JPH0433810A - Surface treating method of graphite mold - Google Patents

Surface treating method of graphite mold

Info

Publication number
JPH0433810A
JPH0433810A JP14209790A JP14209790A JPH0433810A JP H0433810 A JPH0433810 A JP H0433810A JP 14209790 A JP14209790 A JP 14209790A JP 14209790 A JP14209790 A JP 14209790A JP H0433810 A JPH0433810 A JP H0433810A
Authority
JP
Japan
Prior art keywords
graphite
graphite mold
molding cavity
mold
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14209790A
Other languages
Japanese (ja)
Inventor
Takashi Takagi
俊 高木
Takayuki Mizutani
水谷 孝行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP14209790A priority Critical patent/JPH0433810A/en
Publication of JPH0433810A publication Critical patent/JPH0433810A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to apply surface treatment even to narrow corner parts, deep hole parts and the like without breaking fine parts by a method wherein surface treatment such as satinizing, embossing or the like is applied to the molding cavity surface of a mold made of graphite by means of electrical discharge machining. CONSTITUTION:In order to apply electrical discharge machining to the molding cavity surface 11 of a graphite mold 10, the molding cavity surface 11 of the graphite mold 10 and an electrode 20 are faced opposite to each other through working fluid such as oil, water or the like at narrow distance so as to repeatedly generate pulse-like discharge current between them in order to produce discharge marks on the molding cavity surface 11 of the graphite mold 10 for the application of various surface treatments. Further, said electrical discharge machining method can apply surface treatment to deep hole part, against which blasting material is hard to be sprayed, as far as the electrode 20 can be inserted. Thus, the method concerned is easy in working and suitable for high speed working and excellent in releasability and corrosion resistance. A product, the surface of which has satin pattern, embossed pattern or the like, can be molded by using the graphite mold, which is light in weight, easy in handling and produced at low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、黒鉛材料よりなり、例えばプラスチックの圧
縮成形、射出成形、或いは押出成形等に使用される黒鉛
型の成形キャビティ表面に梨地加工或いはシボ加工等の
表面処理を施す方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is made of a graphite material and is used, for example, in compression molding, injection molding, or extrusion molding of plastics. This invention relates to a method for surface treatment such as graining.

(従来の技術) 所謂プラスチックは、一般に軽量、経済性、加工性、耐
蝕性等種々の特性を有する材料であり、電気、機械、自
動車等のあらゆる工業的用途から日用品に至るまで、極
めて広範囲に使用されている。そして、各種のプラスチ
ック製品を成形するには、一般に鉄及びその合金等の金
属材料により形成した成形型か用いられている。これは
多量のプラスチック製品を成形する場合、成形型の寿命
を考慮すると、金属材料により製作することか必要条件
であったからである。しかしなから、従来一般に使用さ
れている金属型は、 ■製作するのに多大な時間と費用とを必要こする。
(Prior Art) So-called plastics are generally materials with various characteristics such as light weight, economy, workability, and corrosion resistance, and are used in an extremely wide range of applications, from all kinds of industrial applications such as electrical, mechanical, and automobiles to daily necessities. It is used. In order to mold various plastic products, molds made of metal materials such as iron and its alloys are generally used. This is because when molding a large amount of plastic products, considering the lifespan of the mold, it was necessary to manufacture the mold from a metal material. However, the metal molds commonly used in the past require a great deal of time and cost to manufacture.

■最近の多品種少量生産の傾向にあっては成形型の試作
の必要性が益々増大しているか、■の理由により対応す
ることかできない。
■With the recent trend toward high-mix, low-volume production, the need for prototyping molds is increasing, or it cannot be handled due to the reason (■).

■■の理由により製品のコストに占める成形型のコスト
の割合か高くなり、製品コストを高くしている。
Due to the reasons mentioned above, the cost of the mold increases as a percentage of the product cost, making the product cost high.

等の欠点を有していた。It had the following drawbacks.

そこで、本発明者等は、以上のような課題を解決するた
め、金属に代わる型材料として黒鉛材料を用いた成形型
について、特開昭63−162205号公報等において
既に種々の提案を行なっている。これらの公報において
提案した発明をなすにあたって、本発明者等か着目した
点は次の通りである。
Therefore, in order to solve the above-mentioned problems, the present inventors have already made various proposals in Japanese Patent Application Laid-Open No. 162205/1983 regarding molds using graphite material as a mold material in place of metal. There is. In making the inventions proposed in these publications, the present inventors focused on the following points.

