JPH04337500A - Nuclear fuel assembly monitoring system - Google Patents

Nuclear fuel assembly monitoring system

Info

Publication number
JPH04337500A
JPH04337500A JP3110357A JP11035791A JPH04337500A JP H04337500 A JPH04337500 A JP H04337500A JP 3110357 A JP3110357 A JP 3110357A JP 11035791 A JP11035791 A JP 11035791A JP H04337500 A JPH04337500 A JP H04337500A
Authority
JP
Japan
Prior art keywords
nuclear fuel
fuel assembly
nuclear
reactor
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3110357A
Other languages
Japanese (ja)
Inventor
Seigoro Yamamoto
山本 征五郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3110357A priority Critical patent/JPH04337500A/en
Publication of JPH04337500A publication Critical patent/JPH04337500A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To monitor the soundness of a nuclear fuel assembly on-line in a nuclear fuel assembly monitoring system. CONSTITUTION:A nuclear reactor operation data 1, a nuclear reactor nuclear heat design data 2, a nuclear fuel assembly design data 3, a nuclear fuel assembly part material characteristic data 4, a nuclear fuel aggregate material physical property data 5, and a nuclear fuel assembly use experience data 6 are evaluated by a stochastic reliability evaluating program 7 statistically evaluated by a computer, and the soundness of a nuclear fuel assembly is regularly monitored in a nuclear reactor central control room.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】本発明は、原子炉で使用される原
子炉燃料集合体のモニタリングシステムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a monitoring system for nuclear reactor fuel assemblies used in nuclear reactors.

【0003】0003

【従来の技術】原子炉の構造は、全体を取り囲んでいる
原子炉圧力容器と、この原子炉圧力容器内の上下部に配
置される制御棒駆動機構、中性子計測器及び原子燃料集
合体等の炉内構造物と、上部炉心支持格子板、下部炉心
支持格子板、炉心スプレイランイ、再循環水ライン、主
蒸気ライン等から構成されている。
[Prior Art] The structure of a nuclear reactor consists of a reactor pressure vessel surrounding the entire reactor pressure vessel, a control rod drive mechanism, a neutron measuring instrument, a nuclear fuel assembly, etc. arranged at the upper and lower parts of the reactor pressure vessel. It consists of reactor internals, upper core support grid plate, lower core support grid plate, core spray run, recirculation water line, main steam line, etc.

【0004】この原子炉で使用される原子燃料集合体は
、原子炉の形式で構造を異にするが、図2に沸騰水型原
子炉の原子燃料集合体Aを示す。図2に示すように、横
断面が正方形のチャンネルボックス9内に、8×8列に
配列された原子燃料要素10が、スペーサ11でほぼ等
間隔に保持され、原子燃料要素10の上下両端はそれぞ
れ上部タイプレート12及び下部タイプレート13で支
持されている。なお、原子燃料要素10の上部端栓には
、スプリング14が介装され、またチャンネルボックス
9の上部外側面には、案内バネ15が設けられている。
Nuclear fuel assemblies used in this nuclear reactor have different structures depending on the type of reactor, and FIG. 2 shows a nuclear fuel assembly A for a boiling water reactor. As shown in FIG. 2, nuclear fuel elements 10 arranged in 8×8 rows are held at approximately equal intervals by spacers 11 in a channel box 9 having a square cross section, and both upper and lower ends of the nuclear fuel elements 10 are They are supported by an upper tie plate 12 and a lower tie plate 13, respectively. A spring 14 is interposed in the upper end plug of the nuclear fuel element 10, and a guide spring 15 is provided on the outer surface of the upper part of the channel box 9.

【0005】また、原子燃料要素10は、図3に示すよ
うに、長尺の円筒状被覆管16に二酸化ウラン粉末を円
柱状に圧縮成形して焼結原子燃料ペレット17を多数個
装填し、プレナム部18にスプリング19を介装して被
覆管16の上下両端を端栓20、21で気密に封止した
ものである。
Further, as shown in FIG. 3, the nuclear fuel element 10 includes a long cylindrical cladding tube 16 filled with a large number of sintered nuclear fuel pellets 17 formed by compression molding uranium dioxide powder into a cylindrical shape. A spring 19 is interposed in the plenum portion 18, and both upper and lower ends of the cladding tube 16 are hermetically sealed with end plugs 20 and 21.

