JPH04338120A - Method for forming glass optical element - Google Patents

Method for forming glass optical element

Info

Publication number
JPH04338120A
JPH04338120A JP13599391A JP13599391A JPH04338120A JP H04338120 A JPH04338120 A JP H04338120A JP 13599391 A JP13599391 A JP 13599391A JP 13599391 A JP13599391 A JP 13599391A JP H04338120 A JPH04338120 A JP H04338120A
Authority
JP
Japan
Prior art keywords
glass material
molding
optical element
temperature
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13599391A
Other languages
Japanese (ja)
Other versions
JP2975167B2 (en
Inventor
Hiroshi Ito
弘 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP3135993A priority Critical patent/JP2975167B2/en
Publication of JPH04338120A publication Critical patent/JPH04338120A/en
Application granted granted Critical
Publication of JP2975167B2 publication Critical patent/JP2975167B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/12Cooling, heating, or insulating the plunger, the mould, or the glass-pressing machine; cooling or heating of the glass in the mould

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To prevent the deterioration of the transfer property due to the contraction of glass causing shrinkage cavities and warpage. CONSTITUTION:One side face of a glass material with the difference in shape from the forming die being large is heated to a higher temp. The forming die in contact with the heated side face is forcedly cooled in forming, and the temp. difference between both forming faces is reduced when the optical element is cooled to the transition temp. The glass material 1 is placed on a conveyor arm 3 through a conveyor 2 with the aspheric face 1a to be pressed as the upper face. The glass material 1 with the aspheric face 1a heated to a higher temp. in a heating furnace 4 is conveyed between the upper and lower dies 14 and 15 and formed. N2 gas is blown against the upper die 14 from a forced cooling pipe 16 in forming to cool the die 14.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ガラス素材を加熱軟化
させ、これを一対の成形用型により押圧成形する光学素
子の成形方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming an optical element by heating and softening a glass material and press-molding it using a pair of molds.

【0002】0002

【従来の技術】従来、ガラス素材を加熱軟化させ、これ
を一対の成形用型間に搬送した後、成形用型により押圧
成形して光学素子を得る光学素子の成形方法が知られて
いる。
2. Description of the Related Art Conventionally, there has been known a method of forming an optical element by heating and softening a glass material, transporting the glass material between a pair of molds, and then press-molding the glass material with the molds to obtain an optical element.

【0003】例えば、特開昭62−27335号公報記
載の発明においては、ガラス素材を加熱するに際し、ガ
ラス素材の表面部および内部をそれぞれ109 〜10
4.5 ポイズおよび1014.5〜109 ポイズ相
当の所定温度とし、表面部と内部との間に温度勾配を与
える方法が開示されている。この方法によれば、ガラス
素材と成形用型との両者が、短時間で転移点以下の温度
に達することができ、転写が急速に完了し、成形品を直
ちに成形用型から取り出せるものである。
For example, in the invention described in JP-A-62-27335, when heating the glass material, the surface and interior of the glass material are heated to 109 to 10, respectively.
A method is disclosed in which a predetermined temperature corresponding to 4.5 poise and 1014.5 to 109 poise is set, and a temperature gradient is created between the surface portion and the inside. According to this method, both the glass material and the mold can reach a temperature below the transition point in a short time, the transfer is rapidly completed, and the molded product can be immediately removed from the mold. .

【0004】しかしながら、上記従来技術には以下の様
な欠点がある。
However, the above-mentioned conventional technology has the following drawbacks.

【0005】すなわち、予め研削,研磨により最終形状
に近似した形状に仕上げたガラス素材を用いる場合、例
えば片面のみが非球面形状の光学素子を得る場合には、
非球面にする側のガラス素材押圧面を成形すればよく、
球面にする側のガラス素材押圧面は必ずしも非球面側と
同様に加熱する必要はない。
That is, when using a glass material that has been previously ground and polished into a shape similar to the final shape, for example, when obtaining an optical element with only one surface having an aspherical shape,
All you need to do is mold the pressing surface of the glass material on the side that will be made into an aspherical surface.
The glass material pressing surface on the side to be made spherical does not necessarily need to be heated in the same way as the aspherical side.