(1)黒鉛は、機械加工における切削抵抗か金属に比較
して115〜1/10であるため、高速加工かできる。
(1) Since the cutting resistance of graphite during machining is 115 to 1/10 that of metal, high-speed machining is possible.

(2)黒鉛は、手作業による型仕上げが金属より容易な
材料であるため、金属型の場合は放電加工に頼っていた
型仕上げ作業を手作業により容易に行なうことかできる
(2) Since graphite is a material that can be more easily finished by hand than metal, the finishing work for metal molds, which relies on electrical discharge machining, can be easily done by hand.

(3)黒鉛は、熱膨張係数か極めて小さい材料であるた
め、プラスチック成形時の精度か得やすい。
(3) Since graphite is a material with an extremely small coefficient of thermal expansion, it is easy to obtain precision when molding plastics.

(4)黒鉛型の比重は、金属型の比重の1/4以下と軽
量であるため、取り扱いか容易こ−る。
(4) The specific gravity of the graphite mold is less than 1/4 that of the metal mold, making it easy to handle.

(5)黒鉛は、熱伝導率か高いため、加熱と冷却のリサ
イクルに要する時間か短くてすみ、高速サイクルのプラ
スチック成形か可能となる。
(5) Because graphite has high thermal conductivity, the time required for heating and cooling recycling is shortened, making high-speed cycle plastic molding possible.

以上の効果により、極小ロット、或いは試作品の成形に
対応か可能になる、ということであった。
The above effects make it possible to mold very small lots or prototypes.

また、 (6)黒鉛は、金属の一般的な耐熱温度が数百℃である
のに対して耐熱温度か3000℃であり、熱膨張率が非
常に低いこともあって、優れた熱安定性を有しているも
のである。
In addition, (6) Graphite has a heat resistance temperature of 3000℃, whereas the general heat resistance temperature of metals is several hundred degrees Celsius, and its coefficient of thermal expansion is extremely low, so it has excellent thermal stability. It has the following.

(発明が解決しようとする課題) 上述のような種々の利点を有する黒鉛型を用いて表面が
梨地模様或いはシボ模様等の製品を成形する場合、当然
黒鉛型の成形キャビティ表面には製品表面の梨地模様或
いはシボ模様等に対応する表面処理か施されていなけれ
ばならない。
(Problems to be Solved by the Invention) When molding a product with a matte or grained surface using a graphite mold that has various advantages as described above, naturally there are some defects on the surface of the molding cavity of the graphite mold. The surface must be treated to correspond to a satin pattern or grain pattern.

従来の金属型にあっては、薬品を用いたエツチング法、
或いはブラスト材を用いたエアーブラスト法により、成
形キャビティ表面に表面処理を施していたか、耐薬品性
に優れた黒鉛型にあっては、成形キャビティ表面を薬品
を用いてエツチングすることは不可能である。また、ブ
ラスト材を吹き付けて成形キャビティ表面に表面処理を
施した場合、狭隘角部及び深穴部等のブラスト材の吹き
付けか困難な部分の表面処理が不可能であった。
For conventional metal molds, etching methods using chemicals,
Alternatively, the surface of the molding cavity may have been surface-treated by air blasting using a blasting material, or the surface of the molding cavity may not be etched using chemicals if the graphite mold has excellent chemical resistance. be. Furthermore, when surface treatment is performed on the surface of the molding cavity by spraying a blasting material, it is impossible to perform surface treatment on areas where it is difficult to spray the blasting material, such as narrow corners and deep holes.

本発明は以上のような実状に鑑みてなされたものであり
、その目的は、種々の利点を有する黒鉛型を用いて表面
か梨地模様或いはシボ模様等の製品を成形する二とかで
きるよう、黒鉛型の成形キャビティ表面に表面処理を施
すことができ、なおかつ黒鉛型の細部等を破損すること
なく、狭隘角部及び深穴部等にも表面処理を施すことが
できる方法を提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and its purpose is to create a graphite mold that can be used to mold products with satin-finished or grained surfaces, etc., using a graphite mold that has various advantages. The object of the present invention is to provide a method that can perform surface treatment on the surface of a molding cavity of a mold, and can also perform surface treatment on narrow corners, deep holes, etc., without damaging the details of the graphite mold. .

