JPH04342488A - Composite material of metal and ceramic and its production - Google Patents

Composite material of metal and ceramic and its production

Info

Publication number
JPH04342488A
JPH04342488A JP3143769A JP14376991A JPH04342488A JP H04342488 A JPH04342488 A JP H04342488A JP 3143769 A JP3143769 A JP 3143769A JP 14376991 A JP14376991 A JP 14376991A JP H04342488 A JPH04342488 A JP H04342488A
Authority
JP
Japan
Prior art keywords
metal
ceramic
sintered body
pores
composite according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3143769A
Other languages
Japanese (ja)
Inventor
Hidenori Kita
英紀 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Ceramics Research Institute Co Ltd
Original Assignee
Isuzu Ceramics Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Ceramics Research Institute Co Ltd filed Critical Isuzu Ceramics Research Institute Co Ltd
Priority to JP3143769A priority Critical patent/JPH04342488A/en
Publication of JPH04342488A publication Critical patent/JPH04342488A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a composite material of a metal and a ceramic material closely bonded with each other. CONSTITUTION:A polymer precursor is sintered on one surface of a sintered ceramic material having open pores to close the pore and form a dense surface. A dense ceramic material is bonded to the dense surface with a soldering material. A castable alloy such as an Al alloy is cast into the other porous surface and solidified to obtain a composite material of a metal and a ceramic material closely bonded with each other. The metal and the ceramic material are firmly bonded together to form a composite material having high strength.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は金属とセラミックスの複
合体およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal-ceramic composite and a method for producing the same.

【0002】0002

【従来の技術】金属とセラミックスとの複合体を得る方
法として、セラミックス成形時に粒状有機物を接合面近
傍に配して加熱除去後、焼成してホールの形成を行い、
金属を鋳込んでホールを利用したアンカー効果により、
両者を結合させる特開昭61−259805号公報に示
された方法や、セラミックスの表面を機械的に荒らした
後、金属を貼り合せて溶融させ、表層の荒らした溝部内
に金属を入り込ませて機械的に結合させる特開昭61−
215271号公報に示された方法などが知られている
[Prior Art] As a method for obtaining a composite of metal and ceramics, granular organic matter is placed near the joint surface during ceramic molding, removed by heating, and then fired to form holes.
By casting metal and using the hole, the anchor effect is achieved.
The method shown in Japanese Patent Application Laid-open No. 61-259805, which combines the two, or the method of mechanically roughening the surface of the ceramic, bonding and melting the metal, and inserting the metal into the roughened grooves in the surface layer. JP-A No. 61-1997- Mechanically coupled
A method such as that disclosed in Japanese Patent No. 215271 is known.

【0003】0003

【発明が解決しようとする課題】上述の特許公報に示さ
れたいずれの方法でも、金属部とセラミックスとの間に
、わずかの間隙が生ずるとともに、その部分の強度レベ
ルも低いという問題がある。
[Problems to be Solved by the Invention] All of the methods disclosed in the above-mentioned patent publications have the problem that a slight gap is created between the metal part and the ceramic, and the strength level of that part is also low.

【0004】本発明はこのような問題に鑑みてなされた
ものであり、その目的は金属とセラミックスとの複合に
際し、両者の間が隙間なく密着されているような金属と
セラミックスの複合体およびその製造方法を提供しよう
とするものである。
[0004] The present invention was made in view of these problems, and its object is to provide a composite of metal and ceramics in which the metal and ceramics are tightly bonded without any gaps when the two are combined, The purpose is to provide a manufacturing method.

【0005】[0005]

【課題を解決するための手段】上述の目的を達成するた
めに本発明によれば、連続気孔を有する多孔のセラミッ
クス焼結体における片側からの機構部を緻密なセラミッ
クスにて充填せしめるとともに他側からの気孔部を金属
の鋳込みにより閉塞せしめた金属とセラミックスの複合
体と、開気孔を有するセラミックス焼結体の片側に液状
の有機珪素系ポリマーを含浸し焼成せしめて気孔を充填
するステップと、前記のセラミックス焼結体の未充填の
気孔に金属を鋳込んで閉塞せしめるステップとを備えた
金属とセラミックスの複合体の製造方法が提供される。
[Means for Solving the Problems] In order to achieve the above-mentioned object, according to the present invention, the mechanism portion from one side of a porous ceramic sintered body having continuous pores is filled with dense ceramics, and the mechanism portion from the other side is filled with dense ceramics. a metal-ceramic composite whose pores are closed by metal casting, and a step of impregnating one side of a ceramic sintered body with an open pore with a liquid organosilicon polymer and firing it to fill the pores; There is provided a method for producing a metal-ceramic composite comprising the step of casting metal into the unfilled pores of the ceramic sintered body to close them.