【0006】したがって、従来技術の様に、ガラス素材
の表面部と内部とで温度差を設けるだけでは、成形の不
必要な側のガラス素材押圧面も軟化させて流動変形させ
ることとなり、転写性および成形用型の耐久性が著しく
悪化してしまった。
Therefore, simply creating a temperature difference between the surface and the inside of the glass material, as in the prior art, will also soften the pressing surface of the glass material on the side that does not require molding and cause it to flow and deform, resulting in poor transferability. Also, the durability of the molding die was significantly deteriorated.

【0007】すなわち、ガラス素材は加熱により軟化し
て変形を生じるため、必要以上の加熱をすると、押圧直
前のガラス素材の形状が変化してしまい、より多量のガ
ラス流動を生じることにより、転写性と成形用型の耐久
性とに悪影響をおよぼしてしまうのである。
In other words, the glass material softens and deforms when heated, so if the glass material is heated more than necessary, the shape of the glass material immediately before being pressed will change, and a larger amount of glass flow will occur, resulting in poor transferability. This adversely affects the durability of the mold.

【0008】また、両面非球面形状の光学素子を得る場
合であっても、従来は非球面量の多少に拘らず、両面(
両ガラス素材押圧面)を均等に加熱,軟化しており、前
記片面非球面形状の光学素子の場合と同様の問題があっ
た。すなわち、非球面量に応じて必要な変形量が各面ご
とに決定されるが、一方の必要変形量に合わせて両面均
等に加熱を行ってしまうので、必要以上の加熱をされる
側があり、転写性と成形用型の耐久性とに悪影響をおよ
ぼしていた。さらに、不必要な加熱を行うことは、サイ
クルタイムの短縮化の妨げとなっていた。
Furthermore, even when obtaining an optical element having aspherical surfaces on both sides, conventionally, regardless of the amount of aspherical surfaces, both surfaces (
Both glass material pressing surfaces) were heated and softened uniformly, and there was a problem similar to that of the optical element having an aspherical surface on one side. In other words, the necessary amount of deformation is determined for each surface according to the amount of asphericity, but since both sides are heated equally according to the required amount of deformation on one side, some sides are heated more than necessary. This had a negative effect on the transferability and the durability of the mold. Furthermore, unnecessary heating has been an obstacle to shortening the cycle time.

【0009】因って、上記欠点を解決すべく先に本出願
人より提案した特願平1−206490号公報記載の発
明がある。該発明では、不必要な加熱により押圧直前の
ガラス素材の形状が大きく変形することを防止し、転写
性および成形用型の耐久性に優れかつサイクルタイムの
短縮化を図ることができるものである。
[0009] Therefore, in order to solve the above-mentioned drawbacks, there is an invention described in Japanese Patent Application No. 1-206490 previously proposed by the present applicant. The invention prevents the shape of the glass material immediately before pressing from being significantly deformed due to unnecessary heating, provides excellent transferability and durability of the mold, and shortens cycle time. .

【0010】すなわち、ガラス素材を加熱して軟化させ
、そのガラス素材を一対の成形用型間に搬送した後、成
形用型により押圧成形して光学素子を得る光学素子の成
形方法において、前記ガラス素材を加熱するに際し、ガ
ラス素材押圧面における所要の変形量に応じて各ガラス
素材押圧面に対する加熱をそれぞれ独立して制御するこ
ととした。
[0010] That is, in an optical element molding method in which a glass material is heated and softened, the glass material is conveyed between a pair of molds, and an optical element is obtained by press-molding with the molds, the glass material is heated and softened. When heating the materials, it was decided to independently control the heating of each glass material pressing surface depending on the required amount of deformation on the glass material pressing surface.

【0011】上記構成の発明によれば、ガラス素材を加
熱するに際し、ガラス素材押圧面における成形変形量の
多少に応じて、上側のガラス素材押圧面と下側のガラス
素材押圧面とに対する加熱量を変更する。すなわち、ガ
ラス素材と加熱ヒータとの相対距離を調整するか、また
は、上下の加熱ヒータの発熱量をそれぞれ調整して、変
形量がより大きなガラス素材押圧面に対しては加熱量を
多くし、より小さなガラス素材押圧面に対しては加熱量
をすくなくするものである。
According to the invention having the above structure, when heating the glass material, the amount of heating for the upper glass material pressing surface and the lower glass material pressing surface is adjusted depending on the amount of molding deformation on the glass material pressing surface. change. That is, by adjusting the relative distance between the glass material and the heater, or by adjusting the amount of heat generated by the upper and lower heaters, the amount of heating is increased for the pressing surface of the glass material that has a larger amount of deformation. The amount of heating is reduced for a smaller pressing surface of the glass material.