(課題を解決するだめの手段) 以上のような課題を解決するために、本発明の採った手
段は、 [黒鉛材料よりなる黒鉛型(10)の成形キャビティ表
面(11)に梨地加工或いはシボ加工等の表面処理を施
す方法であって、 放電加工によることを特徴とする黒鉛型(10)の表面
処理方法」 である。
(Means for Solving the Problems) In order to solve the above problems, the means taken by the present invention are as follows: Graphite type (10) surface treatment method, which is a method of surface treatment such as machining, characterized in that it is performed by electrical discharge machining.

使用する電極(20)としては、鉄、銅、銀、黒鉛、タ
ングステン、銅タングステン、銀タングステン、鋼等の
種々のものからなるものがあるが、本発明にあっては使
用する電極(20)の材質は特に限定されず、さらに電
極(20)の形状にあっても特に限定されない。
The electrode (20) used may be made of various materials such as iron, copper, silver, graphite, tungsten, copper tungsten, silver tungsten, steel, etc., but in the present invention, the electrode (20) used The material of the electrode (20) is not particularly limited, and the shape of the electrode (20) is also not particularly limited.

また、黒鉛型(10)の成形キャビティ表面(11)に
放電加工を施す際、すなわち黒鉛型(10)の成形キャ
ビティ表面(11)と電極(20)とを油(第4類第3
石油類)或いは水等の加工液を介して狭い間隙に対向さ
せ、両者(11)(20)間で繰り返しパルス状の放電
電流を発生させる際には、電極(20)の極性、放電ピ
ーク電流値、電流パルス幅、及び加工液の種類等の種々
の条件を設定しなければならないか、本発明にあっては
、これらの諸条件にあっても特に限定されない。
In addition, when performing electric discharge machining on the molding cavity surface (11) of the graphite mold (10), in other words, the molding cavity surface (11) of the graphite mold (10) and the electrode (20) are coated with oil (Class 4, Class 3).
When a pulsed discharge current is repeatedly generated between the electrodes (11) and (20) by placing them facing each other in a narrow gap through a machining fluid such as petroleum or water, the polarity of the electrode (20) and the discharge peak current must be adjusted. Although various conditions such as value, current pulse width, and type of machining fluid must be set, the present invention is not particularly limited by these conditions.

要するに、本発明にあっては、放電加工条件は何ら限定
されず、逆に電極(20)の材質及び形状、電極(20
)の極性、放電ピーク電流値、電流パルス幅、及び加工
液の種類等の諸条件を積極的に変えることにより、種々
の表面処理を施すことができるのである。例えば成形キ
ャビティ表面(11)に均一に放電加工を施すことによ
り、第4図に示すような梨地加工を施すことができ、一
方局所的に放電加工を施す操作により、第5図に示すよ
うなシボ加工を施すことができる。
In short, in the present invention, the electrical discharge machining conditions are not limited at all, and on the contrary, the material and shape of the electrode (20),
), various surface treatments can be performed by actively changing various conditions such as the polarity of the discharge peak current value, the current pulse width, and the type of machining fluid. For example, by applying electrical discharge machining uniformly to the surface of the molding cavity (11), it is possible to create a satin finish as shown in Figure 4, while by performing electric discharge machining locally, it is possible to create a satin finish as shown in Figure 5. Can be textured.

(作 用) 本発明が上述のような手段を採ることにより、以下に示
すような作用がある。
(Function) By adopting the above-mentioned means, the present invention has the following effects.

黒鉛型(10)の成形キャビティ表面(11)に放電加
工を施す際、すなわち黒鉛型(10)の成形キャビティ
表面(11)と電極(20)とを油(第4類第3石油類
)或いは水等の加工液を介して狭い間隙に対■−させ、
両者(11)(20)間で繰り返しパルス状の放電電流
を発生させることにより、黒鉛型(10)の成形キャビ
ティ表面(11)には放電痕が形成されて、種々の表面
処理が施される。
When performing electric discharge machining on the molding cavity surface (11) of the graphite mold (10), that is, the molding cavity surface (11) of the graphite mold (10) and the electrode (20) are coated with oil (Class 4, Type 3 Petroleum) or - Apply to narrow gaps through machining liquid such as water,
By repeatedly generating a pulsed discharge current between the two (11) and (20), discharge marks are formed on the molding cavity surface (11) of the graphite mold (10), and various surface treatments are performed. .