【0006】原子力発電所で原子燃料要素10を使用す
る時は、原子燃料要素10を核***反応が有効に持続す
るような形状に、また発生した熱を有効に取り出せるよ
うに図2に示す様々形状にスペーサ11で束ね、その両
端に上部タイプレート12及び下部タンプレート13を
取り付けた原子燃料集合体Aとして使用する。原子燃料
集合体Aは、原子力発電所の出力に応じて4本を1セル
として必要本数だけを、核***反応を熱に有効に変えら
れるような状態に組んで使用している。  従って、原
子燃料要素10は、前記のような原子炉で約300℃の
冷却水、中性子及び核***生成物に曝露された状態で、
原子炉の起動時や運転中の出力を変える時の出力変動に
応じた荷重を受ける。
When the nuclear fuel element 10 is used in a nuclear power plant, the nuclear fuel element 10 is shaped to effectively sustain the nuclear fission reaction, and various shapes shown in FIG. 2 are used to effectively extract the generated heat. It is used as a nuclear fuel assembly A, which is bundled with spacers 11 and has an upper tie plate 12 and a lower tongue plate 13 attached to both ends thereof. Nuclear fuel assembly A is used by assembling only the necessary number of four fuels into one cell in accordance with the output of the nuclear power plant in such a way that the nuclear fission reaction can be effectively converted into heat. Therefore, the nuclear fuel element 10 is exposed to cooling water, neutrons, and fission products at about 300° C. in a nuclear reactor as described above.
It receives loads corresponding to output fluctuations when the reactor starts up or changes output during operation.

【0007】このような条件で重畳効果を起こして原子
燃料要素10が破損してしまうおそれがある。また、原
子燃料ペレットは、核***反応により核***生成物を放
出する。この核***生成物の中には、被覆管16を浸食
するハロゲン元素、希土類元素が含まれている。
[0007] Under such conditions, there is a risk that a superposition effect may occur and the nuclear fuel element 10 may be damaged. Nuclear fuel pellets also release fission products due to nuclear fission reactions. This fission product contains halogen elements and rare earth elements that corrode the cladding tube 16.

【0008】これらの元素は、被覆管16内面の傷等の
弱い箇所を優先的に浸食する。この浸食作用は、原子力
発電の運転中に発生する出力変動により加速され、つい
に被覆管16に孔が明いてしまうおそれがあった。
These elements preferentially erode weak spots such as scratches on the inner surface of the cladding tube 16. This erosion is accelerated by output fluctuations that occur during the operation of the nuclear power plant, and there is a fear that holes will eventually form in the cladding tube 16.

【0009】一方、原子炉周辺に、図4に示すように、
多くの計測器に取り付けられている。圧力計装としては
、主蒸気圧力22、原子炉圧力23、炉心差圧24、温
度としては、給水温度25、浄化系出口温度26、浄化
系出口温度27、再循環ループ入口温度28、及び流量
としては、給水流量29、浄化系流量30、ジェットポ
ンプ吐出流量31、再循環流量32等が取り付けられて
いる。
On the other hand, as shown in FIG. 4, around the nuclear reactor,
Attached to many measuring instruments. Pressure instrumentation includes main steam pressure 22, reactor pressure 23, core differential pressure 24, and temperatures include feed water temperature 25, purification system outlet temperature 26, purification system outlet temperature 27, recirculation loop inlet temperature 28, and flow rate. As such, a water supply flow rate 29, a purification system flow rate 30, a jet pump discharge flow rate 31, a recirculation flow rate 32, etc. are attached.

【0010】また、原子炉炉心40の中性子束測定は、
図5に線源領域中性子モニタ33、中間領域中性子モニ
タ34、部分時中性子モニタ35が取り付けられている
。36は制御棒である。
[0010] Furthermore, the neutron flux measurement of the nuclear reactor core 40 is as follows:
In FIG. 5, a source area neutron monitor 33, an intermediate area neutron monitor 34, and a partial neutron monitor 35 are installed. 36 is a control rod.

【0011】[0011]

【発明が解決しようとする課題】これらのデータは、プ
ロセス・コンピュータで処理され、原子炉運転データと
して出されているが、原子燃料集合体Aのオンラインモ
ニタには、活用されていない。
[Problems to be Solved by the Invention] These data are processed by a process computer and output as reactor operation data, but are not utilized for online monitoring of the nuclear fuel assembly A.

