JPH04337017A - Apparatus for producing metallic powder - Google Patents

Apparatus for producing metallic powder

Info

Publication number
JPH04337017A
JPH04337017A JP10757491A JP10757491A JPH04337017A JP H04337017 A JPH04337017 A JP H04337017A JP 10757491 A JP10757491 A JP 10757491A JP 10757491 A JP10757491 A JP 10757491A JP H04337017 A JPH04337017 A JP H04337017A
Authority
JP
Japan
Prior art keywords
molten metal
cooling liquid
cooling
liquid layer
supply container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10757491A
Other languages
Japanese (ja)
Other versions
JP2672042B2 (en
Inventor
Masanori Yoshino
正規 吉野
Toshiyuki Aoki
敏行 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP3107574A priority Critical patent/JP2672042B2/en
Publication of JPH04337017A publication Critical patent/JPH04337017A/en
Application granted granted Critical
Publication of JP2672042B2 publication Critical patent/JP2672042B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an apparatus for producing metallic powder which can continuously produce metallic powder having stable quality, can produce the metallic powder consisting of finer particles and can assure a sufficient cooling rate. CONSTITUTION:A cooling liquid is ejected and supplied along the inner peripheral surface of the cylindrical body 1 to the inner peripheral surface of the apparatus for producing the metallic powder by cooling and solidifying the molten metal ejected from a vessel 19 for supplying the molten metal by the cooling liquid in the cylindrical body 1 for cooling. This cooling liquid falls while swirling along the inner peripheral surface of the cylindrical body 1 and forms a cooling liquid layer 9 discharged from the lower part of the cylindrical body 1. The vessel 19 for supplying the molten metal is disposed on the inner peripheral surface side of this cooling liquid layer 9 and many nozzle holes 24 directed toward the cooling liquid layer 9 are penetrated and formed in the vessel 19 for supplying the molten metal. The vessel 19 for supplying the molten metal is rotationally driven in order to eject the molten metal in the vessel 19 for supplying the molten metal from these nozzle holes 24.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、溶融金属を、旋回移動
する冷却液層中に供給して金属粉末を製造する製造装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing apparatus for manufacturing metal powder by supplying molten metal into a rotating cooling liquid layer.

【0002】0002

【従来の技術】急冷凝固金属粉末は、結晶粒が微細で合
金元素も過飽和に含有させることができるので、例えば
アルミニウムやその合金の急冷凝固粉末によって形成さ
れた押出材は、溶製材では具備することのない優れた材
質特性を有し、機械部品等の素材として注目されている
[Prior Art] Rapidly solidified metal powder has fine crystal grains and can contain supersaturated alloying elements. For example, an extruded material formed from rapidly solidified powder of aluminum or its alloy has It has exceptional material properties and is attracting attention as a material for mechanical parts.

【0003】前記急冷凝固金属粉末の製造装置として、
特公平1−49769 号公報に開示されたものがある
。この装置は、図2に示すように、回転する冷却ドラム
61の内周面に冷却液層62を遠心力の作用で形成し、
該冷却液層62に、溶融金属供給手段としての噴射るつ
ぼ63から溶融金属を噴射し、微細に分断して急冷凝固
した金属粉末を得るものである。前記噴射るつぼ63の
外周面には加熱用の高周波コイル64が装着され、該る
つぼ63の下部側壁には噴射ノズル65が開設されてい
る。前記るつぼ63内の溶融金属66は、該るつぼ63
に不活性ガス67を加圧注入することによって前記ノズ
ル65から噴出される。そして、冷却ドラム61内の金
属粉末は、一定量溜まると、冷却ドラム61の回転を止
め、冷却液と共に回収され、脱液後、乾燥される。
[0003] As an apparatus for producing the rapidly solidified metal powder,
There is one disclosed in Japanese Patent Publication No. 1-49769. As shown in FIG. 2, this device forms a cooling liquid layer 62 on the inner peripheral surface of a rotating cooling drum 61 by the action of centrifugal force.
Molten metal is injected into the cooling liquid layer 62 from an injection crucible 63 serving as a molten metal supply means to obtain metal powder that is finely divided and rapidly solidified. A heating high-frequency coil 64 is attached to the outer peripheral surface of the injection crucible 63, and an injection nozzle 65 is provided on the lower side wall of the crucible 63. The molten metal 66 in the crucible 63 is
The gas is ejected from the nozzle 65 by injecting an inert gas 67 under pressure. When a certain amount of metal powder has accumulated in the cooling drum 61, the rotation of the cooling drum 61 is stopped, the metal powder is collected together with the cooling liquid, and the metal powder is removed and dried.