【0012】0012

【発明が解決しようとする課題】しかるに、前記特願平
1−206490号公報記載の発明においては以下の様
な問題がある。
However, the invention described in Japanese Patent Application No. 1-206490 has the following problems.

【0013】すなわち、図7に示す如く、不必要な加熱
により押圧直前のガラス素材51の形状が大きく変形す
ることを防止し、成形用型全面にわたり十分にガラスを
流動させて当たりを確保できる反面、高温加熱側51a
のガラス面は押圧成形中の冷却が遅れることにより、高
温加熱側51aと低温加熱側51bとの間に温度差が生
じてしまい、高温加熱側51aのガラスの収縮量の方が
大きいためにソリ52を生じる。このソリ52は光学性
能に悪影響を及ぼすことがある。
That is, as shown in FIG. 7, it is possible to prevent the shape of the glass material 51 immediately before pressing from being significantly deformed due to unnecessary heating, and to ensure contact by sufficiently flowing the glass over the entire surface of the mold. , high temperature heating side 51a
Due to the delay in cooling during press molding, a temperature difference occurs between the high-temperature heating side 51a and the low-temperature heating side 51b, and the amount of shrinkage of the glass on the high-temperature heating side 51a is greater, resulting in warping. 52. This warpage 52 may adversely affect optical performance.

【0014】図8に示す如く、押圧成形時間を十分に延
長すれば、ガラス温度は成形用型温度と均温化され、高
温加熱側51aと低温加熱側51bとの温度差は十分に
小さくなり、ソリ52は小さくなる。
As shown in FIG. 8, if the press molding time is extended sufficiently, the glass temperature becomes equal to the mold temperature, and the temperature difference between the high temperature heating side 51a and the low temperature heating side 51b becomes sufficiently small. , the sled 52 becomes smaller.

【0015】しかしながら、例えば押圧時間が20秒以
下の短時間プレスにおいては、高温加熱側51aと低温
加熱側51bとの温度差を十分に低減することは困難で
ある。
However, in short-time pressing, for example, when the pressing time is 20 seconds or less, it is difficult to sufficiently reduce the temperature difference between the high-temperature heating side 51a and the low-temperature heating side 51b.

【0016】従って、ソリを低減させるためには、プレ
ス時間の延長が必要であり、生産性に制約があった。
[0016] Therefore, in order to reduce warpage, it is necessary to extend the press time, which limits productivity.

【0017】因って、本発明は上記問題点に鑑みて開発
されたもので、プレス時間の短縮が図れるとともに、ヒ
ケやソリ等の発生が低減できるガラス光学素子の成形方
法の提供を目的とする。
Therefore, the present invention was developed in view of the above-mentioned problems, and aims to provide a method for molding a glass optical element that can shorten the pressing time and reduce the occurrence of sink marks, warpage, etc. do.

【0018】[0018]

【課題を解決するための手段】本発明は、加熱軟化させ
たガラス素材を一対の成形用型間に搬送し、押圧成形に
より光学素子を得る光学素子の成形方法において、前記
ガラス素材における成形用型とガラス素材面との形状差
の大きな側の面をその変形量に応じてより高温に加熱す
る工程と、前記ガラス素材を押圧成形するに際して前記
ガラス素材面のうち高温に加熱した側と接触する成形用
型を強制的に冷却し、光学素子が転移点温度に降温した
時点で両成形面の温度差を低減する工程と、光学素子が
転移点温度以下となった後に離型する工程とから成る成
形方法である。
[Means for Solving the Problems] The present invention provides an optical element molding method in which a heat-softened glass material is conveyed between a pair of molds and an optical element is obtained by pressure molding. A process of heating the side with a larger shape difference between the mold and the glass material surface to a higher temperature according to the amount of deformation, and contacting the side of the glass material surface heated to a higher temperature when press-molding the glass material. A step of forcibly cooling the mold for molding to reduce the temperature difference between both molding surfaces when the temperature of the optical element has fallen to the transition point temperature, and a step of releasing the mold after the optical element becomes below the transition point temperature. This is a molding method consisting of:

【0019】また、前記光学素子が転移点温度に降温し
た時点で両成形面の温度差を低減する工程に次いで、ど
ちらか一方の成形用型を強制的に冷却したのち離型を行
う工程を設けた成形方法である。
[0019] Further, following the step of reducing the temperature difference between both molding surfaces when the temperature of the optical element has decreased to the transition point temperature, a step of forcibly cooling one of the molding molds and then releasing the mold may be performed. This is the molding method provided.