【0006】[0006]

【実施例】つぎに、本発明の実施例について詳細に説明
する。
EXAMPLES Next, examples of the present invention will be described in detail.

【0007】第1の実施例として、AlN粉末に助剤と
してY2 O3 を5%添加し、メタノールを媒体とし
て混合後、造粒、プレス成形により外径80mm、内径
60mmのリング状成形体を作成する。ついで、N2 
雰囲気中にて所定条件にて焼成し、気孔率約45%、連
続開気孔を有する多孔質のセラミックスを作成する。
As a first example, 5% of Y2O3 was added as an auxiliary agent to AlN powder, mixed using methanol as a medium, and then granulated and press molded to create a ring-shaped molded body with an outer diameter of 80 mm and an inner diameter of 60 mm. do. Next, N2
Firing is performed in an atmosphere under predetermined conditions to produce porous ceramics having a porosity of about 45% and continuous open pores.

【0008】そして、上述のセラミックスの内周に沿っ
てポリカルボシラン溶液を浸み込ませて焼成し、その部
分中にある気孔内にSiを含むセラミックスを形成させ
て閉塞する。また、この含浸および焼成の工程を例えば
5回繰返し、外周から内周に向けて順次に気孔量を変化
させる。
[0008] Then, a polycarbosilane solution is infiltrated along the inner periphery of the above-mentioned ceramic and fired, thereby forming a ceramic containing Si in the pores in the area and sealing them. Further, the impregnation and firing steps are repeated, for example, five times to sequentially change the pore volume from the outer circumference to the inner circumference.

【0009】つぎに、上記の工程で得られたリングを坩
堝に収納し、Al−Si合金の溶湯を鋳込み、リング外
周から内周にかけてその残っている気孔部をAl合金で
閉塞する。
Next, the ring obtained in the above process is placed in a crucible, and molten Al--Si alloy is poured into the crucible, and the remaining pores from the outer circumference to the inner circumference of the ring are closed with the Al alloy.

【0010】そして、上記が凝固後、坩堝から取出し切
断して、その破面観察を行った処、界面付近の隙間など
全く見られず、また、Al合金側からセラミックス側に
かけAl合金が連続して入り込んでいる状態が確認され
た。
[0010] After solidification, the above material was removed from the crucible and cut, and when the fracture surface was observed, no gaps were observed near the interface, and the Al alloy was continuous from the Al alloy side to the ceramic side. It was confirmed that there was a situation where the

【0011】つぎに第2の実施例として、Si3 N4
 ウイスカーにY2 O3 、Al2 O3 のそれぞ
れ3%を添加し、これらを混合してスラリー化した後、
スリップキャスティング法により、約30×30×30
mmの成形体を作成する。ついでN2 雰囲気中で所定
温度にて焼成し、気孔率約60%を有し連続開気孔を備
えた多孔質セラミックスを得る。
Next, as a second embodiment, Si3 N4
After adding 3% each of Y2 O3 and Al2 O3 to the whiskers and mixing them to form a slurry,
Approximately 30 x 30 x 30 by slip casting method
A molded body of mm is created. Then, it is fired at a predetermined temperature in an N2 atmosphere to obtain a porous ceramic having a porosity of about 60% and continuous open pores.

【0012】ここで、図1は本実施例の製造工程のステ
ップを組織観察した模写図であり、同図に従い以下の工
程を説明すると、前述の第1の実施例と同様な要領にて
表面をポリカルボシランを用いて緻密化した後、該表面
を加工研磨によって平滑にする(A)。
FIG. 1 is a schematic diagram showing the structure of the steps in the manufacturing process of this embodiment, and the following steps will be explained according to the diagram. After densification using polycarbosilane, the surface is smoothed by processing and polishing (A).

【0013】つぎに、酸化物粉末をペース状にしたもの
をソルダー剤として塗布し、その乾燥後、表面を十分に
平滑にする。そして密度99%以上のSi3 N4 を
貼り合せ、炉内で荷重を与えながら加熱を行って両者を
接合する(B,C)。
Next, a paste of oxide powder is applied as a solder agent, and after drying, the surface is made sufficiently smooth. Then, Si3N4 having a density of 99% or more is bonded, and the two are bonded by heating while applying a load in a furnace (B, C).

