JPH04343832A - Magnetic field generating device for magnetic resonance imaging device - Google Patents

Magnetic field generating device for magnetic resonance imaging device

Info

Publication number
JPH04343832A
JPH04343832A JP3144083A JP14408391A JPH04343832A JP H04343832 A JPH04343832 A JP H04343832A JP 3144083 A JP3144083 A JP 3144083A JP 14408391 A JP14408391 A JP 14408391A JP H04343832 A JPH04343832 A JP H04343832A
Authority
JP
Japan
Prior art keywords
magnetic field
coil
field generating
magnetic resonance
resonance imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3144083A
Other languages
Japanese (ja)
Inventor
Yukihiro Yasugi
八杉 幸浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP3144083A priority Critical patent/JPH04343832A/en
Publication of JPH04343832A publication Critical patent/JPH04343832A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To provide images of high S/N ratio in a magnetic resonance imaging device by increasing static magnetic field intensity within the extent of a uniform space being securable according to portions to be photographed. CONSTITUTION:Auxiliary magnetic field generating means 1 each comprising a normal conducting coil are placed on the upper and lower sides of a receiving coil 9 and inserted into a magnetic field generating device 10 and thereby high magnetic fields are partially generated so that static magnetic field intensity is increased without lowering the degree of uniformity of magnetic fields in a photographic area. Therefore, static magnetic field intensity in a required portion can be raised at low a cost, thus the amount of signals is increased and SN ratio can be improved and good images can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、核磁気共鳴現象を利用
して被検体の所望箇所を画像化する磁気共鳴イメージン
グ装置(以下、MRI装置と称する)における静磁場発
生用の磁場発生装置に関する。
[Field of Industrial Application] The present invention relates to a magnetic field generator for generating a static magnetic field in a magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) that images a desired location of a subject by utilizing nuclear magnetic resonance phenomena. .

【0002】0002

【従来の技術】MRI装置は、核磁気共鳴現象を利用し
て被検体中の所望の検査部位における原子核スピンの密
度分布、緩和時間分布等を計測して、その計測データか
ら被検体の断面を画像表示するものである。
[Prior Art] An MRI apparatus uses the nuclear magnetic resonance phenomenon to measure the density distribution, relaxation time distribution, etc. of nuclear spins at a desired inspection site in a subject, and uses the measurement data to determine a cross section of the subject. It displays images.

【0003】均一で強力な静磁場発生装置内に置かれた
被検体の原子核スピンは、静磁場の強さによって定まる
周波数(ラーモア周波数)で静磁場の方向を軸として歳
差運動を行なう。そこで、このラーモア周波数に等しい
周波数の高周波パルスを外部より照射すると、スピンが
励起され高いエネルギー状態に遷移する(核磁気共鳴現
象)。この照射を打ち切ると、スピンはそれぞれの状態
に応じた時定数でもとの低いエネルギー状態に戻り、こ
のときに外部に電磁波を放出する。これをその周波数に
同調した高周波受信コイルで検出する。このとき、空間
内に位置情報を負荷する目的で、3軸の傾斜磁場を静磁
場空間に印加する。この結果、空間内の位置情報を周波
数情報として捕らえることが可能である。
Nuclear spins of an object placed in a uniform and strong static magnetic field generating device precess around the direction of the static magnetic field at a frequency (Larmor frequency) determined by the strength of the static magnetic field. Therefore, when a high-frequency pulse with a frequency equal to this Larmor frequency is applied from the outside, the spins are excited and transition to a higher energy state (nuclear magnetic resonance phenomenon). When this irradiation is stopped, the spins return to their original low energy state with a time constant depending on their state, and at this time they emit electromagnetic waves to the outside. This is detected by a high-frequency receiving coil tuned to that frequency. At this time, a three-axis gradient magnetic field is applied to the static magnetic field space for the purpose of loading position information in the space. As a result, it is possible to capture positional information in space as frequency information.