【0020】[0020]

【作用】本発明では、ガラス素材面における高温に加熱
した側の冷却の遅れを、そのガラス素材面に接触する成
形用型を強制的に冷却することで短時間に補正し、ガラ
スが転移点温度となった時のガラス両面間の温度差を低
減させることができる。
[Function] In the present invention, the delay in cooling on the side of the glass material surface heated to a high temperature is compensated for in a short time by forcibly cooling the molding die in contact with the glass material surface, and the glass reaches the transition point. It is possible to reduce the temperature difference between both sides of the glass when the temperature reaches that temperature.

【0021】[0021]

【実施例1】図1および図2は本実施例のガラス光学素
子の成形方法に用いる装置の断面図である。
Embodiment 1 FIGS. 1 and 2 are cross-sectional views of an apparatus used in the method of molding a glass optical element according to this embodiment.

【0022】1は予め研削・研磨により最終形状に近似
した形状に仕上げられたガラス素材で、このガラス素材
1は搬送具2を介して搬送アーム3に設置されている。 搬送アーム3は、その長手方向に進退自在であって、ガ
ラス素材1を加熱炉4内を通して成形室5内へ搬送でき
るとともに、上下動可能に設けられている。
Reference numeral 1 denotes a glass material which has been previously ground and polished into a shape similar to the final shape, and this glass material 1 is placed on a transport arm 3 via a transport tool 2. The transport arm 3 is movable in its longitudinal direction, and is capable of transporting the glass material 1 through the heating furnace 4 into the molding chamber 5, and is also movable up and down.

【0023】加熱炉4は、内面に上側加熱ヒータ6を設
置した上側ヒータ板7と、内面に下側加熱ヒータ8を設
置した下側ヒータ板9と、これら上下の両ヒータ板7,
9を側方から閉塞する二枚の側板10,11とから構成
されている。また、上側ヒータ板7および下側ヒータ板
9は、それぞれ支持棒12,13を介してシリンダ等の
駆動装置(図示省略)に接続されており、各々独立に上
下動可能に設けられている。これにより、上下の各加熱
ヒータ6,8は、搬送アーム3の上下動と相俟って、ガ
ラス素材1に対してそれぞれ独立に接近離反自在となっ
ており、ガラス素材1と加熱ヒータ6,8の相対距離を
変化させることで加熱量を調整できるように構成されて
いる。
The heating furnace 4 includes an upper heater plate 7 having an upper heater 6 installed on its inner surface, a lower heater plate 9 having a lower heater 8 installed on its inner surface, both upper and lower heater plates 7,
It is composed of two side plates 10 and 11 that close off 9 from the sides. Further, the upper heater plate 7 and the lower heater plate 9 are connected to a drive device (not shown) such as a cylinder via support rods 12 and 13, respectively, and are provided so as to be able to move up and down independently. As a result, each of the upper and lower heaters 6 and 8 can move toward and away from the glass material 1 independently, together with the vertical movement of the transport arm 3, so that the glass material 1 and the heater 6, The amount of heating can be adjusted by changing the relative distance of 8.

【0024】さらに、上下の各加熱ヒータ6,8の中央
部には、それぞれ別々に温度制御用の熱電対(図示省略
)が配設されており、各加熱ヒータ6,8をそれぞれ独
立に温度制御でき、必要な加熱量に応じて温度設定でき
るように設けられている。
Further, in the center of each of the upper and lower heaters 6 and 8, thermocouples (not shown) for temperature control are separately provided, and the temperature of each heater 6 and 8 can be adjusted independently. It is provided so that it can be controlled and the temperature can be set according to the amount of heating required.