【0014】このような処理にて得られたセラミックス
接合体の気孔部に、前述の第1の実施例と同様な要領で
Al合金を鋳込み、一体化を行う(D)。
[0014] An Al alloy is cast into the pores of the ceramic bonded body obtained by such treatment in the same manner as in the first embodiment described above, and integration is performed (D).

【0015】そして、上述の鋳込みにより得られた材料
から試験片を切り出し、室温と300℃との間の熱サイ
クルを実施した後、4点曲げ試験による界面強度の結果
は次の値が得られている。 σ4b=14.8kgf /mm2 (n=20)
[0015] After cutting out a test piece from the material obtained by the above-mentioned casting and carrying out a thermal cycle between room temperature and 300°C, the following values were obtained for the interfacial strength by a four-point bending test. ing. σ4b=14.8kgf/mm2 (n=20)

【0
016】また、熱サイクル試験後の界面近傍の組織観察
を行ったが、第1の実施例と同様に隙間なく、密着して
いることが確認された。
0
[016] Further, the structure near the interface was observed after the thermal cycle test, and it was confirmed that there was no gap and close contact as in the first example.

【0017】つぎに第3の実施例について説明する。Next, a third embodiment will be explained.

【0018】Si3 N4 粒子にAl2 O3 、Y
2 O3 をそれぞれ3%添加して混合後、造粒粉を得
て、該粒粉を用いてプレス成形により約30×30×3
0mmの成形体を作成し、N2 雰囲気にての焼成によ
り気孔率約50%の多孔体を得る。この状態では粒子同
士はネッキングを起こして、より連続体を形成している
[0018] Si3 N4 particles with Al2 O3, Y
After adding 3% of each of 2 O3 and mixing, granulated powder was obtained, and the granulated powder was press-molded into approximately 30×30×3
A molded body with a thickness of 0 mm is prepared, and a porous body with a porosity of about 50% is obtained by firing in an N2 atmosphere. In this state, the particles neck together and form a continuum.

【0019】ついで図1(A)に示すように多孔体に対
し、一方向からポリカルボシラン溶液を含浸させて焼成
し、これを複数回繰返して含浸させる領域をずらしてい
く事で気孔率を傾斜させる。最終的にはその表面に緻密
なセラミックス膜をほぼ形成させる。
Next, as shown in FIG. 1(A), the porous body is impregnated with a polycarbosilane solution from one direction and fired, and this is repeated several times to shift the impregnated area to increase the porosity. Tilt. Finally, a dense ceramic film is almost formed on the surface.

【0020】つぎに、図1(B)のように酸化物ソルダ
ーを塗布後、その表面に緻密質で平滑なSi3 N4 
からなるセラミックスbを貼合せ、第2の実施例と同様
に両者を(C)のように接合する。
Next, as shown in FIG. 1(B), after applying oxide solder, a dense and smooth Si3N4 layer is applied to the surface.
Ceramics b consisting of the above are bonded together, and both are joined as shown in (C) in the same manner as in the second embodiment.

【0021】そして、前記の実施例に準じて多孔部側の
気孔内をAl合金の鋳造により閉塞して、金属部とセラ
ミックスbとの一体化を行わせる(D)。
Then, in accordance with the above embodiment, the pores on the porous side are closed by casting an Al alloy to integrate the metal part and the ceramic b (D).

【0022】このような工程の終了した材料から試験片
を切出して熱サイクルを実施したものを、4点曲げ試験
を行った結果は次の数値が得られている。 σ4b=16.3kgf /mm2 (n=22)
[0022] A test piece was cut out from the material after such a process and subjected to a thermal cycle, and a four-point bending test was conducted on the test piece, and the following numerical values were obtained. σ4b=16.3kgf/mm2 (n=22)

【0
023】そして、熱サイクルテスト後の界面近傍の組織
観察においては、金属部分が多孔セラミックスの気孔内
に途切れることなく入り込んでおり、両者が強固に連結
されていることが確認されている。
0
[023] In the observation of the structure near the interface after the thermal cycle test, it was confirmed that the metal part penetrated into the pores of the porous ceramic without interruption, and that the two were firmly connected.

