JPH04345622A - Crosslinking by irradiation with electron beam - Google Patents

Crosslinking by irradiation with electron beam

Info

Publication number
JPH04345622A
JPH04345622A JP11760591A JP11760591A JPH04345622A JP H04345622 A JPH04345622 A JP H04345622A JP 11760591 A JP11760591 A JP 11760591A JP 11760591 A JP11760591 A JP 11760591A JP H04345622 A JPH04345622 A JP H04345622A
Authority
JP
Japan
Prior art keywords
electron beam
crosslinking
synthetic resin
polyethylene
crosslinked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11760591A
Other languages
Japanese (ja)
Inventor
Shigeo Nagaya
重夫 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SWCC Corp
Original Assignee
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Electric Wire and Cable Co filed Critical Showa Electric Wire and Cable Co
Priority to JP11760591A priority Critical patent/JPH04345622A/en
Publication of JPH04345622A publication Critical patent/JPH04345622A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/04After-treatment of articles without altering their shape; Apparatus therefor by wave energy or particle radiation, e.g. for curing or vulcanising preformed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • B29C2035/0877Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using electron radiation, e.g. beta-rays

Abstract

PURPOSE:To obtain a crosslinked synthetic resin in which the surface and the inside are uniformly crosslinked. CONSTITUTION:A process for crosslinking the cover (synthetic resin) of a cable by irradiating it with electron beams, wherein a desired part to be crosslinked is located at the greatest penetration distance part which absorbs electron beams. Therefore, a film made of a material which is the same as the material constituting the cover is interposed or electron beams of different energies are used to allow the cover to uniformly absorb electron beams. Because the entire cover can absorb uniformly electron beams and excessive electrons do not remain, uniform crosslinked can be performed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は電子線照射架橋方法に関
し、特に電力ケーブルの絶縁体の電子線照射架橋方法に
係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for crosslinking an insulator of a power cable by electron beam irradiation.

【0002】0002

【従来の技術】従来から、ケーブルの絶縁体としてポリ
エチレンを架橋した架橋ポリエチレンがある。架橋ポリ
エチレンは熱硬化性であって機械的性能、電気的性能、
耐候性に優れているため、広範囲に用いられている。ポ
リエチレンの架橋方法としては、ポリエチレンの主鎖に
ラジカルを発生させて相互に反応させる化学架橋方法、
電子線照射架橋方法や、予めポリエチレンの鎖に橋かけ
をもたらす側鎖としてシランカップリング剤を原料段階
でグラフト化し、触媒の存在下でシランカップリング剤
を縮重合反応させるシラン架橋(水架橋)方法、ポリエ
チレンの側鎖としてカルボン酸基を導入し、金属イオン
を介して静電引力により2つのカルボン酸基を結合させ
るイオン架橋方法等がある。化学架橋方法は有機過酸化
物を架橋剤としてポリエチレンに添加し、熱処理により
化学反応を起こさせるものであり、ポリエチレンの押出
し作業と同時にゴム被覆と同じ連続加硫機で高温、高圧
水蒸気またはガス等によって熱処理を行い、製造制御が
よいため実用されている。
2. Description of the Related Art Conventionally, cross-linked polyethylene, which is obtained by cross-linking polyethylene, has been used as an insulator for cables. Cross-linked polyethylene is thermosetting and has excellent mechanical performance, electrical performance,
It is widely used because of its excellent weather resistance. Crosslinking methods for polyethylene include chemical crosslinking methods in which radicals are generated in the main chain of polyethylene and react with each other;
Silane crosslinking (water crosslinking) using the electron beam irradiation crosslinking method, or by grafting a silane coupling agent as a side chain to the polyethylene chain at the raw material stage, and then carrying out a polycondensation reaction of the silane coupling agent in the presence of a catalyst. There are methods such as an ionic crosslinking method in which a carboxylic acid group is introduced as a side chain of polyethylene and two carboxylic acid groups are bonded by electrostatic attraction via a metal ion. In the chemical crosslinking method, organic peroxide is added to polyethylene as a crosslinking agent, and a chemical reaction is caused by heat treatment.At the same time as the polyethylene extrusion process, high temperature, high pressure steam, gas, etc. are used in the same continuous vulcanizer as the rubber coating. It is used in practical use because it performs heat treatment and has good manufacturing control.