【0025】一方、加熱炉4には、加熱炉4内で加熱軟
化されたガラス素材1を押圧成形する成形室5が連設さ
れている。そして、この成形室5内には、成形用上型1
4および成形用下型15が、同軸上に対抗して設けられ
ている。成形用下型15は、図示を省略した駆動装置に
連結されており、上下動可能に設けられている。
On the other hand, the heating furnace 4 is connected with a molding chamber 5 in which the glass material 1 heated and softened in the heating furnace 4 is press-molded. In this molding chamber 5, there is an upper mold 1 for molding.
4 and a lower mold 15 are provided coaxially and opposingly. The lower mold 15 is connected to a drive device (not shown) and is provided to be movable up and down.

【0026】成形用上型14の外周部にはリング形状を
した中空の強制冷却パイプ16が遊嵌されており、強制
冷却パイプ16の内周面には均等間隔に複数のノズル部
16aが設けられている。
A ring-shaped hollow forced cooling pipe 16 is loosely fitted to the outer circumference of the upper mold 14, and a plurality of nozzle portions 16a are provided at equal intervals on the inner circumference of the forced cooling pipe 16. It is being

【0027】強制冷却パイプ16は導入用パイプ17に
固設されている。導入用パイプ17は外部のN2 ガス
発生装置(図示省略)と接続されており、N2 ガス発
生装置からのN2 ガスは導入用パイプ17を介して強
制冷却パイプ16のノズル部16aより成形用上型14
の外周面に向かって流出可能な様に構成されている。
The forced cooling pipe 16 is fixed to the introduction pipe 17. The introduction pipe 17 is connected to an external N2 gas generator (not shown), and the N2 gas from the N2 gas generator is passed through the introduction pipe 17 from the nozzle portion 16a of the forced cooling pipe 16 to the upper mold for molding. 14
It is configured so that it can flow out toward the outer circumferential surface of.

【0028】また、N2 ガスは設けられた弁およびそ
の制御装置(図示省略)により、予め設定した動作タイ
ミングに制御できる様に構成されている。
[0028] Furthermore, the N2 gas is configured to be controlled at preset operation timing by a provided valve and its control device (not shown).

【0029】以上の構成から成る装置を用いて、本実施
例では硝種SK11からなる非球面量100μmの片面
非球面レンズの成形を行った。
In this example, a single-sided aspherical lens made of glass SK11 and having an aspherical surface depth of 100 μm was molded using the apparatus constructed as described above.

【0030】まず、非球面側となるガラス素材押圧面1
aを上面にして、ガラス素材1を搬送具2を介して搬送
アーム3に設置した。ここに、ガラス素材1は、予め研
削,研磨により加工されており、非球面側となるガラス
素材押圧面1aは近似球面に加工され、球面側となるガ
ラス素材押圧面1bはほぼ設計値に加工されている。し
たがって、非球面側のガラス素材押圧面1aは変形量が
非球面量100μmに応じた加熱量を必要とし、球面側
のガラス素材押圧面1bは変形の必要がない。このため
、ガラス素材1の非球面側のガラス素材押圧面1aと上
側加熱ヒータ6との相対距離は10mmに、ガラス素材
1の球面側のガラス素材押圧面1bと下側加熱ヒータ8
との相対距離は30mmにそれぞれ設定した。
First, press the glass material pressing surface 1 which will be the aspherical side.
The glass material 1 was placed on the transport arm 3 via the transport tool 2 with a facing upward. Here, the glass material 1 has been processed by grinding and polishing in advance, and the glass material pressing surface 1a, which is the aspherical side, is processed into an approximate spherical surface, and the glass material pressing surface 1b, which is the spherical surface, is processed almost to the design value. has been done. Therefore, the glass material pressing surface 1a on the aspherical side requires a heating amount whose deformation amount corresponds to the aspherical amount of 100 μm, and the glass material pressing surface 1b on the spherical side does not need to be deformed. Therefore, the relative distance between the glass material pressing surface 1a on the aspherical side of the glass material 1 and the upper heater 6 is 10 mm, and the relative distance between the glass material pressing surface 1b on the spherical side of the glass material 1 and the lower heating heater 8 is 10 mm.
The relative distance from each other was set to 30 mm.

【0031】本実施例では、このように、ガラス素材1
と加熱ヒータ6,8との相対距離を独立に変化させるこ
とで加熱量を異ならせることとしたので、加熱ヒータ6
,8は上側,下側ともに680℃に設定した。
In this embodiment, as described above, the glass material 1
Since we decided to vary the amount of heating by independently changing the relative distance between the heater 6 and the heater 6,
, 8 was set at 680°C on both the upper and lower sides.