【0004】0004

【発明が解決しようとする課題】前記従来のものにあっ
ては、いわゆるバッチ式操業となり、生産性が劣る。そ
のうえ、粉末回収時に溶融金属の噴射を止めなければな
らないため、噴射ノズル65に孔詰まりが生じ易いとい
う問題がある。また、冷却温度を一定にするためには、
冷却液層62の液面より冷却液を供給、排出して温度制
御しなければならないが、この際、液面が乱れ、粉末粒
度や品質にばらつきが生じ易いという問題がある。
Problems to be Solved by the Invention The conventional method described above involves a so-called batch type operation, resulting in poor productivity. Furthermore, since the injection of molten metal must be stopped during powder recovery, there is a problem in that the injection nozzle 65 is likely to become clogged. In addition, in order to keep the cooling temperature constant,
The temperature must be controlled by supplying and discharging the cooling liquid from the liquid level of the cooling liquid layer 62, but at this time, there is a problem that the liquid level is disturbed and variations in powder particle size and quality are likely to occur.

【0005】さらに、噴射ノズル65の大きさは、孔詰
まりの観点からあまり小さくすることができず、従って
、溶融金属66の噴出量を少なくするためにも限度があ
り、そのため、比較的多量の溶融金属66が直接冷却液
層62の同じ位置に連続状に供給され、より微細な粒子
の金属粉末が得難いと共に、冷却効果の低下を来たして
十分な冷却速度が得難いという問題がある。
Furthermore, the size of the injection nozzle 65 cannot be made too small from the viewpoint of hole clogging, and therefore there is a limit to reducing the amount of molten metal 66 that can be ejected. Molten metal 66 is directly and continuously supplied to the same position of cooling liquid layer 62, which makes it difficult to obtain metal powder with finer particles, and the cooling effect deteriorates, making it difficult to obtain a sufficient cooling rate.

【0006】そこで、本発明は前記問題点に鑑み、安定
した品質の金属粉末を連続的に製造することができ、し
かも、金属粉末の微粉化の向上および十分な冷却速度の
確保を企図した金属粉末製造装置を提供することを目的
とする。
In view of the above-mentioned problems, the present invention has been devised to provide a metal powder that can continuously produce metal powder of stable quality, improves the pulverization of the metal powder, and ensures a sufficient cooling rate. The purpose is to provide a powder manufacturing device.

【0007】[0007]

【課題を解決するための手段】本発明が前記目的を達成
するために講じた技術的手段は、溶融金属供給容器19
から噴出された溶融金属を冷却用筒体1 内の冷却液に
より冷却凝固させて金属粉末を製造する金属粉末製造装
置において、前記筒体1 の内周面に、該内周面に沿っ
て冷却液を噴出供給して筒体1 内周面に沿って旋回し
ながら流下し且つ筒体1下部から排出される冷却液層9
 を形成し、この冷却液層9 の内周面側に溶融金属供
給容器19を配置すると共に、該溶融金属供給容器19
に冷却液層9に向けて指向された多数のノズル孔24を
貫通形成し、このノズル孔24から溶融金属供給容器1
9内の溶融金属を噴出させるべく該溶融金属供給容器1
9を回転駆動して成る点にある。
[Means for Solving the Problems] The technical means taken by the present invention to achieve the above object are as follows:
In a metal powder manufacturing apparatus that manufactures metal powder by cooling and solidifying molten metal ejected from a cooling cylinder 1 using a cooling liquid in a cooling cylinder 1, cooling is applied to the inner peripheral surface of the cylinder 1 along the inner peripheral surface. A cooling liquid layer 9 is sprayed and supplied, flows down while swirling along the inner peripheral surface of the cylinder 1, and is discharged from the lower part of the cylinder 1.
A molten metal supply container 19 is disposed on the inner peripheral surface side of this cooling liquid layer 9, and the molten metal supply container 19 is
A large number of nozzle holes 24 oriented toward the cooling liquid layer 9 are formed through the molten metal supply container 1 through the nozzle holes 24 .
The molten metal supply container 1 is used to spout out the molten metal in the molten metal supply container 9.
9 is rotationally driven.

【0008】[0008]

【作用】冷却用筒体1 の内周面に沿って供給された冷
却液は、筒体1 内周面に沿って旋回しながら流下し、
旋回時の遠心力の作用でほぼ一定内径の冷却液層9 を
製造する。そして、溶融金属供給容器19を回転駆動す
ると、該容器19内の溶融金属は遠心力の作用でノズル
孔24から噴出して、容器19から冷却液層9 に向け
て放射状に飛散し、冷却液層9 の旋回流によって分断
されると共に冷却凝固され、金属粉末が製造される。
[Operation] The cooling liquid supplied along the inner peripheral surface of the cooling cylinder 1 flows down while swirling along the inner peripheral surface of the cylinder 1.
A cooling liquid layer 9 having a substantially constant inner diameter is produced by the action of centrifugal force during rotation. Then, when the molten metal supply container 19 is driven to rotate, the molten metal in the container 19 is ejected from the nozzle hole 24 due to the action of centrifugal force, and is scattered radially from the container 19 toward the cooling liquid layer 9. The metal powder is divided by the swirling flow of layer 9 and cooled and solidified to produce metal powder.