【0024】以上、本発明を上述の実施例によって説明
したが、本発明の主旨の範囲内で種々の変形が可能であ
り、これらの変形を本発明の範囲から解除するものでは
ない。
Although the present invention has been described above with reference to the above-mentioned embodiments, various modifications can be made within the scope of the gist of the present invention, and these modifications are not excluded from the scope of the present invention.

【0025】[0025]

【発明の効果】上述のように本発明によれば、連続気孔
を備えたセラミックス焼結体の一方の面にポリマープリ
カーサを用いて緻密面として、ソルダー剤により緻密な
セラミックス材を接合し、他方の多孔質の面にはAl合
金などの鋳造自在な合金を鋳込んで凝固させるので、金
属とセラミックスとの間には隙間なく密着した複合体が
得られるという効果が得られる。
As described above, according to the present invention, a polymer precursor is used on one side of a ceramic sintered body having continuous pores to form a dense surface, a dense ceramic material is bonded with a solder agent, and the other side is bonded with a dense ceramic material using a solder agent. Since a freely castable alloy such as an Al alloy is poured into the porous surface and solidified, the effect is obtained that a composite body is obtained in which the metal and ceramic are in close contact with each other without any gaps.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例における製造工程の進行の一例
を示す観察模写図である。
FIG. 1 is a schematic observation diagram showing an example of the progress of a manufacturing process in an example of the present invention.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】連続気孔を有する多孔のセラミックス焼結
体における片側からの機構部を緻密なセラミックスにて
充填せしめるとともに他側からの気孔部を金属の鋳込み
により閉塞せしめ、前記緻密なセラミックスと金属とが
互いに強固に連結していることを特徴とする金属とセラ
ミックスの複合体。
Claim 1: In a porous ceramic sintered body having continuous pores, the mechanical part from one side is filled with dense ceramics, and the pores from the other side are closed by metal casting, and the dense ceramics and the metal are filled. A composite of metal and ceramics characterized by the fact that they are strongly connected to each other.
【請求項2】前記気孔部を充填するセラミックスの体積
率を表面からの距離に応じて連続的に減少させて変化せ
しめ、該連続的な変化に対応させて前記金属の閉塞率を
順次に増大せしめたことを特徴とする請求項1記載の金
属とセラミックスの複合体。
2. The volume fraction of the ceramic filling the pores is continuously decreased and changed according to the distance from the surface, and the occlusion rate of the metal is sequentially increased in accordance with the continuous change. 2. The metal-ceramic composite according to claim 1, characterized in that:
【請求項3】前記セラミックス焼結体における緻密なセ
ラミックスを充填せしめた面に、別の緻密質セラミック
スを接合したことを特徴とする請求項1記載の金属とセ
ラミックスの複合体。
3. The metal-ceramic composite according to claim 1, wherein another dense ceramic is bonded to the surface of the ceramic sintered body filled with the dense ceramic.
【請求項4】前記の多孔のセラミックス焼結体はAlN
であることを特徴とする請求項1または請求項3記載の
金属とセラミックスの複合体。
4. The porous ceramic sintered body is made of AlN.
The metal-ceramic composite according to claim 1 or 3, characterized in that:
【請求項5】前記の多孔のセラミックス焼結体がSi3
 N4 からなることを特徴とする請求項1または請求
項3記載の金属とセラミックスの複合体。
5. The porous ceramic sintered body is Si3
The metal-ceramic composite according to claim 1 or 3, characterized in that it is made of N4.
【請求項6】前記の金属はAl合金であることを特徴と
する請求項1または請求項2記載の金属とセラミックス
の複合体。
6. The metal-ceramic composite according to claim 1 or 2, wherein the metal is an Al alloy.
【請求項7】開気孔を有するセラミックス焼結体の片側
に液状の有機珪素系ポリマーを含浸し焼成せしめて気孔
を充填するステップと、前記のセラミックス焼結体の未
充填の気孔に金属を鋳込んで閉塞せしめるステップとを
備えたことを特徴とする金属とセラミックスの複合体の
製造方法。
7. A step of impregnating one side of a ceramic sintered body having open pores with a liquid organosilicon polymer and firing it to fill the pores, and casting metal into the unfilled pores of the ceramic sintered body. A method for manufacturing a metal-ceramic composite, comprising the steps of:
【請求項8】前記のセラミックス焼結体の充填気孔側の
表面に別の緻密質セラミックスを接合するステップを加
えたことを特徴とする請求項7記載の金属とセラミック
スの複合体の製造方法。
8. The method of manufacturing a metal-ceramic composite according to claim 7, further comprising the step of bonding another dense ceramic to the surface of the filled pore side of the ceramic sintered body.
【請求項9】前記のセラミックス焼結体の片側に液状の
有機珪素系ポリマーを含浸し焼成する工程を複数回繰返
して、セラミックス焼結体における気孔の充填率を連続
的に変化せしめることを特徴とする請求項7記載の金属
とセラミックスの複合体の製造方法。
9. The step of impregnating one side of the ceramic sintered body with a liquid organosilicon polymer and firing it is repeated multiple times to continuously change the filling rate of pores in the ceramic sintered body. The method for producing a metal-ceramic composite according to claim 7.
【請求項10】前記の有機珪素系ポリマーがポリシラザ
ンかポリカルボシランのいずれかであることを特徴とす
る請求項7または請求項9記載の金属とセラミックスの
複合体の製造方法。
10. The method for producing a metal-ceramic composite according to claim 7 or 9, wherein the organosilicon polymer is either polysilazane or polycarbosilane.
JP3143769A 1991-05-20 1991-05-20 Composite material of metal and ceramic and its production Pending JPH04342488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3143769A JPH04342488A (en) 1991-05-20 1991-05-20 Composite material of metal and ceramic and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3143769A JPH04342488A (en) 1991-05-20 1991-05-20 Composite material of metal and ceramic and its production