【0032】ガラス素材1は、加熱炉4内にて1分間加
熱した後、搬送アーム3により成形用型14,15間に
搬送し、成形用下型15を上昇させることによって押圧
成形を行った。熱電対により測定した結果、ガラス素材
1の上面は約655℃であり、下面は約600℃であっ
た。
The glass material 1 was heated in the heating furnace 4 for 1 minute, and then transferred between the molding molds 14 and 15 by the transport arm 3, and press molding was performed by raising the lower molding mold 15. . As a result of measurement using a thermocouple, the temperature on the upper surface of the glass material 1 was approximately 655°C, and the temperature on the lower surface was approximately 600°C.

【0033】加圧成形直後よりN2 ガスを成形用上型
14に吹きつけ、成形用上型14の温度を低下させる。 このとき、N2 ガスの流量は、図3のグラフに示す如
く、プレス時間が15秒経過し、光学素子がほぼ転移点
温度(535℃)となったときに、各ガラス素材押圧面
1a,1b間の温度差がなくなる様に調整して成形を行
った。
Immediately after pressure molding, N2 gas is blown onto the upper mold 14 to lower the temperature of the upper mold 14. At this time, as shown in the graph of FIG. 3, the flow rate of N2 gas is adjusted to the pressure of each glass material pressing surface 1a, 1b when 15 seconds have elapsed and the optical element has reached almost the transition point temperature (535°C). Molding was carried out by adjusting the temperature so that there was no difference in temperature between the two.

【0034】本実施例によれば、従来技術では25秒以
上要したプレス時間が、15秒のプレス時間で同等レベ
ルの転写性を得ることができ、プレス時間を短縮しつつ
ソリのない成形レンズが成形できた。
According to this embodiment, it is possible to obtain the same level of transferability with a press time of 15 seconds, whereas the conventional technique required a press time of 25 seconds or more, and a molded lens without warping can be obtained while reducing the press time. was able to be formed.

【0035】尚、本実施例ではほぼ球面に近いプリフォ
ームをガラス素材に用いたが、本発明はこれに限定する
ものではなく、両平面のガラス素材等も同様に成形する
ことができる。
In this embodiment, a nearly spherical preform was used as the glass material, but the present invention is not limited to this, and glass materials with both planes can be similarly formed.

【0036】[0036]

【実施例2】本実施例で用いる装置は、前記実施例1で
用いた装置と同様の装置であり、装置の構成の説明は省
略する。
Embodiment 2 The apparatus used in this embodiment is similar to the apparatus used in Embodiment 1, and the explanation of the structure of the apparatus will be omitted.

【0037】本実施例におけるガラス光学素子の成形方
法は、図4のグラフに示す如く、成形用上型を冷却し、
ガラス素材の各ガラス素材押圧面1a,1b間の温度が
転移点温度付近でほぼ等しくなったプレス時間15秒後
も成形用上型を冷却しつづける。そして、成形用上型の
温度が成形用下型の温度よりも低くなった後に離型する
As shown in the graph of FIG. 4, the method for molding the glass optical element in this example involves cooling the upper mold for molding,
The upper mold for molding is continued to be cooled even after 15 seconds of pressing time when the temperatures between the pressing surfaces 1a and 1b of the glass material become approximately equal near the transition point temperature. Then, the mold is released after the temperature of the upper mold becomes lower than the temperature of the lower mold.

【0038】本実施例の成形方法により成形した光学素
子は、転移点温度以下で生じた光学素子両面間の温度差
により、一時的にソリを生じるものの、成形型からの離
型が容易となる。このソリはガラスの粘性流動が全く起
こらない温度にて生じたものであり、いわゆる一時歪に
よって生じたもので、常温まで冷却して均温化すると消
失し、ソリのない光学素子が得られる。
Although the optical element molded by the molding method of this example temporarily warps due to the temperature difference between the two surfaces of the optical element that occurs below the transition point temperature, it can be easily released from the mold. . This warpage occurs at a temperature at which no viscous flow occurs in the glass, and is caused by so-called temporary strain, and disappears when the glass is cooled to room temperature and equalized, and an optical element without warp can be obtained.