【0012】また、原子燃料集合体Aは、オフガスモニ
タの値の上昇として破損管理されているだけであり、オ
スガスが上昇時は原子燃料集合体Aの破損が起こった時
である。
Further, damage to the nuclear fuel assembly A is only managed by observing an increase in the off-gas monitor value, and when the male gas increases, this means that damage to the nuclear fuel assembly A has occurred.

【0013】原子燃料集合体Aは、原子炉運転ガイドに
折り込まれている出力上昇制限カーブにより破損を予防
しているだけで、オンライン監視されていない。
[0013] The nuclear fuel assembly A is only prevented from being damaged by a power increase limit curve included in the reactor operation guide, and is not monitored on-line.

【0014】本発明はかかる従来の問題点を解決するた
めになされたもので、その目的は、原子燃料集合体の健
全性を常時監視できるようにプロセスコンピュータのデ
ータを取り出し、原子燃料の特性データを組み合わせ確
率的信頼性評価を行いオンラインで原子燃料集合体の健
全性を監視することを可能とした原子燃料集合体モニタ
リングシステムを提供することにある。
The present invention has been made to solve such conventional problems, and its purpose is to extract data from a process computer so as to constantly monitor the health of a nuclear fuel assembly, and to collect characteristic data of nuclear fuel. The purpose of this study is to provide a nuclear fuel assembly monitoring system that makes it possible to perform probabilistic reliability evaluations and monitor the health of nuclear fuel assemblies online.

【0015】[発明の構成][Configuration of the invention]

【0016】[0016]

【課題を解決するための手段】本発明に係わる原子燃料
集合体モニタリングシステムは、原子炉内外に取り付け
られた中性子計測器及び各種の計測機器から得られる炉
心熱出力、炉心流量、炉心差圧、炉心入口サブクール等
を、オンライン・プロセス・コンピュータで処理した原
子炉運転データと、原子炉核熱設計データと、原子燃料
集合体設計データと、原子燃料集合体部品材料特性デー
タと、原子燃料集合体材料物性データと、原子燃料集合
体材使用実績データとを、コンピュータで統計的に評価
した確率的信頼性評価プログラムで評価を行い、原子燃
料集合体の健全性を常時原子炉中央制御室でモニタする
ものである。
[Means for Solving the Problems] The nuclear fuel assembly monitoring system according to the present invention provides core thermal output, core flow rate, core differential pressure, and Reactor operation data, reactor nuclear thermal design data, nuclear fuel assembly design data, nuclear fuel assembly component material property data, and nuclear fuel assembly data processed by online process computers, such as core inlet subcooling, etc. Material property data and nuclear fuel assembly material usage data are evaluated using a probabilistic reliability evaluation program that statistically evaluates them using a computer, and the health of nuclear fuel assemblies is constantly monitored in the reactor central control room. It is something to do.

【0017】原子燃料集合体に使用されているジルコニ
ウム合金、鉄・クロウニウム・コッケル合金、ニッケル
基合金等の材料は、中性子照射量、温度サイクル、荷重
サイクルに応じた、クリープ、疲労、靭性、亀裂発生、
亀裂進展、破損データが整っている。
Materials used in nuclear fuel assemblies, such as zirconium alloys, iron-curonium-Cockel alloys, and nickel-based alloys, exhibit creep, fatigue, toughness, and cracking depending on the amount of neutron irradiation, temperature cycles, and load cycles. occurrence,
Crack growth and damage data are available.

【0018】一方、軟水炉、ガス炉、高速中性子増炉及
び実験炉にあって原子炉の核反応を制御するために中性
子計測系や原子炉安全系の計装が取り付けられている。 これらのプロセス・コンピュータで処理され原子炉安全
運転に供されている。原子炉心及び周辺部に取り付けら
れた計測器からのデータ、燃焼速度、ゼノン濃度、ヨウ
素濃度、相対水密度、線出力密度、出力、限界出力密度
等が求められ、これらの値から中性子照射量、温度サイ
クル及び荷重サイクルが求められる。この求めた値と前
記材料特性データ、物性データ、原子燃料集合体使用実
績データ、原子燃料集合体構造・熱設計データ及び原子
炉核熱設計データを確率的信頼性評価手法で評価し、そ
の健全性を常時監視できるようにし、原子炉の信頼性を
向上させる。
On the other hand, in soft water reactors, gas reactors, fast neutron reactors, and experimental reactors, neutron measurement systems and reactor safety system instruments are installed to control nuclear reactions in the reactors. It is processed by these process computers and used for safe reactor operation. Data from measuring instruments installed in the reactor core and surrounding areas, such as burning rate, xenone concentration, iodine concentration, relative water density, linear power density, power, and critical power density, are obtained, and from these values, the neutron irradiation amount, Temperature and load cycles are required. This obtained value, the material property data, physical property data, nuclear fuel assembly usage record data, nuclear fuel assembly structural/thermal design data, and reactor nuclear thermal design data are evaluated using a probabilistic reliability evaluation method, and the soundness of the nuclear fuel assembly is evaluated using a probabilistic reliability evaluation method. This will enable constant monitoring of reactor performance and improve the reliability of nuclear reactors.