【0004】ところで、この検出されるNMR信号の強
度は、現在使用されている磁場強度範囲内では、ほぼ静
磁場強度に比例することが知られている。つまり、静磁
場強度が高いMRI装置ではSN比の高い画像が得られ
ることになる。(この詳細に関してはHOULT&RI
CHARDの論文「The Signal−to−No
ise Ratio of the NuclearM
agnetic Resonance Experim
ent」(JOURNAL OF MAGNETIC 
RESONANCE 24,P71−851976)を
参照。)また、MRI装置ではこの静磁場の均一性も重
要であり、これが十分でないと撮像される画像に歪みや
ノイズを発生し、血流のイメージングなどの高機能化に
おいて大きな障害となる。従ってMRI装置の磁場発生
装置は被検体の撮像部位全体を包む範囲において、高い
均一度の高磁場を発生することが必要であり、このため
に超電導電磁石や大電流を流した電磁石あるいは高効率
の永久磁石が使用されている。
By the way, it is known that the intensity of the detected NMR signal is approximately proportional to the static magnetic field intensity within the currently used magnetic field intensity range. In other words, an MRI apparatus with a high static magnetic field strength can obtain images with a high signal-to-noise ratio. (For details, please refer to HOULT&RI
CHARD's paper "The Signal-to-No
ise ratio of the NuclearM
agnetic resonance experiment
ent” (JOURNAL OF MAGNETIC
RESONANCE 24, P71-851976). ) Furthermore, in an MRI apparatus, the uniformity of the static magnetic field is also important, and if this is not sufficient, distortion and noise will occur in the captured image, which will be a major hindrance in improving functionality such as imaging of blood flow. Therefore, it is necessary for the magnetic field generator of an MRI apparatus to generate a highly uniform, high magnetic field in a range that encompasses the entire imaged area of the subject. Permanent magnets are used.

【0005】[0005]

【発明が解決しようとする課題】このように磁場発生装
置の磁場強度とその均一性はMRI装置の性能を決定す
る要である。また、MRI装置は人体の全部位の臨床に
有用であり、体幹部への適用を考えると、均一磁場空間
は40cm球程度必要である。しかし、頭部撮像時にお
いては25cm球程度の均一磁場空間があれば十分であ
り、これ以上の領域では均一性は必要がない。つまり、
体幹部の撮像時には視野が大きく信号量を確保でき、ま
た、体動の影響があるため高分解能も要求されず、静磁
場強度よりも磁場空間の均一度が最重要である。これに
対して、頭部の撮像や局所的な部位の撮像においては、
複雑な構造に対応するため高い分解能が要求され、SN
比が重要である。このためには少しでも高い静磁場が必
要であるが均一空間は狭くてよい。しかし、従来のMR
I装置では被検体の全部位に適用するために広い均一空
間を重視しており、このため高い静磁場を得ることが困
難であった。
As described above, the magnetic field strength of the magnetic field generator and its uniformity are key to determining the performance of the MRI apparatus. Furthermore, the MRI apparatus is useful in clinical practice for all parts of the human body, and when considering application to the trunk, a uniform magnetic field space of approximately 40 cm is required. However, when imaging the head, it is sufficient to have a uniform magnetic field space of about a 25 cm sphere, and uniformity is not necessary in a larger area. In other words,
When imaging the trunk of the body, the field of view is large and the amount of signal can be secured, and high resolution is not required because of the effects of body movement, and the homogeneity of the magnetic field space is more important than the static magnetic field strength. On the other hand, when imaging the head or localized areas,
High resolution is required to handle complex structures, and SN
The ratio is important. For this purpose, a static magnetic field as high as possible is required, but the uniform space may be narrow. However, conventional MR
The I device emphasizes a wide uniform space in order to apply it to all parts of the subject, and therefore it is difficult to obtain a high static magnetic field.

【0006】本発明の目的は、静磁場強度を変化させる
ことにより良好な画像を得ることができるMRI装置を
提供することにある。
An object of the present invention is to provide an MRI apparatus that can obtain good images by changing the static magnetic field strength.

【0007】[0007]