【0039】尚、本実施例では転移点温度付近以後も成
形用上型を冷却したが、本発明はこれに限定されるもの
ではなく、図5に示す如く、成形用下型15の外周にも
第2の強制冷却パイプ21およびN2 ガスの導入用パ
イプ22を設け、転移点温度付近以後の冷却を成形用上
型14から成形用下型15の冷却に切替えても同様な効
果が得られる。
In this example, the upper mold for molding was cooled even after the transition point temperature, but the present invention is not limited to this. As shown in FIG. The same effect can also be obtained by providing a second forced cooling pipe 21 and a pipe 22 for introducing N2 gas, and switching the cooling after the transition point temperature from the upper molding mold 14 to the cooling of the lower molding mold 15. .

【0040】[0040]

【実施例3】本実施例で用いる装置は、前記実施例1に
おけるN2 ガス流出用の強制冷却パイプ16および導
入用パイプ17を廃止し、代わりに冷却治具31を設け
て構成した点が異なり、他の構成部分は同一の構成から
成るもので、同一構成部分には同一番号を付してその説
明を省略する。
[Embodiment 3] The apparatus used in this embodiment differs in that the forced cooling pipe 16 for N2 gas outflow and the introduction pipe 17 in Embodiment 1 are omitted, and a cooling jig 31 is provided instead. , other constituent parts have the same configuration, and the same constituent parts are given the same numbers and their explanations will be omitted.

【0041】本実施例のガラス光学素子の成形方法は、
前記各実施例におけるN2 ガス吹きつけによる冷却に
代わり、冷却治具31を成形用上型14に接触させて冷
却を行う。
The method for molding the glass optical element of this example is as follows:
Cooling is performed by bringing the cooling jig 31 into contact with the upper mold 14 instead of cooling by N2 gas blowing in each of the embodiments described above.

【0042】以下、作用および効果は前記各実施例と同
様であり、作用および効果の説明を省略する。
[0042] Hereinafter, the functions and effects are the same as in each of the embodiments described above, and the explanation of the functions and effects will be omitted.

【0043】[0043]

【発明の効果】以上説明した様に、本発明に係るガラス
光学素子の成形方法によれば、ヒケやソリ等のガラスの
収縮に伴う転写性の劣化を防止できる。また、成形用型
の耐久性が向上する。さらに、サイクルタイムの短縮が
できる。
As explained above, according to the method for molding a glass optical element according to the present invention, it is possible to prevent deterioration of transferability due to shrinkage of glass, such as sink marks and warpage. Moreover, the durability of the molding die is improved. Furthermore, cycle time can be shortened.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】実施例1の断面図である。FIG. 1 is a cross-sectional view of Example 1.

【図2】実施例1の断面図である。FIG. 2 is a sectional view of Example 1.

【図3】実施例1のグラフである。FIG. 3 is a graph of Example 1.

【図4】実施例2のグラフである。FIG. 4 is a graph of Example 2.

【図5】実施例2の変形例を示す断面図である。FIG. 5 is a sectional view showing a modification of the second embodiment.

【図6】実施例3の断面図である。FIG. 6 is a cross-sectional view of Example 3.

【図7】従来例の断面図である。FIG. 7 is a sectional view of a conventional example.

【図8】従来例のグラフである。FIG. 8 is a graph of a conventional example.

【符号の説明】[Explanation of symbols]

1  ガラス素材 2  搬送具 3  搬送アーム 4  加熱炉 5  成形室 6  上側加熱ヒータ 8  下側加熱ヒータ 14  成形用上型 15  成形用下型 16  強制冷却パイプ 1 Glass material 2 Transport equipment 3 Transfer arm 4 Heating furnace 5 Molding room 6 Upper heater 8 Lower side heater 14 Upper mold for molding 15 Lower mold for molding 16 Forced cooling pipe