【0019】[0019]

【作用】原子力発電は、プロセス・コンピュータからの
熱出力等の53項目の原子炉運転データを出力する。こ
のデータを活用し、原子燃料集合体の健全性のオンライ
ン・モニタをする。その方法は、原子燃料集合体の弾性
・非弾性解析、疲労解析、クリープ解析、熱解析の原子
燃料集合体設計データと、原子燃料集合体部品材料特性
データと、原子燃料集合体部材材料特性データと、原子
燃料集合体材料物性データと、原子燃料集合体使用実績
データと、原子炉核熱設計データと、原子炉運転データ
とを、確率的信頼性評価手法を取り入れたプログラムに
組み入れて、原子燃料集合体のオンラインモニタリング
(CRT常時監視)できるようにし、原子力発電の信頼
性を向上させることができる。
[Operation] Nuclear power generation outputs 53 items of reactor operation data such as heat output from the process computer. Utilize this data to monitor the health of nuclear fuel assemblies online. The method is based on the nuclear fuel assembly design data of elastic/inelastic analysis, fatigue analysis, creep analysis, and thermal analysis of the nuclear fuel assembly, the material property data of the nuclear fuel assembly parts, and the material property data of the nuclear fuel assembly parts. , nuclear fuel assembly material physical property data, nuclear fuel assembly usage data, reactor nuclear thermal design data, and reactor operation data are incorporated into a program that incorporates a probabilistic reliability evaluation method. It enables online monitoring of fuel assemblies (constant CRT monitoring) and improves the reliability of nuclear power generation.

【0020】[0020]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings.

【0021】図1は本発明に係わる原子燃料集合体モニ
タリングシステムを示す説明図である。沸騰水型原子炉
では、図4と同様に、主蒸気圧22、原子炉圧力23、
炉心差圧24、給水温度25、浄化系出口温度26、浄
化系流量30、再循環入口温度28、給水流量29、浄
化系入口温度27、再循環流量32等の計測器が取り付
けられており、原子炉運転中、常時、測定を行っている
FIG. 1 is an explanatory diagram showing a nuclear fuel assembly monitoring system according to the present invention. In a boiling water reactor, as in FIG. 4, the main steam pressure 22, the reactor pressure 23,
Measuring instruments such as core differential pressure 24, feed water temperature 25, purification system outlet temperature 26, purification system flow rate 30, recirculation inlet temperature 28, feed water flow rate 29, purification system inlet temperature 27, recirculation flow rate 32, etc. are installed. Measurements are taken constantly during reactor operation.

【0022】また、原子炉の運転管理データを取るため
に、図5と同様に、炉心に中性子計測器33、34、3
5が取り付けられている。
In addition, in order to obtain operation management data of the nuclear reactor, neutron measuring instruments 33, 34, 3 are installed in the reactor core, as in FIG.
5 is attached.

【0023】これらのデータは、原子炉プロセス・コン
ピュータで処理され、原子炉運転データ1として、1時
間毎、1日毎に出力されている。
These data are processed by the reactor process computer and output as reactor operation data 1 every hour and every day.

【0024】本実施例では、このプロセス・コンピュー
タから原子燃料集合体の監視に必要な炉心定数、炉心熱
水力データ等の原子炉運転データ1を取りだし、原子炉
核熱設計データ2と、原子燃料集合体の構成部品の材料
データ、部品の弾性・非弾性解析、疲労解析、クリープ
解析、熱解析の原子燃料集合体設計データ3と、原子燃
料集合体部品材料特性データ4と、原子燃料集合体材料
物性データ5と、原子燃料集合体使用実績データ6とを
、確率的信頼性評価手法を取り入れたプログラケム7に
組み入れて、原子燃料集合体Aの健全性をオンラインモ
ニタリング(CRT常時監視)8によって、原子炉の信
頼性を向上させる。
In this embodiment, reactor operation data 1 such as core constants and core thermal hydraulic data necessary for monitoring nuclear fuel assemblies is taken out from this process computer, and reactor nuclear thermal design data 2 and nuclear Nuclear fuel assembly design data 3 for fuel assembly component parts material data, elastic/inelastic analysis of parts, fatigue analysis, creep analysis, and thermal analysis, nuclear fuel assembly parts material property data 4, and nuclear fuel assembly The health of nuclear fuel assembly A is monitored online (CRT constant monitoring) by incorporating physical property data of nuclear fuel assembly A5 and nuclear fuel assembly usage record data6 into Program Chem7 that incorporates a probabilistic reliability evaluation method. This will improve the reliability of the nuclear reactor.

【0025】[0025]

【発明の効果】以上のように、本発明によれば、原子炉
プロセス・コンピュータのデータを基にした健全性をオ
ンラインで監視することができる。
As described above, according to the present invention, the health of a nuclear reactor can be monitored online based on data from a nuclear reactor process computer.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明に係わる原子燃料集合体モニタリングシ
ステムを示す説明図である。
FIG. 1 is an explanatory diagram showing a nuclear fuel assembly monitoring system according to the present invention.

【図2】原子燃料集合体を示す断面図である。FIG. 2 is a sectional view showing a nuclear fuel assembly.

【図3】原子燃料要素を示す断面図である。FIG. 3 is a cross-sectional view of a nuclear fuel element.

【図4】原子炉の核系統に取り付けられている計測器を
示す説明図である。
FIG. 4 is an explanatory diagram showing measuring instruments installed in the nuclear system of a nuclear reactor.

【図5】中性子計測器及び制御棒の配置を示す原子炉炉
心図である。
FIG. 5 is a nuclear reactor core diagram showing the arrangement of neutron measuring instruments and control rods.

【符号の説明】[Explanation of symbols]

1………原子炉運転データ 2………原子炉核熱設計データ 3………原子燃料集合体設計データ 4………原子燃料集合体部品材料特性データ5………原
子燃料集合体材料物性データ6………原子燃料集合体使
用実績データ7………確率的信頼性評価(PRA)プロ
グラム8………原子燃料集合体モニタリング A………原子燃料集合体 33、34、35…中性子計測器 36………制御棒 40………原子炉炉心
1...Reactor operation data 2...Reactor nuclear thermal design data 3...Nuclear fuel assembly design data 4...Nuclear fuel assembly parts material property data 5...Nuclear fuel assembly material physical properties Data 6... Nuclear fuel assembly usage record data 7... Probabilistic reliability assessment (PRA) program 8... Nuclear fuel assembly monitoring A... Nuclear fuel assemblies 33, 34, 35... Neutron measurement Container 36...Control rod 40...Reactor core

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  原子炉内外に取り付けられた中性子計
測器及び各種の計測機器から得られる炉心熱出力、炉心
流量、炉心差圧、炉心入口サブクール等を、オンライン
・プロセス・コンピュータで処理した原子炉運転データ
と、原子炉核熱設計データと、原子燃料集合体設計デー
タと、原子燃料集合体部品材料特性データと、原子燃料
集合体材料物性データと、原子燃料集合体材料使用実績
データと、コンピュータで統計的に評価した確率的信頼
性評価プログラムで評価を行い、原子燃料集合体の健全
性を常時原子炉中央制御室でモニタすることを特徴とす
る原子燃料集合体モニタリングシステム。
Claim 1: A nuclear reactor in which core thermal output, core flow rate, core differential pressure, core inlet subcooling, etc. obtained from neutron measuring instruments and various measuring instruments installed inside and outside the reactor are processed by an online process computer. Operation data, reactor nuclear thermal design data, nuclear fuel assembly design data, nuclear fuel assembly parts material property data, nuclear fuel assembly material physical property data, nuclear fuel assembly material usage record data, and computer A nuclear fuel assembly monitoring system that performs evaluation using a probabilistic reliability evaluation program that is statistically evaluated, and constantly monitors the health of the nuclear fuel assembly in the reactor central control room.
JP3110357A 1991-05-15 1991-05-15 Nuclear fuel assembly monitoring system Withdrawn JPH04337500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3110357A JPH04337500A (en) 1991-05-15 1991-05-15 Nuclear fuel assembly monitoring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3110357A JPH04337500A (en) 1991-05-15 1991-05-15 Nuclear fuel assembly monitoring system

Publications (1)

Publication Number Publication Date
JPH04337500A true JPH04337500A (en) 1992-11-25

Family

ID=14533730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3110357A Withdrawn JPH04337500A (en) 1991-05-15 1991-05-15 Nuclear fuel assembly monitoring system

Country Status (1)

Country Link
JP (1) JPH04337500A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8313157B2 (en) 2009-04-01 2012-11-20 Ricoh Company, Limited Inkjet recording apparatus
US8366257B2 (en) 2008-12-03 2013-02-05 Ricoh Company, Ltd. Inkjet recording apparatus
US8596768B2 (en) 2011-03-04 2013-12-03 Seiko Epson Corporation Liquid discharging apparatus and control method thereof
US8690301B2 (en) 2011-03-04 2014-04-08 Seiko Epson Corporation Liquid discharging apparatus and control method thereof
CN111681789A (en) * 2020-06-22 2020-09-18 中国核动力研究设计院 Thermal hydraulic experimental device for closely-arranged rod bundle fuel assemblies

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8366257B2 (en) 2008-12-03 2013-02-05 Ricoh Company, Ltd. Inkjet recording apparatus
US8313157B2 (en) 2009-04-01 2012-11-20 Ricoh Company, Limited Inkjet recording apparatus
US8596768B2 (en) 2011-03-04 2013-12-03 Seiko Epson Corporation Liquid discharging apparatus and control method thereof
US8690301B2 (en) 2011-03-04 2014-04-08 Seiko Epson Corporation Liquid discharging apparatus and control method thereof
US8939562B2 (en) 2011-03-04 2015-01-27 Seiko Epson Corporation Liquid discharging apparatus and control method thereof
CN111681789A (en) * 2020-06-22 2020-09-18 中国核动力研究设计院 Thermal hydraulic experimental device for closely-arranged rod bundle fuel assemblies

Similar Documents

Publication Publication Date Title
Manngård et al. Evaluation of loss-of-coolant accident simulation tests with the fuel rod analysis code FRAPTRAN-1.4
JPH04337500A (en) Nuclear fuel assembly monitoring system
Salem et al. Integrated Uncertainty Analysis of the PHEBUS FPT-0 Experiments using RELAP/SCDAPSIM/MOD3. 4 with IUA Option
Okawa et al. Physical model features and validation status of three-dimensional simulation model for BWR in-vessel core degradation
Fehrenbach et al. In-reactor measurement of clad strain: effect of power history
Manngård et al. Evaluation of the Halden IFA-650 loss-of-coolant accident experiments 2, 3 and 4
Rossiter et al. Development and validation of Loss of Coolant Accident (LOCA) simulation capability in the ENIGMA fuel performance code for zirconium-based cladding materials
Sepold et al. Severe fuel damage experiments with advanced cladding materials to be performed in the QUENCH facility (QUENCH-ACM)
Lys Analysis of Computer Modelling Results on Fuel Rods Strength and Condition at Reduced or Absent Cooling Caused by Accident
Martinson et al. Reactivity initiated accident test series Test RIA 1-4
Kummerer The German oxide fuel pin irradiation test experience for fast reactors
Greenslade et al. FFTF as an irradiation test bed for fusion materials and components
Probert et al. An assessment of UO2 and ATF concept fuel performance modeling demands against current experimental capabilities under LOCA conditions
Mohr et al. Prototypic Thermal-Hydraulic Experiment in NRU to Simulate Loss-of-Coolant Accidents
Abuqudaira et al. Assessment of Nuclear Sensors and Instrumentation Maturity in Advanced Nuclear Reactors
Giovanni et al. Contribution of Idaho National Laboratory to the CPR FUMAC
Dahl Jr Boron carbide development for FFTF control elements
Ichikawa et al. Irradiation studies of JAERI's fuel at Halden reactor
Fehrenbach Facilities and techniques for instrumented fuel irradiations in the NRX reactor at Chalk River
Benson et al. Fission product release from dynamically heated mixed oxide reactor fuels
Dupouy Rapsodie and Phenix. The materials story
Szuta Fission gas release from fuel rods of Qinshan nuclear power plant
Pitner et al. Prototype oxide breeder tests in the fast flux test facility
Hulin et al. Preliminary Results of the SNAP 2 Experimental Reactor
Coucill et al. Development of a new VVER-440 fuel design

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806