Publications (1)

Publication Number Publication Date
JPH04342488A true JPH04342488A (en) 1992-11-27

Family

ID=15346599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3143769A Pending JPH04342488A (en) 1991-05-20 1991-05-20 Composite material of metal and ceramic and its production

Country Status (1)

Country Link
JP (1) JPH04342488A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123797A (en) * 1995-06-23 2000-09-26 The Dow Chemical Company Method for coating a non-wetting fluidizable and material onto a substrate
US6607804B1 (en) 1998-03-09 2003-08-19 Thomas Josef Heimbach Gesellschaft Mit Beschrankter Haftung & Co. Molded part made of an electrically conductive ceramic and process for the production of contact zones on such molded parts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123797A (en) * 1995-06-23 2000-09-26 The Dow Chemical Company Method for coating a non-wetting fluidizable and material onto a substrate
US6607804B1 (en) 1998-03-09 2003-08-19 Thomas Josef Heimbach Gesellschaft Mit Beschrankter Haftung & Co. Molded part made of an electrically conductive ceramic and process for the production of contact zones on such molded parts

Similar Documents

Publication Publication Date Title
US5051382A (en) Inverse shape replication method of making ceramic composite articles and articles obtained thereby
US5626914A (en) Ceramic-metal composites
EP2336098B1 (en) Process for producing part of silicon carbide matrix composite material
JP2000510808A (en) Open cell foam ceramic having high strength and method for producing the same
KR19990028330A (en) Coating methods, methods of making ceramic metal structures, bonding methods and structures formed therefrom
JP4113971B2 (en) Low expansion material and manufacturing method thereof
JP2004522572A (en) Filter element and manufacturing method thereof
US20010033038A1 (en) Method of producing metal/ceramic composite, and method of producing porous ceramic body
JPH04342488A (en) Composite material of metal and ceramic and its production
JPH01212283A (en) Production of joined body of ceramics and metal
US7270888B2 (en) Composite body made of ceramic layers and method for its manufacture
JP2004006347A (en) Metal/ceramic connection body manufacturing method, metal composite material, and discharge envelope for high-pressure discharge lamp
JP4599591B2 (en) Manufacturing method of ceramic structure
JPH04342480A (en) Composite material of metal and ceramic
JP2614061B2 (en) Nitride composite ceramics
JPH03150276A (en) Multilayered ceramic material and production thereof
JP4744722B2 (en) Method for producing metal-ceramic composite material having hollow structure
JPH046163A (en) Production of carrier consisting of aluminium nitride
JPH04285077A (en) Metal-ceramic composite body and its production
US5168081A (en) Ceramic composite articles obtained by inverse shape replication
JPS6197166A (en) Manufacture of silicon carbide sintered body
JPS6119704A (en) Preparation of sintered machine parts
JP4214911B2 (en) COMPOSITE PREFORM, AND METHOD FOR PRODUCING THE PREFORM AND COMPOSITE MEMBER
JPS6115902A (en) Manufacture of sintered machine parts
JPH05330936A (en) Functionally gradient material