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  加熱軟化させたガラス素材を一対の成
形用型間に搬送し、押圧成形により光学素子を得る光学
素子の成形方法において、前記ガラス素材における成形
用型とガラス素材面との形状差の大きな側の面をその変
形量に応じてより高温に加熱する工程と、前記ガラス素
材を押圧成形するに際して前記ガラス素材面のうち高温
に加熱した側と接触する成形用型を強制的に冷却し、光
学素子が転移点温度に降温した時点で両成形面の温度差
を低減する工程と、光学素子が転移点温度以下となった
後に離型する工程とから成ることを特徴とするガラス光
学素子の成形方法。
1. A method for molding an optical element in which a glass material softened by heating is conveyed between a pair of molding molds and an optical element is obtained by press molding, wherein the shape of the molding mold and the surface of the glass material in the glass material is A step of heating the surface on the side with a larger difference to a higher temperature according to the amount of deformation, and a step of forcing a mold that comes into contact with the side of the glass material surface heated to a high temperature when press-molding the glass material. A glass characterized by comprising a step of cooling and reducing the temperature difference between both molding surfaces when the temperature of the optical element has decreased to the transition point temperature, and a step of releasing the mold after the optical element has become below the transition point temperature. Method of molding optical elements.
【請求項2】  前記光学素子が転移点温度に降温した
時点で両成形面の温度差を低減する工程に次いで、どち
らか一方の成形用型を強制的に冷却したのち離型を行う
工程を設けたことを特徴とする請求項1記載のガラス光
学素子の成形方法。
2. After the step of reducing the temperature difference between both molding surfaces when the temperature of the optical element has decreased to the transition point temperature, the step of forcibly cooling one of the molding molds and then releasing the mold. 2. The method for molding a glass optical element according to claim 1, further comprising the step of: providing a molding method for a glass optical element;
JP3135993A 1991-05-10 1991-05-10 Glass optical element molding method Expired - Fee Related JP2975167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3135993A JP2975167B2 (en) 1991-05-10 1991-05-10 Glass optical element molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3135993A JP2975167B2 (en) 1991-05-10 1991-05-10 Glass optical element molding method

Publications (2)

Publication Number Publication Date
JPH04338120A true JPH04338120A (en) 1992-11-25
JP2975167B2 JP2975167B2 (en) 1999-11-10

Family

ID=15164691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3135993A Expired - Fee Related JP2975167B2 (en) 1991-05-10 1991-05-10 Glass optical element molding method

Country Status (1)

Country Link
JP (1) JP2975167B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5588980A (en) * 1992-02-21 1996-12-31 Olympus Optical Co., Ltd Apparatus for molding a glass optical element with a transporting supporting member
US5788732A (en) * 1995-04-20 1998-08-04 Canon Kabushiki Kaisha Optical-device forming method and apparatus
KR100729293B1 (en) * 2006-04-11 2007-06-15 국제종합기계 주식회사 Swirl chamber type diesel engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5588980A (en) * 1992-02-21 1996-12-31 Olympus Optical Co., Ltd Apparatus for molding a glass optical element with a transporting supporting member
US5788732A (en) * 1995-04-20 1998-08-04 Canon Kabushiki Kaisha Optical-device forming method and apparatus
KR100729293B1 (en) * 2006-04-11 2007-06-15 국제종합기계 주식회사 Swirl chamber type diesel engine

Also Published As

Publication number Publication date
JP2975167B2 (en) 1999-11-10

Similar Documents

Publication Publication Date Title
JPH04338120A (en) Method for forming glass optical element
JP2718452B2 (en) Glass optical element molding method
JP2000233934A (en) Method for press-forming glass product and device therefor
JPH04164826A (en) Apparatus for forming glass lens and production process
JP3187902B2 (en) Glass optical element molding method
JP3359235B2 (en) Press forming equipment for optical elements
JP4358406B2 (en) Optical element molding apparatus and molding method
JP3068261B2 (en) Glass optical element molding method
JPH0248498B2 (en) KOGAKUBUHINNOSEIKEISOCHI
JP3184584B2 (en) Glass lens molding method
JP2718451B2 (en) Optical glass parts molding method
JP3879143B2 (en) Lens material manufacturing method, molded lens manufacturing method, and lens material manufacturing apparatus
JP4436561B2 (en) Optical element manufacturing method
JPH0710567A (en) Production of optical element
JP2004231477A (en) Method and apparatus for molding optical element
JP4030799B2 (en) Optical element molding method
JP2746425B2 (en) Method and apparatus for molding optical element
JPS6374926A (en) Forming of optical glass part
JPH05254850A (en) Method for forming optical element
JPH0412034A (en) Method for forming optical element
JPH0930818A (en) Molding of optical element
JPH03223126A (en) Apparatus for producing glass lens
JP2017019683A (en) Production method and production device of optical element
JPH10287434A (en) Formation of optical element material, and apparatus therefor
JPH0780688B2 (en) Optical element molding equipment

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees