砕した。 この樹脂の蒸気圧法による数平均分子量は580
顕微鏡法による軟化点は73℃であつた。 こうして得られたオルトクレゾールノボラツク
樹脂60g、エピクロルヒドリン462.5gおよびテ
トラメチルアンモニウムブロミド4.0gを反応容
器内に仕込み、実施例1と同様に付加反応を行い
さらに水酸化ナトリウム42gで脱塩酸エポキシ化
を行い、実施例1と同様な後処理を行つて樹脂を
得た。生成した樹脂のエポキシ当量は220、顕微
鏡法による軟化点は49℃であつた(デユランス法
による軟化点は70℃)。 応用例 1,2 実施例1と3で得られた高分子量クレゾールノ
ボラツクエポキシ樹脂100重量部に、ジアミノジ
フエニルスルホンを25部配合し、180℃にて溶融
混合後、十分に脱泡し金型内に注型して180℃で
1時間前硬化し、240℃にて4時間後硬化をして
表−1に示す物性の硬化物を得た。 比較応用例 1 比較例1で得られたクレゾールノボラツクエポ
キシ樹脂をエポキシ樹脂の代りに用いる他は応用
例1と同様にして硬化物をつくつた。この硬化物
の物性を表−1に示す。 応用例 3 実施例2で得られた高分子量クレゾールノボラ
ツクエポキシ樹脂100重量部に、数平均分子量400
のフエノールノボラツク樹脂を48部、シリカを
200部配合し、BF3・2メチルイミダゾール醋塩
1部を加えて150℃の熱ロールで10分間混練後冷
却し、粉砕後250℃の金型で80Kg/cm2の圧力で圧
縮成形し20分後に脱型し、さらに240℃にて4時
間後硬化をした。硬化物の物性を表−2に示す。 比較応用例 2 比較例1で得られたクレゾールノボラツクエポ
キシ樹脂をエポキシ樹脂として用いる他は応用例
3と同様にして硬化物をつくつた。物性を表−2
に示す。
[Industrial Field of Application] The present invention relates to a high molecular weight cresol novolak epoxy resin suitable for casting materials, resin varnishes for reinforcing glass fibers, and resins for powder coatings, and a method for producing the same. Since the cured product of the resin of the present invention has high heat resistance and mechanical strength, the resin of the present invention is useful as an electrical equipment sealant and an aircraft structural material. [Prior Art] Epoxy resins have excellent heat resistance, mechanical strength, and electrical properties, and are therefore widely used in fields such as paints, electrical insulation materials, casting materials, and structural materials. These epoxy resins are generally bisphenol A
Diglycidyl ether of bisphenol A, which has about two epoxy groups in one molecule and is produced from epichlorohydrin and epichlorohydrin, is widely used (Japanese Patent Application Laid-open Nos. 55-118920, 58-74726, and 58-74727).
No., Special Publication No. 32-1548, British Patent No. 1001364, etc.). In recent years, with the development of small electrical appliances, LSI, IC, and aerospace equipment, there has been a demand for epoxy resins that provide cured products with higher heat resistance and mechanical strength. Multifunctional epoxy resins have come into use. When a polyfunctional epoxy resin is used, the crosslinking density after the curing reaction becomes high, so that mechanical properties and electrical properties are improved. As such multifunctional epoxy resins, tetraepoxide of methylene dianiline, tetraepoxide of diaminodiphenylmethane, tetraglycidyl ether of tetraphenolethane, etc. are known, but these epoxy resins have a low molecular weight, and each molecule contains The number of epoxy groups is at most 4, and only cured products with a heat resistance temperature of slightly over 200°C have been obtained. Furthermore, epoxy resins having amino groups in their molecules have poor storage stability, tend to gel, and have high water absorption. Further, as the polyfunctional epoxy resin, polyepoxide of phenol novolac resin (for example, Epicoat 154 Yuka Ciel Epoxy Co., Ltd. trade name),
Ortho-cresol novolac resin polyepoxide (e.g. EOCN104S Nippon Kayaku Co., Ltd. trade name)
These materials have been put to practical use in insulating paints, semiconductor encapsulation materials, FRTP structural materials, printed wiring boards, etc. that require heat resistance and high strength. The number average molecular weight of phenol novolac or cresol novolac, which is a raw material for these epoxy resins, is 250 to 1000 and is expressed by the following formula. [In the formula, R is H or CH3 , and m is 1 to 3
] Since the epoxy resin has a trinuclear to pentanuclear structure, the molecular weight of this epoxy resin is about 1,400 at most. Therefore, the heat resistance temperature of cured products of these epoxy resins is also high.
200℃, and the reality is that there is a desire for an epoxy resin with higher heat resistance. [Problems to be Solved by the Invention] An object of the present invention is to provide a polyfunctional epoxy resin that has heat resistance of 230° C. or higher and provides a cured product with excellent mechanical strength. [Solutions to solve the problem] In order to improve the heat resistance of the cured product, based on the knowledge that if the raw material cresol novolac is more polynuclear, an epoxy resin with more epoxy groups can be obtained. , a linear novolac resin with a number average molecular weight of 1500 or more and a softening point of 120°C or more that is soluble in organic solvents such as ethers and ketones (Japanese Patent Application No. 116510/1989), which the present inventor previously filed an application for. 59-131864) as a polyphenol raw material and reacting it with epichlorohydrin in the presence of caustic soda, it is possible to provide an epoxy resin that provides a cured product with excellent heat resistance, which is the object of the present invention. [Configuration of the Invention] The first aspect of the present invention is a linear high molecular weight cresol novolak having an epoxy equivalent of 176 to 280 and a number average molecular weight of 2000 to 7000 as measured by vapor pressure method in an N,N-dimethylacetamide solvent. It provides epoxy resins. The epoxy resin of the present invention can be represented by the following formula. [In the formula, R is bonded at the ortho or para position