また、この放電加工法は、ブラスト材を吹き付けるエア
ーブラスト法と異なり、ブラスト材の吹き付けか困難な
深穴部であっても第2図に示すように電極(20)を差
し込むことかできる限り表面処理を施すことができるよ
うになっている。
In addition, unlike the air blasting method in which blasting material is sprayed, this electric discharge machining method, even in deep holes where it is difficult to spray blasting material, allows the electrode (20) to be inserted into the surface as much as possible, as shown in Figure 2. It is now possible to perform processing.

(実施例) コークスとコールタールピッチよりなる配合物を加熱混
練して得られた混練物を粉砕後、ラバープレスで成形し
て焼成、黒鉛化し、室温から400℃までの熱膨張係数
か5,0XIO−’℃−1,75人〜75000人の径
の微細気孔容積が0.07 c c / g 、かさか
1,85、熱伝導率が80kcal/mhr’cの等方
性黒鉛材料を得た。
(Example) The mixture obtained by heating and kneading a mixture of coke and coal tar pitch was pulverized, then molded using a rubber press, fired, and graphitized. The thermal expansion coefficient from room temperature to 400°C was 5. Obtained isotropic graphite material with micropore volume of 0.07 c c / g, bulk of 1.85, and thermal conductivity of 80 kcal/mhr'c with a diameter of 0XIO-'℃-1,75 to 75,000. Ta.

この等方性黒鉛材料を用いて、第3図に示すような20
0mm角、50mm厚さの直方体の中央に直径1“50
mm、100mmで深さおのおの20mmの凹部を機械
加工で形成した黒鉛型(10)を得た。その時の加工面
の表面粗度はRmax値15μmであった。この黒鉛型
(10)の製作に要した加工時間は、同形状の金属型の
製作に要する時間の約1/8程度となり、大幅に短縮す
ることができた。
Using this isotropic graphite material, 20
A diameter of 1"50 is placed in the center of a 0mm square, 50mm thick rectangular parallelepiped.
A graphite mold (10) was obtained in which recesses each having a depth of 20 mm were formed by machining in a size of 100 mm. The surface roughness of the processed surface at that time had an Rmax value of 15 μm. The processing time required to manufacture this graphite mold (10) was approximately 1/8 of the time required to manufacture a metal mold of the same shape, and could be significantly shortened.

そして、第1図に示すように、灯油中で黒鉛型(10)
の成形キャビティ表面(11)と電極(20)とを狭い
間隙に対向させ、黒鉛型(10)の成形キャビティ表面
(11)と電極(20)との間で繰り返しパルス状の放
電型、流を発生させ、第4図に示すような梨地加工を施
した。
Then, as shown in Figure 1, the graphite mold (10) was placed in kerosene.
The molding cavity surface (11) of the graphite mold (10) and the electrode (20) are placed opposite to each other with a narrow gap, and a pulsed discharge mold and flow are repeatedly generated between the molding cavity surface (11) of the graphite mold (10) and the electrode (20). A matte finish was applied as shown in FIG. 4.

こうして成形キャビティ表面(11)に梨地加工が施さ
れた黒鉛型(10)を第6図に示すような射出成形機(
30)にセットし、プラスチック製品を成形した。なお
、二の射出成形機(30)は、ホッパー(40)から投
入されたプラスチック材料(50)をシリンダ(60)
内にてスクリュー(70)によって加熱・混練しながら
黒鉛型(10)の成形キャビティ部内に強制的に送るよ
うになっている。
In this way, the graphite mold (10) with the matte finishing applied to the molding cavity surface (11) is placed in an injection molding machine (
30), and a plastic product was molded. In addition, the second injection molding machine (30) transfers the plastic material (50) introduced from the hopper (40) into the cylinder (60).
It is forcibly fed into the molding cavity of the graphite mold (10) while being heated and kneaded by a screw (70) inside.

得られたプラスチック製品は、その表面が表面粗度Rm
ax値40μmの梨地模様となっており、金属型を用い
た場合と同様な面が得られた。
The surface of the obtained plastic product has a surface roughness Rm
A satin pattern with an ax value of 40 μm was obtained, and a surface similar to that obtained when using a metal mold was obtained.