【0003】0003

【発明が解決しようとする課題】しかしながら、化学架
橋方法は高温高圧の水蒸気を用いるため、架橋中に水蒸
気が絶縁体中に浸透し、微小なボイドを形成してしまう
ため、ボイドの発生のない電子線照射架橋が使用されて
いる。電子線照射架橋装置S1では図1に示すように、
フィラメント1から放出された電子は収束抵抗RFによ
りスポット状に収束され、さらに加速抵抗RBを備えた
加速管2により加速され所望の高エネルギーを有する高
速電子となり、走査コイル3により帯状の電子流分布D
となって走査管4の下部に設けられたチタニウム製の電
子線取出し窓5から放出される。放出された電子線は図
2に示すように相対する1対の引取りコンベア6間を複
数回往復しながら引き取られている電力ケーブル7の未
架橋のポリエチレン被覆上に照射される。電子線照射に
より得られる架橋ポリエチレンは特性の優れた電線が得
られ、特に絶縁層が薄い電力ケーブルには多用されてい
る。しかし、近年1MeV未満の低エネルギー用から電
子の透過能力の大きな高エネルギー用を用いて大型サイ
ズの電力ケーブルの架橋に用いられるようになっている
[Problems to be Solved by the Invention] However, since the chemical crosslinking method uses high temperature and high pressure water vapor, the water vapor penetrates into the insulator during crosslinking and forms minute voids. Electron beam irradiation crosslinking has been used. In the electron beam irradiation crosslinking device S1, as shown in FIG.
The electrons emitted from the filament 1 are focused into a spot shape by a focusing resistor RF, and further accelerated by an accelerating tube 2 equipped with an accelerating resistor RB to become high-speed electrons having a desired high energy.The scanning coil 3 creates a band-shaped electron flow distribution. D
The electron beam is then emitted from an electron beam extraction window 5 made of titanium provided at the bottom of the scanning tube 4. As shown in FIG. 2, the emitted electron beam is irradiated onto the uncrosslinked polyethylene coating of the power cable 7 that is being taken back while reciprocating a plurality of times between a pair of opposing take-up conveyors 6. Cross-linked polyethylene obtained by electron beam irradiation can be used to produce electric wires with excellent properties, and is often used particularly for power cables with thin insulation layers. However, in recent years, low-energy materials of less than 1 MeV and high-energy materials with large electron transmission capabilities have been used for bridging large-sized power cables.

【0004】しかしながら、大型サイズの電力ケーブル
の架橋では絶縁被覆の厚さが厚くなるに従い電子線の到
達距離が長くなるよう高エネルギーの電子線照射を行な
うと、ポリエチレンの表層部分は電子を吸収せずに通過
させてしまい、架橋反応が生じない。そのため表層部分
の架橋を満足するように電子線照射を行うと、内部に対
して過剰の照射を行うこととなり絶縁体内部に必要以上
の電子が溜まり、放電による絶縁体破壊が生じ耐電圧を
下げる原因となってしまった。
However, when cross-linking large-sized power cables, when high-energy electron beam irradiation is applied so that the electron beam reaches a longer distance as the thickness of the insulation coating becomes thicker, the surface layer of polyethylene is unable to absorb electrons. The crosslinking reaction does not occur. Therefore, if electron beam irradiation is performed to satisfy cross-linking of the surface layer, the interior will be irradiated excessively, and more electrons than necessary will accumulate inside the insulator, causing breakdown of the insulator due to discharge and lowering the withstand voltage. It became the cause.

【0005】本発明は上記の欠点を解消するためなされ
たものであって、表層部分と内部との架橋が均一に行わ
れ、特に高エネルギーの電子線照射においても均一な架
橋が行われる電子線照射架橋方法を提供することを目的
とする。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and it is an electron beam that uniformly crosslinks the surface layer portion and the interior, and that uniformly crosslinks even in high-energy electron beam irradiation. It is an object of the present invention to provide a method for irradiation crosslinking.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
、本発明の電子線照射架橋方法は、電子線を照射して合
成樹脂を架橋するにあたり、前記合成樹脂から成るフィ
ルムを介在させて、前記合成樹脂の前記電子線の吸収の
最大となる透過距離に、前記合成樹脂の架橋を最大なら
しめる部位を配置する。あるいは前記合成樹脂の架橋を
最大ならしめる部位に前記電子線の吸収の最大となる透
過距離を有するエネルギーの前記電子線を選択するもの
である。
[Means for Solving the Problems] In order to achieve the above object, the electron beam irradiation crosslinking method of the present invention includes interposing a film made of the synthetic resin when irradiating a synthetic resin with an electron beam, A portion that maximizes crosslinking of the synthetic resin is arranged at a transmission distance where the absorption of the electron beam by the synthetic resin is maximized. Alternatively, the electron beam is selected to have an energy that has a transmission distance that maximizes absorption of the electron beam at a site that maximizes crosslinking of the synthetic resin.

【0007】[0007]

【作用】合成樹脂に電子線を照射して架橋させると電子
線のエネルギーにより電子線の吸収の最大となる透過距
離が異なる。電子線吸収の最大になる透過距離部位に架
橋を行わせる合成樹脂の所望の部位がくるように、例え
ば合成樹脂表面になるよう架橋を行なわしめる場合、合
成樹脂から成るその透過距離に匹敵する厚さのフィルム
を介在させて電子線を照射する。あるいは電子線のエネ
ルギーにより吸収が最大となる部分が異なるため、電子
線吸収の最大部位を合成樹脂の所望の部位にすることに
より合成樹脂の均一な架橋を行わせることができる。
[Operation] When a synthetic resin is crosslinked by irradiating it with an electron beam, the transmission distance at which the absorption of the electron beam reaches its maximum varies depending on the energy of the electron beam. If crosslinking is to be carried out on the synthetic resin surface so that the desired part of the synthetic resin to be crosslinked is located at the transmission distance site where the electron beam absorption is maximum, for example, the thickness of the synthetic resin comparable to the transmission distance is The electron beam is irradiated through a thin film. Alternatively, since the portion of maximum absorption varies depending on the energy of the electron beam, uniform crosslinking of the synthetic resin can be achieved by setting the portion of maximum absorption of the electron beam to a desired portion of the synthetic resin.

【0008】[0008]

【実施例】本発明の電子線照射架橋方法を架橋ポリエチ
レン電力ケーブル製造に適用した一実施例を図面を参照
して説明する。架橋ポリエチレン電力ケーブル製造用の
電子線照射装置S1は図1に示すものと同様である。即
ちフィラメント1から放出させる電子を加速する加速管
2と、加速管2により所望のエネルギー例えば1MeV
、2MeV、3MeV等を付与された電子を帯状の電子
流分布Dとする走査コイル3と、帯状となった電子流を
放出する取り出し管5を設けた走査管4とを備える。 このような電子線照射装置S1はポリエチレン被覆電力
ケーブル7が複数回往復しながら引き取られる相対する
1対の引取りコンベア6を備えた架橋ポリエチレン電線
ケーブル製造装置S2に設置される。
EXAMPLE An example in which the electron beam irradiation crosslinking method of the present invention is applied to the production of crosslinked polyethylene power cables will be described with reference to the drawings. The electron beam irradiation device S1 for producing crosslinked polyethylene power cables is similar to that shown in FIG. That is, the acceleration tube 2 accelerates the electrons emitted from the filament 1, and the acceleration tube 2 generates a desired energy, for example, 1 MeV.
, 2 MeV, 3 MeV, etc., into a band-shaped electron flow distribution D, and a scanning tube 4 provided with an extraction tube 5 that emits the band-shaped electron flow. Such an electron beam irradiation device S1 is installed in a crosslinked polyethylene electric wire/cable manufacturing device S2 equipped with a pair of opposing take-up conveyors 6, on which the polyethylene-coated power cable 7 is taken up while reciprocating a plurality of times.

【0009】ここで電子線照射装置S1により所望のエ
ネルギーを有するように加速された電子線が合成樹脂で
あるポリエチレン被覆を照射して透過する時、電子線の
エネルギーの違いにより吸収率が最大となる透過距離が
異なる。図3に示すように電子線のエネルギーの違いに
よる吸収率の変化を示す電子線の相対線量と透過距離の
関係を示す。図3から電子線のエネルギーが大きくなる
程被覆の表層部分は電子線が通過して被覆内部まで透過
し、電子線相対線量が最大となる透過距離もエネルギー
が大きくなる程被覆内部になることがわかる。電子線が
透過する範囲が架橋反応が生じる架橋領域であり、架橋
が最大に行われる部位は電子線相対線量の最大部位に相
当し、エネルギーが大きくなる程被覆内部となっている
Here, when the electron beam accelerated to have a desired energy by the electron beam irradiation device S1 irradiates and passes through the polyethylene coating, which is a synthetic resin, the absorption rate reaches the maximum due to the difference in the energy of the electron beam. The transmission distance is different. As shown in FIG. 3, the relationship between the relative dose of the electron beam and the transmission distance, which shows the change in absorption rate due to the difference in the energy of the electron beam, is shown. Figure 3 shows that as the energy of the electron beam increases, the electron beam passes through the surface layer of the coating and penetrates into the interior of the coating. Recognize. The range through which the electron beam passes is the crosslinking region where the crosslinking reaction occurs, and the site where the maximum crosslinking occurs corresponds to the site where the relative electron beam dose is maximum, and the higher the energy, the further inside the coating.

【0010】以上のことから、架橋率の最大となる相対
線量の最大近傍となる透過距離部位が被覆の最外層とな
るようにすればよい。即ち図4に示すようにポリエチレ
ン被覆ケーブル7上にポリエチレンフィルム9を介在さ
せて電子線照射を行う。ポリエチレンフィルム9の厚さ
は、電子線のエネルギーにより適宜選択すればよい。図
5に示すように、例えば厚さ5mmのポリエチレン被覆
を2MeVの電子線で照射する場合は、ポリエチレンフ
ィルム9の厚さを2mmとすれば、電子線の相対線量は
ポリエチレンフィルム9を透過してポリエチレン被覆ケ
ーブル7の最外層で電子線吸収がほぼ最大となる。そし
て電子線はポリチレン被覆中を直線的に相対線量を減少
させながら透過していく。そしてポリエチレン被覆を透
過して導体10に到達すると、導体10で反射され後方
散乱によりA部分の電子線はB範囲で示す電子線となっ
て再びポリエチレン被覆を透過するため、導体付近の電
子線の減少分は相殺されてポリエチレン被覆全体に亘っ
てほぼ均一な電子線量が照射されることになる。
[0010] From the above, it is preferable that the outermost layer of the coating be located at the transmission distance site where the crosslinking rate is maximum and the relative dose is near the maximum. That is, as shown in FIG. 4, electron beam irradiation is performed with a polyethylene film 9 interposed on a polyethylene coated cable 7. The thickness of the polyethylene film 9 may be appropriately selected depending on the energy of the electron beam. As shown in FIG. 5, for example, when a 5 mm thick polyethylene coating is irradiated with a 2 MeV electron beam, if the thickness of the polyethylene film 9 is 2 mm, the relative dose of the electron beam will be the same as that of the electron beam transmitted through the polyethylene film 9. The outermost layer of the polyethylene coated cable 7 has almost the maximum electron beam absorption. The electron beam then passes through the polyethylene coating linearly while decreasing the relative dose. When the electron beam passes through the polyethylene coating and reaches the conductor 10, it is reflected by the conductor 10 and is backscattered, so that the electron beam in the A part becomes the electron beam shown in the B range and passes through the polyethylene coating again. The reduction is offset to provide a substantially uniform electron beam across the entire polyethylene coating.

【0011】また、電子線の照射方向に導体のない導体
直上でない部分の被覆は、架橋ポリエチレン電力ケーブ
ル製造装置S2の引取りコンベア6で往復しながら引取
られる際に、ポリエチレン被覆は表裏から照射されるた
め、図6の点線で示す相対線量が照射される。そのため
導体直上部分、直上部分でない部分を問わず一定の電子
線相対線量が得られ、均一な架橋がなされる。
[0011] In addition, the polyethylene coating is irradiated from the front and back when it is taken back and forth by the take-up conveyor 6 of the cross-linked polyethylene power cable manufacturing equipment S2, in the portions where there is no conductor in the electron beam irradiation direction and is not directly above the conductor. Therefore, the relative dose shown by the dotted line in FIG. 6 is irradiated. Therefore, a constant relative electron beam dose is obtained regardless of whether it is directly above the conductor or not, and uniform crosslinking is achieved.

【0012】また、他の実施例として電子線照射装置S
1を複数設け、例えば第1の電子線照射装置で1MeV
の電子線を照射し、第2の電子線照射装置で3MeVの
電子線を照射して、被覆の厚い大型ケーブルであっても
最大吸収率の透過距離が異なる電子線を照射し被覆全体
を均一に照射して均一な架橋度を得るようにしてもよい
Further, as another embodiment, an electron beam irradiation device S
1 is provided, for example, the first electron beam irradiation device is 1 MeV.
A second electron beam irradiation device irradiates an electron beam of 3 MeV to uniformly coat the entire cable by irradiating it with an electron beam that has different transmission distances for maximum absorption even on large cables with thick coatings. Alternatively, the crosslinking may be irradiated to obtain a uniform degree of crosslinking.

【0013】上記説明は本発明の一実施例であって、本
発明は架橋ポリエチレン電力ケーブルに限らず種々の合
成樹脂の架橋に適応できる。
The above description is one embodiment of the present invention, and the present invention is applicable not only to crosslinked polyethylene power cables but also to crosslinking of various synthetic resins.

【0014】[0014]

【発明の効果】以上の説明からも明らかなように、本発
明のケーブル被覆の電線照射架橋法によれば、電子線の
吸収率が最大になる透過距離に架橋を行わしむる部位が
くるようにケーブル被覆を配置することにより、被覆全
体が均一に電子線による照射を受け、均一な架橋が得ら
れる。そのため被覆内部に必要以上の電子が溜まり、放
電による絶縁破壊や耐電圧を下げることがなく特性のよ
い電力ケーブルを製造できる。
[Effects of the Invention] As is clear from the above explanation, according to the wire irradiation crosslinking method for cable coating of the present invention, the crosslinking area is located at the transmission distance where the electron beam absorption rate is maximum. By arranging the cable sheath on the cable, the entire sheath is uniformly irradiated with the electron beam, resulting in uniform crosslinking. Therefore, a power cable with good characteristics can be manufactured without causing more electrons than necessary to accumulate inside the coating, causing dielectric breakdown due to discharge, or lowering the withstand voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例及び従来の電子線照射装置の
構成図
FIG. 1 is a configuration diagram of an embodiment of the present invention and a conventional electron beam irradiation device

【図2】本発明の一実施例及び従来の架橋ポリエチレン
電力ケーブル製造装置
FIG. 2: An embodiment of the present invention and a conventional cross-linked polyethylene power cable manufacturing apparatus

【図3】図1に示す一実施例を用いた電子線の相対線量
と透過距離の関係を示す関係図
[Fig. 3] A relationship diagram showing the relationship between the relative dose of an electron beam and the transmission distance using the example shown in Fig. 1.

【図4】本発明の架橋方法の一実施例の説明図FIG. 4 is an explanatory diagram of one embodiment of the crosslinking method of the present invention

【図5】
図4に示す一実施例による相対線量と透過距離の関係を
示す図
[Figure 5]
A diagram showing the relationship between relative dose and penetration distance according to an example shown in FIG. 4

【図6】図4に示す一実施例による相対線量と透過距離
の関係を示す図
[Fig. 6] A diagram showing the relationship between relative dose and penetration distance according to the example shown in Fig. 4.

【符号の説明】[Explanation of symbols]

7・・・・・・ポリエチレン被覆電力ケーブルS1・・
・・・・電子線照射装置
7...Polyethylene coated power cable S1...
...Electron beam irradiation device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】電子線を照射して合成樹脂を架橋するにあ
たり、前記合成樹脂から成るフィルムを介在させて、前
記合成樹脂の前記電子線の吸収の最大となる透過距離に
、前記合成樹脂の架橋を最大ならしめる部位を配置する
ことを特徴とする電子線照射架橋方法。
1. When crosslinking a synthetic resin by irradiating an electron beam, a film made of the synthetic resin is interposed so that the synthetic resin is exposed at a transmission distance at which the electron beam is maximally absorbed by the synthetic resin. An electron beam irradiation crosslinking method characterized by arranging a site that maximizes crosslinking.
【請求項2】電子線を照射して合成樹脂を架橋するにあ
たり、前記合成樹脂の架橋を最大ならしめる部位に前記
電子線吸収の最大となる透過距離を有するエネルギーの
前記電子線を選択することを特徴とする電子線照射架橋
方法。
2. When crosslinking a synthetic resin by irradiating an electron beam, selecting the electron beam having an energy having a transmission distance that maximizes absorption of the electron beam to a portion of the synthetic resin that maximizes crosslinking. An electron beam irradiation crosslinking method characterized by:
JP11760591A 1991-05-22 1991-05-22 Crosslinking by irradiation with electron beam Withdrawn JPH04345622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11760591A JPH04345622A (en) 1991-05-22 1991-05-22 Crosslinking by irradiation with electron beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11760591A JPH04345622A (en) 1991-05-22 1991-05-22 Crosslinking by irradiation with electron beam

Publications (1)

Publication Number Publication Date
JPH04345622A true JPH04345622A (en) 1992-12-01

Family

ID=14715920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11760591A Withdrawn JPH04345622A (en) 1991-05-22 1991-05-22 Crosslinking by irradiation with electron beam

Country Status (1)

Country Link
JP (1) JPH04345622A (en)

Similar Documents

Publication Publication Date Title
CA2163554C (en) Electron beam array for surface treatment
US6610376B1 (en) Particle beam processing apparatus
US3081485A (en) Process and apparatus for treating synthetic plastic materials
US4184001A (en) Multi layer insulation system for conductors comprising a fluorinated copolymer layer which is radiation cross-linked
US3725230A (en) Insulated electrical cables and method of making them
JP2018021205A (en) Cross linking membrane surfaces
JP2013523997A5 (en)
US3104321A (en) Apparatus for irradiating plastic tubular members with electrons deflected by a non-uniform magnetic field
US4226687A (en) Method of preventing fine cracks from occuring in rubber or plastic insulation of an insulated wire or cable exposed to electron beam irradiation
JPH04345622A (en) Crosslinking by irradiation with electron beam
US20030235659A1 (en) Particle beam processing apparatus
US5501882A (en) Method of making heat-resistant coated electrically conductive wire
US3916204A (en) Irradiating elongated material
JPH09512507A (en) Radiation crosslinking method for extruded materials
JPH07318698A (en) Electron beam emitter
JP2002040200A (en) Electron beam irradiating apparatus for thin wire and method for manufacturing optical fiber using the same
JP5483665B2 (en) Electric wire manufacturing method
JPS5953646B2 (en) Electron beam irradiation crosslinking method for cables
JP2009070610A (en) Tracking-resistant electric wire cable
JP2001324656A (en) Optical fiber cord
JP2003266455A (en) Manufacturing method for crosslinked resin sheet
GB2227689A (en) Treatment of plastics insulated wire
JPS61230211A (en) Manufacture of insulation wire
JPS6090222A (en) Method for treating high polymer with radiation
Winchcombe et al. Recent Advances in Prepainted Metal: I—Electron Beam Curing of Coatings

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806