【課題を解決するための手段】被検体を収容する空間に
超電導コイル、常電導コイルまたは永久磁石によって強
く均一な静磁場を形成する主磁場発生器と、前記被検体
にスライス傾斜磁場、リードアウト傾斜磁場及び位相エ
ンコード傾斜磁場を印加する傾斜磁場コイルと、前記被
検体の組織を構成する原子の原子核に磁気共鳴を起こさ
せる高周波パルスをある所定のパルスシーケンスで繰り
返し印加する照射コイルと、磁気共鳴信号を検出する受
信コイルと、前記検出信号を使って対象物体の物理的性
質を表わす画像を得る画像再構成手段とを備えたMRI
装置において、前記主磁場発生器の均一磁場空間内部に
局部的に前記主磁場発生器により形成される均一な静磁
場強度とは異なる均一な静磁場を形成すると共に局部的
な均一静磁場強度を任意に可変設定する補助磁場発生手
段を設ける。
[Means for Solving the Problems] A main magnetic field generator that forms a strong and uniform static magnetic field using a superconducting coil, a normal conducting coil, or a permanent magnet in a space accommodating a subject, and a slice gradient magnetic field and a readout for the subject. a gradient magnetic field coil that applies a gradient magnetic field and a phase encoding gradient magnetic field; an irradiation coil that repeatedly applies a high-frequency pulse in a predetermined pulse sequence that causes magnetic resonance to the nuclei of atoms constituting the tissue of the subject; and a magnetic resonance coil. MRI comprising a receiving coil that detects a signal and an image reconstruction means that uses the detected signal to obtain an image representing the physical properties of the target object.
In the apparatus, a uniform static magnetic field different from the uniform static magnetic field strength formed by the main magnetic field generator is locally formed inside the uniform magnetic field space of the main magnetic field generator, and the local uniform static magnetic field strength is increased. An auxiliary magnetic field generating means that can be set arbitrarily and variably is provided.

【0008】[0008]

【作用】主磁場発生器の均一磁場空間内部に補助磁場発
生手段を設け、主磁場発生器より形成される静磁場強度
と異なった静磁場を形成させる。また、補助磁場発生手
段により局部的な均一静磁場強度を任意に可変設定をす
る。
[Operation] An auxiliary magnetic field generating means is provided inside the uniform magnetic field space of the main magnetic field generator to generate a static magnetic field different in intensity from the static magnetic field generated by the main magnetic field generator. Further, the local uniform static magnetic field strength can be arbitrarily and variably set by the auxiliary magnetic field generating means.

【0009】[0009]

【実施例】以下、本発明を垂直磁場方式MRI装置に適
用した際の実施例を添付図面に基づいて詳細に説明する
。図6は本発明に係るMRI装置の全体構成例を示す構
成図である。このMRI装置は、核磁気共鳴(NMR)
現象を利用して被検体6の断層画像を得るもので、磁場
発生装置10と、中央処理装置(以下、CPUと称する
)11と、シーケンサ12と、送信系13と、傾斜磁場
発生系14と、受信系15と、信号処理系16とからな
る。上記磁場発生装置10は、被検体6の体軸方向と垂
直に且つ上記被検体6の周りのある広がりを持った空間
に強く均一な静磁場を発生させるもので、本実施例では
永久磁石による磁場発生手段を用いている。上記シーケ
ンサ12は、CPU11の制御で動作し、被検体6の断
層画像のデータ収集に必要な種々の命令を送信系13及
び傾斜磁場発生系14並びに受信系15に送るものであ
る。
Embodiments Hereinafter, embodiments in which the present invention is applied to a vertical magnetic field type MRI apparatus will be described in detail with reference to the accompanying drawings. FIG. 6 is a configuration diagram showing an example of the overall configuration of an MRI apparatus according to the present invention. This MRI device uses nuclear magnetic resonance (NMR)
It obtains a tomographic image of the subject 6 by using the phenomenon, and includes a magnetic field generator 10, a central processing unit (hereinafter referred to as CPU) 11, a sequencer 12, a transmission system 13, and a gradient magnetic field generation system 14. , a receiving system 15, and a signal processing system 16. The magnetic field generator 10 generates a strong and uniform static magnetic field perpendicular to the body axis direction of the subject 6 and in a certain expanse of space around the subject 6, and in this embodiment, it uses a permanent magnet. A magnetic field generating means is used. The sequencer 12 operates under the control of the CPU 11 and sends various commands necessary for data collection of tomographic images of the subject 6 to the transmission system 13, gradient magnetic field generation system 14, and reception system 15.

【0010】上記送信系13は、高周波発生器17と、
変調器18と、高周波増幅器19と、送信側の照射コイ
ル20とからなり、上記高周波発生器17から出力され
た高周波パルスをシーケンサ12の命令に従って変調器
18で変調し、この変調された照射パルスを高周波増幅
器19で増幅した後に被検体6に近接して配置された照
射コイル20に供給することにより、電磁波が被検体6
に照射されるようになっている。上記傾斜磁場発生系1
4は、X,Y,Zの3軸方向に巻かれた傾斜磁場コイル
21と、それぞれのコイルを駆動する傾斜磁場電源22
とからなり、上記シーケンサ12からの命令に従ってそ
れぞれのコイルの傾斜磁場電源22を駆動することによ
り、X,Y,Zの3軸方向の傾斜磁場Gx,Gy,Gz
を被検体6に印加するようになっている。この傾斜磁場
の加え方により、被検体6に対するスライス面を設定す
ることができる。
The transmission system 13 includes a high frequency generator 17,
Consisting of a modulator 18, a high-frequency amplifier 19, and a transmitting-side irradiation coil 20, the modulator 18 modulates the high-frequency pulse output from the high-frequency generator 17 according to instructions from the sequencer 12, and the modulated irradiation pulse is The electromagnetic waves are amplified by a high frequency amplifier 19 and then supplied to an irradiation coil 20 placed close to the subject 6.
It is designed to be irradiated by The above gradient magnetic field generation system 1
4 is a gradient magnetic field coil 21 wound in the three axis directions of X, Y, and Z, and a gradient magnetic field power supply 22 that drives each coil.
By driving the gradient magnetic field power supply 22 of each coil according to the command from the sequencer 12, gradient magnetic fields Gx, Gy, Gz in the three axis directions of X, Y, and Z are generated.
is applied to the subject 6. Depending on how this gradient magnetic field is applied, a slice plane for the subject 6 can be set.

【0011】上記受信系15は、受信コイル9と、プリ
アンプ23と、直交位相検波器24と、A/D変換器2
5とからなり、上記送信側の照射コイル20から照射さ
れた電磁波による被検体6からの応答電磁波(NMR信
号)は被検体6に近接して配置された受信コイル9で検
出され、プリアンプ23及び直交位相検波器24を介し
てA/D変換器25に入力してデジタル量に変換され、
さらにシーケンサ12からの命令によるタイミングで直
交位相検波器24によりサンプリングされた二系統の収
集データとされ、その信号が信号処理系16に送られる
ようになっている。この信号処理系16は、CPU11
と、磁気ディスク26及び磁気テープ27等の記録装置
と、CRT等のディスプレイ28とからなり、上記CP
U11でフーリエ変換、補正係数計算、画像再構成等の
処理を行ない、任意断面の信号強度分布あるいは複数の
信号に適当な演算を行なって得られた分布を画像化して
ディスプレイ28に表示するようになっている。なお、
本図において、照射コイル20と受信コイル9及び傾斜
磁場コイル21は、被検体6の周りの空間に配置された
磁場発生装置10の磁場空間内に配置されている。
The receiving system 15 includes a receiving coil 9, a preamplifier 23, a quadrature phase detector 24, and an A/D converter 2.
5, the response electromagnetic wave (NMR signal) from the subject 6 due to the electromagnetic wave irradiated from the transmitting side irradiation coil 20 is detected by the receiving coil 9 disposed close to the subject 6, and the preamplifier 23 and It is input to the A/D converter 25 via the quadrature phase detector 24 and converted into a digital quantity,
Furthermore, two systems of collected data are sampled by a quadrature phase detector 24 at a timing according to a command from the sequencer 12, and the signals are sent to a signal processing system 16. This signal processing system 16 includes a CPU 11
, a recording device such as a magnetic disk 26 and a magnetic tape 27, and a display 28 such as a CRT.
Processing such as Fourier transformation, correction coefficient calculation, and image reconstruction is performed in U11, and the signal intensity distribution of an arbitrary cross section or the distribution obtained by performing appropriate calculations on a plurality of signals is converted into an image and displayed on the display 28. It has become. In addition,
In this figure, the irradiation coil 20, the reception coil 9, and the gradient magnetic field coil 21 are arranged in the magnetic field space of the magnetic field generator 10 arranged in the space around the subject 6.

【0012】ここで本発明による磁場発生装置の外観図
を図1に示す。常電導コイルによる補助磁場発生手段1
は受信コイル9の上下にアーム5を介して配置され、被
検体用ベッド29に固定される。このベッド29が撮像
時に磁場発生装置10の中央に撮像部が位置するように
挿入される。補助磁場発生手段1、受信コイル9、アー
ム5、ベッド29は強磁性体を含まない材質で構成し、
磁場発生装置10の磁場均一度を低下させないようにす
る。補助磁場発生手段1の常電導コイルに電流を流さな
い状態では、図2(A)に示すように磁場発生装置10
内部には永久磁石による主磁場発生器2より発生される
磁束3だけが存在するが、この磁束3を強める方向に補
助磁場発生手段1の常電導コイルに電流を流せば、図2
(B)に示すように磁束3を増加させることができる。 また、コイル電流を変えることによって磁束3の量を制
御できるので、撮像部位に応じて静磁場強度を任意に可
変することも可能である。
FIG. 1 shows an external view of a magnetic field generator according to the present invention. Auxiliary magnetic field generation means 1 using a normally conducting coil
are arranged above and below the receiving coil 9 via arms 5, and fixed to the subject bed 29. This bed 29 is inserted so that the imaging section is located at the center of the magnetic field generating device 10 during imaging. The auxiliary magnetic field generating means 1, the receiving coil 9, the arm 5, and the bed 29 are made of a material that does not contain ferromagnetic material,
The magnetic field uniformity of the magnetic field generator 10 is not reduced. When no current is applied to the normally conductive coil of the auxiliary magnetic field generating means 1, the magnetic field generating device 10 as shown in FIG. 2(A)
Inside, only the magnetic flux 3 generated by the main magnetic field generator 2 made of permanent magnets exists, but if a current is passed through the normally conducting coil of the auxiliary magnetic field generating means 1 in a direction to strengthen this magnetic flux 3, the result as shown in FIG.
The magnetic flux 3 can be increased as shown in (B). Furthermore, since the amount of magnetic flux 3 can be controlled by changing the coil current, it is also possible to arbitrarily vary the static magnetic field strength depending on the imaging region.

【0013】補助磁場発生手段1の常電導コイルの径が
小さいと、磁場の発生効率は高いが、均一空間は狭くな
る。このため、撮像領域に応じて補助磁場発生手段1の
大きさを変える必要が生じる。図3はこの一例であるが
比較的撮像領域の狭い頭部では頭部用受信コイル9aの
上下に小径の常電導コイルによる補助磁場発生手段1a
を設置し、狭い空間に高い静磁場を発生させる。これに
対し、体幹部用受信コイル9bの上下には磁場発生効率
よりも均一領域を重視した径の大きな常電導コイルによ
る補助磁場発生手段1bを設置して、撮像に応じて使い
分けるようにする。また、受信コイル9の移動に伴って
補助磁場発生手段1も移動するような構造にすれば、使
い勝手を向上することができる。
If the diameter of the normally conducting coil of the auxiliary magnetic field generating means 1 is small, the efficiency of magnetic field generation is high, but the uniform space becomes narrow. Therefore, it is necessary to change the size of the auxiliary magnetic field generating means 1 depending on the imaging area. FIG. 3 is an example of this, but in the case of a head where the imaging area is relatively narrow, auxiliary magnetic field generating means 1a using small-diameter normal conducting coils above and below the head receiving coil 9a.
installed to generate a high static magnetic field in a narrow space. On the other hand, auxiliary magnetic field generating means 1b are installed above and below the body trunk receiving coil 9b, and are made of normal conductive coils with a large diameter, placing more emphasis on a uniform area than on magnetic field generation efficiency, and are used selectively depending on the imaging. Further, if the structure is such that the auxiliary magnetic field generating means 1 also moves as the receiving coil 9 moves, usability can be improved.

【0014】図4は本発明を超電導コイルによる水平磁
場発生装置10に適用した例であるが、主磁場発生器2
は筒状の超電導コイル4であり、この中に入る被検体に
対して水平に静磁場を与える。補助磁場発生手段1は図
のように主磁場発生器2の働きによって、中央部では局
所的に強い水平方向の静磁場を得ることができる。同様
に図5に示す垂直磁場方式の磁場発生装置10では永久
磁石を使用した主磁場発生器2の間隙に常電導コイルに
よる補助磁場発生手段1を対向して配置し、局所高磁場
を得ることが可能である。
FIG. 4 shows an example in which the present invention is applied to a horizontal magnetic field generator 10 using superconducting coils.
is a cylindrical superconducting coil 4, which applies a static magnetic field horizontally to a subject entering the coil. As shown in the figure, the auxiliary magnetic field generating means 1 can obtain a locally strong horizontal static magnetic field at the center by the action of the main magnetic field generator 2. Similarly, in the vertical magnetic field type magnetic field generator 10 shown in FIG. 5, an auxiliary magnetic field generating means 1 made of a normal conductive coil is disposed facing the gap between the main magnetic field generator 2 using a permanent magnet to obtain a local high magnetic field. is possible.

【0015】この補助磁場発生手段1は撮像部位によっ
て選択して使用する必要があるので、付け外しあるいは
電気的な断続を任意にできなければならない。このこと
から常電導コイルによる電磁石がその強度を任意に可変
でき、最適であると考えられる。この補助磁場発生手段
1は小範囲であるほど効率よく高磁場を発生しうるが、
均一度は低下し撮像範囲が狭くなるので撮像部位に応じ
て最適な大きさが存在する。従って、撮像部位に合わせ
て数種類用意することが望ましい。さらに、撮像部位を
この狭い均一空間内に納めるための補助磁場発生手段1
の移動手段が必要である。また、視野を小さくして撮像
する際は必然的に分解能が必要となり、静磁場が高いこ
とが望ましいので、撮像時の視野に応じてコイル電流を
視野内での均一度が低下しない範囲での最大磁場となる
ように制御して使用することも可能である。
Since the auxiliary magnetic field generating means 1 needs to be used selectively depending on the region to be imaged, it must be possible to attach or detach it or to electrically disconnect it as desired. For this reason, an electromagnet using a normally conducting coil is considered to be optimal because its strength can be arbitrarily varied. This auxiliary magnetic field generating means 1 can generate a high magnetic field more efficiently in a smaller range.
Since uniformity decreases and the imaging range becomes narrower, there is an optimal size depending on the imaging region. Therefore, it is desirable to prepare several types according to the imaging site. Furthermore, an auxiliary magnetic field generating means 1 for accommodating the imaging region within this narrow uniform space.
transportation is required. In addition, when imaging with a small field of view, resolution is inevitably required, and a high static magnetic field is desirable. It is also possible to control and use the magnetic field so as to obtain the maximum magnetic field.

【0016】[0016]

【発明の効果】以上述べたように本発明による磁場発生
装置では、補助磁場発生手段の付加をすると共に、撮像
領域に応じてこれの大きさを選択して使用する構造とし
たことによって、静磁場強度を可変設定することが可能
となり、SN比の高い良質なMRI画像を得ることがで
きる。
Effects of the Invention As described above, the magnetic field generating device according to the present invention has a structure in which an auxiliary magnetic field generating means is added and the size of the auxiliary magnetic field generating means is selected depending on the imaging area. It becomes possible to variably set the magnetic field strength, and it is possible to obtain high-quality MRI images with a high signal-to-noise ratio.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】補助磁場発生手段外観図[Figure 1] External view of auxiliary magnetic field generating means

【図2】補助磁場発生手段の作用説明図[Fig. 2] Diagram explaining the operation of the auxiliary magnetic field generating means

【図3】補助磁
場発生手段の選択使用説明図
[Figure 3] Diagram for explaining the selection and use of auxiliary magnetic field generation means

【図4】水平磁場発生装置
の適用図
[Figure 4] Application diagram of horizontal magnetic field generator

【図5】垂直磁場発生装置の適用図[Figure 5] Application diagram of vertical magnetic field generator

【図6】MRI装置の適用図[Figure 6] Application diagram of MRI device

【符号の説明】[Explanation of symbols]

1    補助磁場発生手段 2    主磁場発生器 3    磁束 4    超電導コイル 5    アーム 6    被検体 7    常電導コイル 9    受信コイル 10  磁場発生装置 29  ベッド 1. Auxiliary magnetic field generation means 2 Main magnetic field generator 3 Magnetic flux 4 Superconducting coil 5 Arm 6 Subject 7 Normal conduction coil 9 Receiving coil 10 Magnetic field generator 29 Bed

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】被検体を収容する空間に超電導コイル、常
電導コイルまたは永久磁石によって強く均一な静磁場を
形成する主磁場発生器と、前記被検体にスライス傾斜磁
場、リードアウト傾斜磁場及び位相エンコード傾斜磁場
を印加する傾斜磁場コイルと、前記被検体の組織を構成
する原子の原子核に磁気共鳴を起こさせる高周波パルス
をある所定のパルスシーケンスで繰り返し印加する照射
コイルと、磁気共鳴信号を検出する受信コイルと、前記
検出信号を使って対象物体の物理的性質を表わす画像を
得る画像再構成手段とを備えた磁気共鳴イメージング装
置において、前記主磁場発生器の均一磁場空間内部に局
部的に前記主磁場発生器により形成される均一な静磁場
強度とは異なる均一な静磁場を形成する補助磁場発生手
段を備えたことを特徴とする磁気共鳴イメージング装置
用磁場発生装置。
1. A main magnetic field generator that forms a strong and uniform static magnetic field in a space accommodating an object using a superconducting coil, a normal conducting coil, or a permanent magnet; A gradient magnetic field coil that applies an encoding gradient magnetic field, an irradiation coil that repeatedly applies a high-frequency pulse in a certain predetermined pulse sequence to cause magnetic resonance in the nuclei of atoms constituting the tissue of the subject, and detects a magnetic resonance signal. In a magnetic resonance imaging apparatus comprising a receiving coil and an image reconstruction means for obtaining an image representing physical properties of a target object using the detection signal, the 1. A magnetic field generator for a magnetic resonance imaging apparatus, comprising auxiliary magnetic field generating means for generating a uniform static magnetic field different from the uniform static magnetic field intensity formed by the main magnetic field generator.
【請求項2】局部的な均一静磁場強度を任意に可変設定
する補助磁場発生手段を備えた請求項1に記載の磁気共
鳴イメージング装置用磁場発生装置。
2. The magnetic field generating device for a magnetic resonance imaging apparatus according to claim 1, further comprising auxiliary magnetic field generating means for arbitrarily variably setting the local uniform static magnetic field strength.
JP3144083A 1991-05-21 1991-05-21 Magnetic field generating device for magnetic resonance imaging device Pending JPH04343832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3144083A JPH04343832A (en) 1991-05-21 1991-05-21 Magnetic field generating device for magnetic resonance imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3144083A JPH04343832A (en) 1991-05-21 1991-05-21 Magnetic field generating device for magnetic resonance imaging device

Publications (1)

Publication Number Publication Date
JPH04343832A true JPH04343832A (en) 1992-11-30

Family

ID=15353855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3144083A Pending JPH04343832A (en) 1991-05-21 1991-05-21 Magnetic field generating device for magnetic resonance imaging device

Country Status (1)

Country Link
JP (1) JPH04343832A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003175012A (en) * 2002-08-26 2003-06-24 Ge Yokogawa Medical Systems Ltd Mri system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003175012A (en) * 2002-08-26 2003-06-24 Ge Yokogawa Medical Systems Ltd Mri system

Similar Documents

Publication Publication Date Title
US6477398B1 (en) Resonant magnetic susceptibility imaging (ReMSI)
JPH0356730B2 (en)
JPH09192117A (en) Mri system
JPH0263009B2 (en)
JPH0685769B2 (en) Magnetic resonance imaging equipment
JPH04343832A (en) Magnetic field generating device for magnetic resonance imaging device
JP2860682B2 (en) Method for stabilizing static magnetic field uniformity of magnetic resonance imaging apparatus
JPH05261081A (en) Inspecting system using nuclear magnetic resonance
JP2000051174A (en) Nmr microscope instrument
JP2709767B2 (en) Method for applying gradient magnetic field in magnetic resonance imaging apparatus
JPS63109847A (en) Nuclear magnetic resonance imaging apparatus
JPH07163543A (en) High-frequency signal receiving coil of magnetic resonance imaging system
Prost et al. How does an MR scanner operate?
JPH05253207A (en) Mri device for medical diagnostic image
JP3091203B2 (en) Magnetic resonance imaging equipment
JPH05300896A (en) Magnetic resonance imaging apparatus
JP3205061B2 (en) Magnetic resonance imaging equipment
JP3369586B2 (en) Magnetic resonance imaging equipment
US10768252B2 (en) Methods and systems for sampling k-space data in magnetic resonance imaging
JP2811352B2 (en) High frequency coil for magnetic resonance imaging equipment
GB2251491A (en) NMR motion artifact reduction
JPH0630165Y2 (en) Receiver coil for nuclear magnetic resonance imaging
JPH05220126A (en) Magnetic resonance imaging device
JP3205079B2 (en) Magnetic resonance imaging equipment
JP2767311B2 (en) High frequency coil for magnetic resonance imaging equipment