(発明の効果) 以上のように本発明に係る黒鉛型の表面処理方法にあっ
ては、黒鉛型の成形キャビティ表面に放電加工を施す際
、すなわち黒鉛型の成形キャビティ表面と電極とを油(
第4類第3石油類)或いは水等の加工液を介して狭い間
隙に対向させ、両者間で繰り返しパルス状の放電電流を
発生させることにより、黒鉛型の成形キャビティ表面に
は放電痕か形成されて、種々の表面処理を施すことかで
きる。
(Effects of the Invention) As described above, in the graphite mold surface treatment method according to the present invention, when performing electric discharge machining on the graphite mold molding cavity surface, that is, the graphite mold molding cavity surface and the electrode are coated with oil (
By placing them facing each other in a narrow gap through a machining liquid such as Class 4, Class 3 Petroleum) or water, and repeatedly generating a pulsed discharge current between the two, discharge marks are formed on the surface of the graphite molding cavity. It is possible to apply various surface treatments.

この放電加工法は、ブラスト材を吹き付けるエアーブラ
スト法と異なり、ブラスト材の吹き付けか困難な狭隘角
部及び深穴部等であっても電極を差し込むことかできる
限り加工を施すことかできる。
This electrical discharge machining method is different from the air blasting method in which blasting material is sprayed, and even in narrow corners, deep holes, etc., where it is difficult to spray blasting material, it is possible to process as much as possible by inserting an electrode.

従って、加工か容易で高速加工に適し、また離型性及び
耐腐蝕性に優れ、さらに軽量で取り扱いが容易で安価な
黒鉛型を用いて、その表面か梨地模様或いはシボ模様等
の製品を成形することか可能となる。
Therefore, using a graphite mold that is easy to process, suitable for high-speed processing, has excellent mold release properties and corrosion resistance, and is lightweight, easy to handle, and inexpensive, it is possible to mold products with satin or grain patterns on the surface. It becomes possible to do so.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る黒鉛型の表面処理方法の一実施例
を示す断面図、第2図は本発明に係る黒鉛型の表面処理
方法の別の実施例を示す断面図、第3図は表面処理前の
黒鉛型を示す斜視図、第4図は梨地加工後の黒鉛型を示
す斜視図、第5図はンボ加工後の黒鉛型を示す斜視図、
第6図は黒鉛型の使用例を示す断面図である。 符  号  の  説  明 10・・黒鉛型、11・・・成形キャビティ表面、20
・・・電極、30・・・射出成形機、40・・・ホッパ
ー、50・・プラスチック材料、60・・・シリンダ、
70・・・スクリュー。 以  上
FIG. 1 is a cross-sectional view showing one embodiment of the graphite-type surface treatment method according to the present invention, FIG. 2 is a cross-sectional view showing another embodiment of the graphite-type surface treatment method according to the present invention, and FIG. is a perspective view showing the graphite mold before surface treatment, FIG. 4 is a perspective view showing the graphite mold after satin finishing, FIG. 5 is a perspective view showing the graphite mold after embossing,
FIG. 6 is a sectional view showing an example of use of a graphite mold. Explanation of symbols 10...graphite mold, 11...molding cavity surface, 20
... Electrode, 30 ... Injection molding machine, 40 ... Hopper, 50 ... Plastic material, 60 ... Cylinder,
70...Screw. that's all

Claims (1)

【特許請求の範囲】  黒鉛材料よりなる黒鉛型の成形キャビティ表面に梨地
加工或いはシボ加工等の表面処理を施す方法であって、 放電加工によることを特徴とする黒鉛型の表面処理方法
[Scope of Claims] A method for surface treatment of a graphite mold, which is characterized in that the surface of a molding cavity of a graphite mold made of a graphite material is subjected to a surface treatment such as satin finishing or texture processing, the method comprising performing electric discharge machining.
JP14209790A 1990-05-30 1990-05-30 Surface treating method of graphite mold Pending JPH0433810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14209790A JPH0433810A (en) 1990-05-30 1990-05-30 Surface treating method of graphite mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14209790A JPH0433810A (en) 1990-05-30 1990-05-30 Surface treating method of graphite mold

Publications (1)

Publication Number Publication Date
JPH0433810A true JPH0433810A (en) 1992-02-05

Family

ID=15307361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14209790A Pending JPH0433810A (en) 1990-05-30 1990-05-30 Surface treating method of graphite mold

Country Status (1)