CH 3 and n is the number of repetitions.] The second aspect of the present invention is that the softening point is 120°C or higher, N, N
- An epoxy equivalent of 176 to 280 is obtained by reacting a linear high molecular weight cresol novolak resin with a number average molecular weight of 1500 or more as measured by vapor pressure method in a dimethylacetamide solvent and epihalohydrin in the presence of an alkali metal hydroxide. The present invention provides a method for producing a linear high molecular weight cresol novolak epoxy resin having a number average molecular weight of 2000 or more as measured by vapor pressure method in a N,N-dimethylacetamide solvent. (Cresol novolac resin) Cresol novolac resin, which is a raw material for epoxy resin, is made of ortho-cresol or ortho-cresol and para-cresol in a molar ratio of 10:0 to 1:9, as described in the specification of the earlier application. A mixture of cresol and aldehyde mixed in a proportion selected from aliphatic alcohols having 3 to 12 carbon atoms, glycol ethers having 3 to 6 carbon atoms, benzyl alcohol, and aliphatic carboxylic acids having 2 to 6 carbon atoms A linear polymer obtained by polycondensation in a solvent in the presence of an acidic catalyst, with a softening point of 120°C or higher and a number average molecular weight of 1500 or higher as measured by vapor pressure method in an N,N-dimethylacetamide solvent. It is. (Cresol) Even if the cresol to be reacted with aldehyde is orthocresol alone, less than 90 mol% of it,
Preferably 30 to 70 mol% may be replaced by para-cresol. The use of para-cresol contributes to improving the heat resistance of the resin, but reduces the solubility of the resin in solvents. (Aldehyde) As the aldehyde, formaldehyde or trioxane or paraformaldehyde, which generates formaldehyde by thermal decomposition, is used. In particular, trioxane or paraformaldehyde is preferred in order to reduce the water content in the reaction system. Formaldehyde is used in a ratio of 0.7 to 1.5 mol, preferably 0.9 to 1.3 mol, per 1 mol of phenols. If the aldehyde content is low, only low molecular weight cresol novolak resins can be obtained. Also,
If used in large quantities, the resin tends to gel. (Solvent) The alcohol used as the reaction solvent is suitably one with a high boiling point and good solubility for the novolak resin, and glycol ethers such as propanol, butanol, amyl alcohol, hexanol, methoxyethanol, ethoxyethanol, and butoxyethanol. , benzine alcohol, etc. Examples of organic carboxylic acids include formic acid, acetic acid, propionic acid, butyric acid, and the like. The solvent is 150 to 100 parts by weight of cresol.
Used in a proportion of 300 parts by weight. (Acidic Catalyst) As the catalyst, protonic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, toluenesulfonic acid, oxalic acid, methanesulfonic acid, and perchloric acid are used. Unexamined Japanese Patent Publication 1987-
Lewis acids such as boron trifluoride, boron trifluoride ether complex, aluminum trichloride, tin tetrachloride, and zinc chloride, which are preferred in Japanese Patent No. 113 and No. 56-92908, are unsuitable. The catalyst is 0.01 to 100 parts by weight of cresol.
It is used in a proportion of 20 parts by weight, preferably 1 to 15 parts by weight. (Polycondensation reaction) The reaction is carried out by charging the raw materials cresol, aldehyde, solvent and catalyst into a reaction vessel and slowly heating them while stirring to reach the reaction temperature, or by charging the raw materials cresol, reaction solvent and catalyst. After the reaction temperature is reached, a solution of aldehyde and a catalyst dissolved in an alcohol or carboxylic acid solvent is added, or the raw materials cresol, aldehyde, and solvent are placed in a reaction vessel and heated to near the reaction temperature while stirring. , by dropping a solvent in which the catalyst or acid catalyst is dissolved, or by any of the following methods. When producing a random copolymer resin of ortho-cresol and para-cresol, it is necessary to thoroughly mix both cresols in advance. The reaction is carried out at 95°C or higher, preferably 105°C to 150°C. At low temperatures, the reaction progresses slowly, and at high temperatures, gel components are likely to occur. If there is a lot of water in the reaction system, formaldehyde will be consumed in side reactions, the amount used for polymerization will decrease, and the molecular weight will not increase. Furthermore, if a high molecular weight novolac resin has a high water content, it will become insoluble in a solvent and will precipitate, resulting in a heterogeneous reaction, making it difficult