Country Link
JP (1) JPH0433810A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002254464A (en) * 2001-02-28 2002-09-11 Ibiden Co Ltd Mold for press molding and its production method
US6821579B2 (en) 1998-11-13 2004-11-23 Mitsubishi Denki Kabushiki Kaisha Surface treatment method using electric discharge, and an electrode for the surface treatment method
US7466375B2 (en) 2005-11-28 2008-12-16 Hitachi Displays, Ltd. Liquid crystal display device
US7598471B2 (en) * 2001-05-01 2009-10-06 Ebara Corporation Method of electric discharge machining a cathode for an electron gun
ITVI20110077A1 (en) * 2011-04-01 2012-10-02 Ieco Keeps On Improving S R L GRAPHITE LANGUAGE FOR THE PRODUCTION OF PRECIOUS METAL INGOTS
US9187831B2 (en) 2002-09-24 2015-11-17 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
US9284647B2 (en) 2002-09-24 2016-03-15 Mitsubishi Denki Kabushiki Kaisha Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6821579B2 (en) 1998-11-13 2004-11-23 Mitsubishi Denki Kabushiki Kaisha Surface treatment method using electric discharge, and an electrode for the surface treatment method
DE19883017B4 (en) * 1998-11-13 2007-09-27 Mitsubishi Denki K.K. Discharge surface treating method comprises generating a pulsating discharge between an object to be surface treated and a discharge electrode containing a corrosion resistant material, e.g. chromium, in a working fluid
JP2002254464A (en) * 2001-02-28 2002-09-11 Ibiden Co Ltd Mold for press molding and its production method
US7598471B2 (en) * 2001-05-01 2009-10-06 Ebara Corporation Method of electric discharge machining a cathode for an electron gun
US9187831B2 (en) 2002-09-24 2015-11-17 Ishikawajima-Harima Heavy Industries Co., Ltd. Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
US9284647B2 (en) 2002-09-24 2016-03-15 Mitsubishi Denki Kabushiki Kaisha Method for coating sliding surface of high-temperature member, high-temperature member and electrode for electro-discharge surface treatment
US7466375B2 (en) 2005-11-28 2008-12-16 Hitachi Displays, Ltd. Liquid crystal display device
ITVI20110077A1 (en) * 2011-04-01 2012-10-02 Ieco Keeps On Improving S R L GRAPHITE LANGUAGE FOR THE PRODUCTION OF PRECIOUS METAL INGOTS

Similar Documents

Publication Publication Date Title
Beravala et al. Experimental investigations to evaluate the effect of magnetic field on the performance of air and argon gas assisted EDM processes
CN1319693C (en) Electric discharge machining electrode and method
Jain et al. On the machining of alumina and glass
Keskin et al. An experimental study for determination of the effects of machining parameters on surface roughness in electrical discharge machining (EDM)
Yuangang et al. Wear-resist electrodes for micro-EDM
Aliyu et al. Optimization of electrical discharge machining parameters of SiSiC through response surface methodology
JPH0433810A (en) Surface treating method of graphite mold
Khan Role of heat transfer on process characteristics during electrical discharge machining
CN110369581B (en) Forming method of convex curved platform piece
Ryazantsev et al. Use of combined methods of treatment to obtain artificial roughness on the parts’ surfaces
Mi et al. Simulation of micro ECM for complex-shaped holes
Kawata Development of mass-production-type plasma chemical vapour deposition equipment and its application to various dies
Abdulkareem et al. Influence of electrode cooling on recast layers and micro crack in EDM of titanium
JP2014163413A (en) Method for manufacturing emboss roll and emboss roll by the same
Laxminarayana et al. Study of surface morphology on micro machined surfaces of AISI 316 by Die Sinker EDM
Guo Effect of polishing parameters on morphology of DF2 (AISI-O1) steel surface polished by Nd: YAG laser
EP0535854A1 (en) Moulds
Zhang et al. Investigations of micro-dimples prepared by the multiple sandwich-like electrochemical micromachining
Guo Study on polishing DF2 (AISI O1) steel by Nd: YAG laser
JPH047105A (en) Method for satinizing graphite mold
JP2013215869A (en) Method of forming satin finished surface, resin mold, and low-adhesive material
JPH04151207A (en) Manufacture of zinc alloy mold
JP6662988B1 (en) Mold surface treatment method
Lin et al. Electrical discharge machining technology and its latest application
Tiwari Effect of different process parameters on over cut in optimizing of electrical discharge machining (EDM) process