to convert into a polymer. The reaction is carried out at a water content of 15% by weight or less, preferably 10% by weight or less. It is also effective to carry out the reaction using a solvent such as n-butanol, which is azeotropic with water and can be separated, while refluxing to remove water produced along with the reaction. (Purification) To separate the cresol novolac resin after the reaction is complete, if a water-soluble solvent such as methoxyethanol, ethoxyethanol, acetic acid, or formic acid is used as the solvent, it should be poured into 10 to 20 times the amount of water. Then, it is reprecipitated and recovered as a water-insoluble resin. Further, when a water-insoluble solvent is used as the solvent, the catalyst is removed by washing with water or neutralization, and then the solvent is distilled off and the molten resin is recovered by extraction. (Cresol novolak resin) Orthocresol novolak resin is made of carboxylic acids such as acetic acid and propionic acid; alkyl alcohols such as methanol, ethanol, and butanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ethyl acetate, It is easily soluble in esters such as butyl acetate; ethers such as tetrahydrofuran and dioxane; and glycol ethers such as methoxyethanol and butoxyethanol. Furthermore, the resin obtained is a linear polymer because it is easily soluble in these various solvents and no insoluble gel content is observed. The number average molecular weight measured by VPO using methyl ethyl ketone as a solvent was 1500 to 5000, and the ratio Q of weight average molecular weight to number average molecular weight was measured using gel permeation chromatography using tetrahydrofuran as a solvent, and it was 1.5 to 12. . In addition, this resin was determined to be 120°C by the softening point measurement method, which measures the temperature at which the resin powder flows and becomes transparent under a microscope.
It exhibited a softening point of ~300°C. On the other hand, cresol novolak resin obtained from a mixture of ortho-cresol and para-cresol is
It is a random copolymer of tetrahydrofuran,
The obtained resin is a linear polymer because it is soluble in ethers such as dioxane, dimethylacetamide, and dimethylformamide, and no insoluble gel components are observed. The solubility in a solvent varies depending on the molar ratio of ortho-cresol and para-cresol and the molecular weight. The higher the molar ratio of para-cresol and the higher the molecular weight, the less soluble it becomes. For example, resins with a molar ratio of para-cresol and orthocresol of 5/5 and a softening point of 145°C or higher include ketones such as acetone and methyl ethyl ketone; glycol ethers such as methoxyethanol and ethoxyethanol; and esters such as ethyl acetate. ; It is soluble in epichlorohydrin, but poorly soluble in alcohols such as methanol and ethanol. Polymerization of para-cresol in ethoxyethanol with paraformaldehyde and a sulfuric acid catalyst produces a linear high molecular weight para-cresol novolak resin with a softening point of over 300°C. However, this resin has poor solubility in solvents, and is hardly soluble in the above-mentioned solvents except tetrahydrofuran, dioxane, dimethylformamide, and dimethylacetamide. [Epoxy Resin] There are two methods for producing polyglycidyl ether by reacting the high molecular weight linear cresol novolac resin with epihalohydrin. (1) Cresol novolac resin and excess epihalohydrin are reacted in the coexistence of an alkali metal hydroxide, and the addition reaction of epihalohydrin to the cresol novolac resin and the ring-closing reaction to form an epoxy ring are simultaneously performed to produce polyester. One-step method for producing glycidyl ether (2) Cresol novolak resin and excess epihalohydrin are subjected to an addition reaction in the presence of a catalyst such as a phosphonium salt or a quaternary ammonium salt, and then an alkali metal hydroxide is added to perform a ring-closing reaction. A two-step process for producing polyglycidyl ether. Of these two methods, the latter two-stage method is preferable to the one-stage method because the yield is higher and the content of high molecular weight substances in the obtained polyglycidyl ether is lower. In said one-step process, the reaction is carried out at a temperature in the range of 60-150°C, preferably 80-120°C. Phenolic properties contained in cresol novolak resin
The amount of epihalohydrin to be blended is 2 to 20 times, preferably 8 to 12 times, by mole per equivalent of OH. The alkali metal hydroxide is used in an amount of at least equimolar, preferably 1.05 to 1.5 times the mole of the phenol hydroxyl group of the cresol novolak resin. In addition, in the latter two-stage method, the first stage addition reaction is carried out at 40 to 150 °C, preferably 70 to 140 °C,
The subsequent ring-closing reaction is carried out at 20-150°C, preferably 40-80°C.
Performed at °C. The amount of catalyst is 0.1 to 5 mol % based on the cresol novolak resin, and the amounts of epihalohydrin and alkali metal hydroxide are the same as in the one-stage process. The subsequent ring-closing reaction in the one-stage method and the two-stage method may be carried out under normal pressure or reduced pressure (50 to 200 mmHg) while continuously removing the produced water from the system by azeotroping with epihalohydrin. After the completion of these reactions, the reaction solution is filtered through a filter aid (for example, celite, etc.) to remove by-product salts, and unreacted epihalohydrin is recovered under reduced pressure to obtain a product or the reaction solution is filtered. After recovering unreacted epihalohydrin under reduced pressure, it is dissolved in an organic solvent that is sparingly soluble in water, such as methyl isobutyl ketone, cyclohexanone, etc., and this solution is brought into contact with water or hot water to remove inorganic impurities such as common salt from the aqueous phase. The organic solvent is then distilled off for purification.
Alternatively, the resin solution may be dechlorinated in a water-soluble solvent such as dioxane or tetrahydrofuran, and the resin solution may be poured into 5 to 10 times the volume of water with stirring to purify by reprecipitation. Examples of the raw material epihalohydrin include epichlorohydrin, epipromohydrin, β-methylepichlorohydrin, and β-methylepipromohydrin. Furthermore, examples of the alkali metal hydroxide include potassium hydroxide and sodium hydroxide. Furthermore, examples of catalysts used in the first-stage addition reaction in the two-stage process include quaternary ammonium salts and phosphites. Examples of the quaternary ammonium salt include tetramethylammonium chloride, tetraethylammonium bromide, triethylmethylammonium chloride, tetraethylammonium iodide, and cetyltriethylammonium bromide. Phosphites include triphenylphosphonium halides (eg iodide, bromide, chloride), triphenylethylphosphonium diethyl phosphate and phosphonates. A particularly preferred catalyst is tetramethylammonium chloride or tetraethylammonium bromide. The high molecular weight cresol novolak epoxy resin produced in this way can be produced using the vapor pressure method (VPO) using dioxane or dimethylacetamide as a solvent.
The number average molecular weight measured by the method is 2000 to 7000. In addition, the resin powder softens under a microscope.
This is a softening point measurement method that measures the temperature at which the material becomes fluid and transparent, and indicates a softening point ranging from 100°C to a maximum of over 300°C. This linear high molecular weight cresol novolak epoxy resin is made from dioxane, dimethylacetamide,
Soluble in organic solvents such as tetrahydrofuran, methyl ethyl ketone, chloroform, and cyclohexanone. This cresol novolak epoxy resin can be used as an epoxy resin alone or in combination with other epoxy compounds. In other words, if this cresol novolac epoxy resin is used alone or in combination with one or more other epoxy compounds and is subjected to a curing (crosslinking) reaction with an appropriate curing agent, heat resistance and flexibility can be achieved. The cured product is highly flexible and impact resistant. There are no particular restrictions on the other epoxy compounds used in combination, and various epoxy compounds may be used in combination depending on the intended use. Other epoxy compounds used in combination include, for example, polyglycidyl ethers such as bisphenol A or bromobisphenol A; polyglycidyl esters such as phthalic acid and cyclohexanedicarboxylic acid; or polyglycidyl amines with aniline or toluidine, etc. These are used in combination with the high molecular weight cresol novolac epoxy resin of the present invention in a proportion of 10 to 80% by weight in the epoxy compound. (Curing Agent) As a curing agent for curing this cresol novolak epoxy resin, various curing agents similar to those used in known epoxy resins can be used. For example, aliphatic amines, aromatic amines, heterocyclic amines, Lewis acids such as boron trifluoride and their salts, organic acids, organic acid anhydrides, urea or their derivatives, and polymercaptans. Examples include the following. Specific examples include aromatic amines such as diaminodiphenylmethane, diaminodiphenyl sulfone, 2,4-diamino-m-xylene; 2-methylimidazole, 2,
Imidazole or imidazole substitutes such as 4,5-triphenylimidazole and 1-cyanoethyl-2-methylimidazole, or salts of these with organic acids; organic carboxylic acids such as fumaric acid, trimellitic acid, and hexahydrophthalic acid; phthalic anhydride acid, endomethylenetetrahydrophthalic anhydride,
Organic acid anhydrides such as hexahydrophthalic anhydride; urea derivatives such as dicyandiamide, melamine, and guanamine; aliphatic polyamines such as triethylenetetramine, diethylenetriamine, xylylene diamine, and isophorone diamine; and epoxy thereof such as ethylene oxide and propylene oxide. Compounds or adducts with acrylic compounds such as acrylonitrile and acrylic acid can be used. In addition, polyhydric phenols such as phenol novolac resin, cresol novolac resin, and tetrahydroxyphenylethane are used as a curing agent, and this and
If necessary, amines can be used as an accelerator and as a curing agent. Furthermore, in addition to the above-mentioned curing agent, this high molecular weight cresol novolak epoxy resin may optionally contain plasticizers, organic solvents, reactive diluents, extenders, fillers, reinforcing agents, pigments, flame retardants, etc. Various additives such as thickeners and flexibility-imparting agents can be blended. The cresol novolak epoxy resin of the present invention is a linear polymer that was previously considered impossible,
It has a higher molecular weight and a higher softening point than the cresol novolac epoxy resins known up to now.
Therefore, the cured product of the linear high molecular weight cresol novolak epoxy resin of the present invention has superior heat resistance and strength compared to conventional products. Therefore, this cresol novolak epoxy resin can be used in the fields of laminated materials, molding materials, adhesives, and paints. That is, a glass cloth is impregnated with a varnish in which a curable resin composition containing this epoxy resin and a curing agent is dissolved in a solvent such as tetrahydrofuran or methyl ethyl ketone, dried to form a prepreg, and then copper foil and several sheets of prepreg are layered and heated. By pressing, a copper-clad laminate for printed wiring boards can be manufactured. Further, a curing accelerator, a filler such as silica, and a lubricant are added to this composition, and the mixture is kneaded on heated rolls to produce a molding compound. This compound is further molded using a transfer molding machine or the like and used for semiconductor encapsulation and mechanical parts. Furthermore, an adhesive can be produced by blending a resin such as nylon, polyester, polyvinyl butyral, or carboxyl group-containing butadiene nitrile rubber with this curable resin composition, and adding a filler if necessary. Furthermore, a filler is added to the polymeric orthocresol novolac epoxy resin, curing agent, and curing accelerator, kneaded with heated rolls, cooled, crushed with a crusher, and classified with a sieve to prepare a powder coating. You can. Next, the present invention will be explained in more detail with reference to Examples. [Production example of novolac resin] Example 1 108 g of O-cresol, 32 g of paraformaldehyde, and 240 g of ethyl cellosolve were mixed with 10 g of sulfuric acid.
4 times at 115℃ with stirring.
A time reaction was performed. After the reaction was completed, 17 g of NaHCO 3 and 30 g of water were added to neutralize it, and the reaction solution was poured into 2 water while stirring at high speed. After separating the precipitated resin, it was dried to obtain 115 g of resin. . This resin contains methanol, ethanol, phthanol, octanol, methyl cellosolve, ethyl cellosolve, tetrahydrofuran, dioxane,
It was soluble in acetone, methyl ethyl ketone, ethyl acetate, and epichlorohydrin, and no gel content was observed. When the molecular weight of this resin was measured by vapor pressure method (40℃ in methyl ethyl ketone), the number average molecular weight was
It was 2600. Further, the softening point of the resin determined by microscopy was 155°C. Furthermore, the Q value of the tetrahydrofuran solution was 3.0 as determined by gel permeation chromatography analysis. Example 2 54 g of p-cresol, 54 g of o-cresol, 32 g of paraformaldehyde, and ethyl cellosolve
240g of the solution was placed in a reactor together with 10g of sulfuric acid, and the mixture was reacted at 115°C for 4 hours with stirring. 17g after completion of reaction
After neutralization by adding NaHCO 3 and 30 g of water, the reaction solution was poured into water 2 while stirring at high speed, and the precipitated resin was separated and dried to obtain 115 g of novolak resin. Vapor pressure method of this resin (methyl ethyl ketone, 40
℃) Mn is 2800, Q value by gel permeation chromatography analysis of tetrahydrofuran solution is 2.4, softening point by microscopy is 200
It was over ℃. In addition, this resin can be used for acetone, methyl ethyl ketone, methoxyethanol, ethoxyethanol,
Tetrahydrofuran, dioxane, dimethylformamide, dimethylacetamide, ethyl acetate,
It was soluble in epichlorohydrin. Example 3 108 g of o-cresol, 29.3 g of paraformaldehyde, and 240 g of n-butanol were placed in a reactor with 15 g of p-toluenesulfonic acid while stirring.
The reaction was carried out at a temperature of 110°C to 115°C for 4 hours. The reaction was carried out while removing the water produced at this time from the system using a separator. After the reaction was completed, the butanol phase was separated after neutralization and washing with 300 g of water containing 17 g of NaHCO 3 , the butanol was distilled off by heating, the resin was extracted at 190°C, and the mixture was cooled to 115
g of resin was obtained. This o-cresol novolac resin had a number average molecular weight of 1900 and a softening point of 130°C. Example 1 60 g of the high molecular weight o-cresol novolac resin obtained in Production Example 1, 462.5 g of epichlorohydrin and 4.0 g of tetramethylammonium bromide were placed in a three-necked flask and heated under reflux (117°C) for 2 hours with stirring. The reaction was carried out. After that, the reaction solution was cooled to 60°C, a water separator was attached, 42g of sodium hydroxide was added, and under reduced pressure (150°C
The ring-closing reaction was carried out at ~100 mmHg). The produced water was continuously removed from the system by azeotroping with epichlorohydrin, and the reaction was terminated when the produced water reached 18 ml. 0.1 to 50 mmHg of unreacted epichlorohydrin,
The product was collected at 60 to 110° C., 120 g of dioxane was added to dissolve the product, and after separating the by-produced sodium chloride, it was further poured into 1 part of water with stirring, reprecipitated, and the resin was separated and dried. The resulting resin had an epoxy equivalent weight of 230 and a microscopic softening point of 126°C. In addition, the number average molecular weight determined by vapor pressure method was 3950. This resin is soluble in tetrahydrofuran, dioxane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methoxyethyl acetate, chloroform, benzene, toluene, xylene, methanol, ethanol, butanol, methoxyethanol, ethoxyethanol, butoxyethanol It was insoluble in The infrared absorption spectrum of this product is shown in FIG. Examples 2 and 3 High molecular weight cresol novolak epoxy resins were produced in the same manner as in Example 1, except that 60 g of each of the high molecular weight cresol novolak resins obtained in Production Examples 2 and 3 were used. The epoxy equivalent of this epoxy resin is 235 and 225, respectively.
The softening point measured by microscopy is 200℃ or higher, respectively.
It was 105℃. In addition, the number average molecular weights determined by vapor pressure method were 4200 and 2850, respectively. Comparative Example 1 108 g of o-cresol, 73 g of 37% formalin and 0.1 ml of concentrated hydrochloric acid were placed in a reactor and heated at 85°C for 1 hour.
The reaction was continued under reflux for an additional 4 hours. After the reaction, 100 g of water was added, the resin was allowed to settle, and the water was removed by decantation, followed by dehydration under reduced pressure of 100 mmHg, and the molten resin was taken out at 150°C.
After solidification, it was crushed. The number average molecular weight of this resin by vapor pressure method is 580
The softening point by microscopy was 73°C. 60 g of the thus obtained ortho-cresol novolac resin, 462.5 g of epichlorohydrin and 4.0 g of tetramethylammonium bromide were charged into a reaction vessel, followed by an addition reaction in the same manner as in Example 1, followed by dehydrochlorination and epoxidation with 42 g of sodium hydroxide. A resin was obtained by performing the same post-treatment as in Example 1. The epoxy equivalent of the resulting resin was 220, and the softening point by microscopy was 49°C (softening point by durance method was 70°C). Application Examples 1 and 2 25 parts of diaminodiphenylsulfone was added to 100 parts by weight of the high molecular weight cresol novolak epoxy resin obtained in Examples 1 and 3, and after melt-mixing at 180°C, the mixture was thoroughly degassed and the mixture was thoroughly degassed. The mixture was cast into a mold, pre-cured at 180°C for 1 hour, and post-cured at 240°C for 4 hours to obtain a cured product having the physical properties shown in Table 1. Comparative Application Example 1 A cured product was prepared in the same manner as Application Example 1, except that the cresol novolak epoxy resin obtained in Comparative Example 1 was used instead of the epoxy resin. Table 1 shows the physical properties of this cured product. Application example 3 To 100 parts by weight of the high molecular weight cresol novolac epoxy resin obtained in Example 2, a number average molecular weight of 400 was added.
48 parts of phenolic novolak resin, silica
200 parts of the mixture was mixed with 1 part of BF 3.2 methylimidazole salt, kneaded for 10 minutes with heated rolls at 150°C, cooled, crushed, and compression molded at a pressure of 80 kg/cm 2 in a mold at 250°C. After a few minutes, the mold was removed and further post-cured at 240°C for 4 hours. Table 2 shows the physical properties of the cured product. Comparative Application Example 2 A cured product was prepared in the same manner as Application Example 3, except that the cresol novolak epoxy resin obtained in Comparative Example 1 was used as the epoxy resin. Table 2 physical properties
Shown below.

【表】【table】

【表】【table】

【表】 * 線膨脹の変曲点
[Table] * Inflection point of linear expansion

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で得られたクレゾールノボラ
ツクエポキシ樹脂の赤外線吸収スペクトル図であ
る。
FIG. 1 is an infrared absorption spectrum diagram of the cresol novolak epoxy resin obtained in Example 1.

Claims (1)

【特許請求の範囲】 1 下式で示されるエポキシ当量が176〜280であ
り、N,N−ジメチルアセトアミド溶媒中で蒸気
圧法により測定した数平均分子量が2000〜7000、
軟化点が100〜300℃の線状高分子量クレゾールノ
ボラツクエポキシ樹脂。 〔式中、R1はオルソ又はパラ位に結合してい
るCH3であり、nは繰返し数である〕 2 軟化点が120℃以上、N,N−ジメチルアセ
トアミド溶媒中で蒸気圧法により測定した数平均
分子量が1500以上の線状高分子量クレゾールノボ
ラツク樹脂とエピハロヒドリンとをアルカリ金属
水酸化物の存在下で反応させてエポキシ当量が
176〜280であり、N,N−ジメチルアセトアミド
溶媒中で蒸気圧法により測定した数平均分子量が
2000以上の線状高分子量クレゾールノボラツクエ
ポキシ樹脂を製造する方法。 3 線状クレゾールノボラツク樹脂が、オルトク
レゾールまたはオルトクレゾールとパラクレゾー
ルをモル比で10:0〜1:9の割合で混合した混
合クレゾールとアルデヒドとを、炭素数が3〜12
の脂肪族アルコール、炭素数が3〜6のグリコー
ルエーテル、ベンジルアルコールおよび炭素数が
2〜6の脂肪族カルボン酸より選ばれた溶媒中で
酸性触媒の存在下に重縮合させて得られたもので
あることを特徴とする特許請求の範囲第2項記載
の製造方法。
[Claims] 1. The epoxy equivalent represented by the following formula is 176 to 280, and the number average molecular weight measured by vapor pressure method in N,N-dimethylacetamide solvent is 2000 to 7000,
Linear high molecular weight cresol novolac epoxy resin with a softening point of 100-300℃. [In the formula, R 1 is CH 3 bonded at the ortho or para position, and n is the number of repetitions.] 2 Softening point of 120°C or higher, measured by vapor pressure method in N,N-dimethylacetamide solvent A linear high molecular weight cresol novolak resin with a number average molecular weight of 1500 or more is reacted with epihalohydrin in the presence of an alkali metal hydroxide to increase the epoxy equivalent.
176-280, and the number average molecular weight measured by vapor pressure method in N,N-dimethylacetamide solvent.
A method of producing linear high molecular weight cresol novolac epoxy resin of 2000 or more. 3. The linear cresol novolac resin is a mixture of ortho-cresol or a mixed cresol obtained by mixing ortho-cresol and para-cresol at a molar ratio of 10:0 to 1:9, and an aldehyde having 3 to 12 carbon atoms.
of aliphatic alcohol, glycol ether having 3 to 6 carbon atoms, benzyl alcohol, and aliphatic carboxylic acid having 2 to 6 carbon atoms in the presence of an acidic catalyst. The manufacturing method according to claim 2, characterized in that:
JP17514084A 1984-08-24 1984-08-24 Cresol novolak epoxy resin and its production Granted JPS6155113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17514084A JPS6155113A (en) 1984-08-24 1984-08-24 Cresol novolak epoxy resin and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17514084A JPS6155113A (en) 1984-08-24 1984-08-24 Cresol novolak epoxy resin and its production

Publications (2)

Publication Number Publication Date
JPS6155113A JPS6155113A (en) 1986-03-19
JPH0434565B2 true JPH0434565B2 (en) 1992-06-08

Family

ID=15990983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17514084A Granted JPS6155113A (en) 1984-08-24 1984-08-24 Cresol novolak epoxy resin and its production

Country Status (1)

Country Link
JP (1) JPS6155113A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660294B2 (en) * 1986-06-05 1994-08-10 ソマ−ル株式会社 Epoxy resin powder coating composition
JPS633067A (en) * 1986-06-24 1988-01-08 Somar Corp Powder coating compound composition
JPH07116402B2 (en) * 1987-02-07 1995-12-13 ソマール株式会社 Epoxy resin powder coating suitable for coil fixation
JPH07103342B2 (en) * 1987-03-09 1995-11-08 ソマール株式会社 Epoxy resin powder coating
JP4540080B2 (en) * 1999-06-18 2010-09-08 日本化薬株式会社 High softening point o-cresol-novolak type epoxy resin, epoxy resin solution containing the same, epoxy resin composition and method for producing epoxy resin
JP2003026761A (en) * 2001-07-11 2003-01-29 Nippon Kayaku Co Ltd Epoxy resin, epoxy resin composition, and cured item thereof
JP4502248B2 (en) * 2003-10-03 2010-07-14 日本化薬株式会社 Photosensitive resin composition and method for producing cured product thereof
JP4623484B2 (en) * 2003-11-21 2011-02-02 日本化薬株式会社 Epoxy resin, epoxy resin composition and cured product thereof
JP4915893B2 (en) * 2005-02-01 2012-04-11 日本化薬株式会社 Epoxy resin production method and high molecular weight epoxy resin
JP5579300B2 (en) * 2013-04-16 2014-08-27 日本化薬株式会社 Epoxy resin, epoxy resin composition and cured product thereof
US11345777B2 (en) 2018-07-24 2022-05-31 Nippon Kayaku Kabushiki Kaisha Epoxy resin, epoxy resin composition, epoxy resin composition for carbon fiber-reinforced composite material, prepreg, and carbon fiber-reinforced composite material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219755A (en) * 1975-08-05 1977-02-15 Dow Chemical Co Epoxy novolak resin production method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5219755A (en) * 1975-08-05 1977-02-15 Dow Chemical Co Epoxy novolak resin production method

Also Published As

Publication number Publication date
JPS6155113A (en) 1986-03-19

Similar Documents

Publication Publication Date Title
JPS60260611A (en) Production of high-molecular weight cresol novolak resin
JP3982659B2 (en) Naphthol resin, epoxy resin, epoxy resin composition and cured product thereof
JPH0434565B2 (en)
JP4100791B2 (en) Production method of naphthol resin
JP3982661B2 (en) Naphthol resin, epoxy resin, epoxy resin composition and cured product thereof
JPH09291127A (en) Naphthol-containing novolac resin, naphthol novolac epoxy resin, epoxy resin composition, and cured product thereof
JP3573530B2 (en) Epoxy resin mixture, epoxy resin composition and cured product thereof
JP3894628B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JPH04323214A (en) Novolak resin, its production, epoxy resin, resin composition and its cured product
JPH05140138A (en) Epoxy resin, resin composition and cured product
JPH08239454A (en) Novolac resin, epoxy resin, epoxy resin composition and cured product thereof
JP3636409B2 (en) Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof
JP2004010877A (en) Crystalline epoxy resin and its manufacturing method
JPH08193110A (en) Novolak resin, epoxy resin, epoxy resin composition, and cured article obtained therefrom
JPH09268219A (en) Novolak type resin, epoxy resin, epoxy resin composition and its cured material
JP3939000B2 (en) Novolac resin, epoxy resin, epoxy resin composition and cured product thereof
EP0458417A2 (en) Adducts of phenolic compounds and cyclic terpenes and derivatives of said adducts
JP3886060B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP2823056B2 (en) Epoxy resin composition and cured product thereof
JP3476584B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP4674884B2 (en) Production method of epoxy resin
JPH06329741A (en) Resin, epoxy resin, its production, resin composition and cured product of said composition
JP3436794B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH08208802A (en) Epoxy resin, epoxy resin composition and cured product thereof
JPH1160665A (en) Movolac resin, epoxy resin, epoxy resin composition and its cured product

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term