【0009】前記冷却液層9 は常に新たに供給される
冷却液によって形成されるために一定の温度が容易に維
持される。このため、温度制御のために液面より冷却液
を排出、供給する必要がなく、液面に乱れは生じず、安
定した状態が維持される。それ故、冷却液層9 に供給
される溶融金属は常に一定状態の下で冷却液層9 中に
供給、分断され、一定温度の下で冷却凝固されるため、
金属粉末の品質が安定する。
Since the cooling liquid layer 9 is always formed by freshly supplied cooling liquid, a constant temperature can be easily maintained. Therefore, there is no need to drain or supply cooling liquid from the liquid surface for temperature control, and the liquid level is not disturbed and a stable state is maintained. Therefore, the molten metal supplied to the cooling liquid layer 9 is always supplied into the cooling liquid layer 9 under constant conditions, is divided, and is cooled and solidified at a constant temperature.
The quality of metal powder is stable.

【0010】冷却液層9 中で金属粉末は冷却液と共に
旋回しながら流下し、筒体1 の下部より排出すること
で、金属粉末の連続生産が可能となる。また、連続操業
できることから、ノズル孔24を小さくできる上に、溶
融金属は回転駆動される溶融金属供給容器19から冷却
液層9 へ向けて放射状に飛散されて、さらに、冷却液
層9 の旋回流によって分断され、より微細な粒子の金
属粉末が製造できると共に、該微粉化、溶融金属が分散
されること及び冷却液層9 が常に新たに供給される冷
却液によって形成されること等から十分な冷却速度の確
保が可能である。
The metal powder flows down in the cooling liquid layer 9 while swirling together with the cooling liquid, and is discharged from the lower part of the cylinder 1, thereby making it possible to continuously produce metal powder. In addition, since continuous operation is possible, the nozzle hole 24 can be made smaller, and the molten metal is radially scattered from the rotatably driven molten metal supply container 19 toward the cooling liquid layer 9 , and furthermore, the cooling liquid layer 9 is swirled. It is possible to produce finer particles of metal powder by being divided by the flow, and it is sufficient because the pulverization, the dispersion of the molten metal, and the fact that the coolant layer 9 is always formed by newly supplied coolant. It is possible to secure a cooling rate that is as high as possible.

【0011】[0011]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1において、 1は冷却用筒体で、上下に開口
する円筒状に形成されており、この筒体1 の上端開口
は蓋体2 により閉塞され、該蓋体2 の中心部には開
口部3 が形成されている。また、筒体1 の上部には
、冷却液噴出管4 が周方向等間隔に複数個形成され、
この噴出管4 の吐出口5 は筒体1 内周面に沿って
接線方向から冷却液を噴出供給できるように開口されて
いる。また、噴出管4 の管軸方向は、筒体1 内周面
の水平方向の接線に対して 0〜20゜程度斜め下方に
設定されている。そして、噴出管4 は、ポンプ7 を
介してタンク8 に配管接続されていて、タンク8 内
の冷却液をポンプ7 によって吸い揚げて噴出管4 か
ら筒体1 の内周面側に噴出供給することで、筒体1の
内周面に、該内周面に沿って旋回しながら流下する冷却
液層9 が形成される。タンク8 には、図示省略の補
給用の冷却液供給管が設けられ、またタンク8 内や循
環流路の途中に冷却器を適宜介在させてもよい。冷却液
としては一般に水が使用されるが、油が使用される場合
もある。尚、水を用いる場合、水中の酸素を除去したも
のを使用するのが望ましい。酸素の除去処理装置は市販
されており、入手容易である。
Embodiments Hereinafter, embodiments of the present invention will be explained based on the drawings. In FIG. 1, reference numeral 1 denotes a cooling cylinder, which is formed into a cylindrical shape with vertical openings.The upper end opening of this cylinder 1 is closed by a lid 2, and an opening is provided in the center of the lid 2. 3 is formed. Further, a plurality of coolant jetting pipes 4 are formed at equal intervals in the circumferential direction at the upper part of the cylinder body 1.
The ejection port 5 of the ejection pipe 4 is opened so that the cooling liquid can be ejected and supplied from the tangential direction along the inner circumferential surface of the cylindrical body 1. Further, the tube axis direction of the ejection tube 4 is set diagonally downward by about 0 to 20 degrees with respect to the horizontal tangent to the inner circumferential surface of the cylinder body 1 . The jet pipe 4 is connected via a pump 7 to a tank 8 , and the pump 7 sucks up the coolant in the tank 8 and supplies it to the inner peripheral surface of the cylinder 1 from the jet pipe 4 . As a result, a cooling liquid layer 9 is formed on the inner circumferential surface of the cylinder 1, which flows downward while swirling along the inner circumferential surface. The tank 8 is provided with a cooling liquid supply pipe for replenishment (not shown), and a cooler may be appropriately interposed within the tank 8 or in the middle of the circulation flow path. Water is generally used as the coolant, but oil may also be used. In addition, when using water, it is desirable to use water from which oxygen has been removed. Oxygen removal processing equipment is commercially available and easily available.

【0012】筒体1 の内周面下部には、冷却液層9 
の層厚調整用リング10がボルトによって着脱、交換自
在に取付けられ、このリング10により冷却液の流下速
度が押えられて略一定内径の冷却液層9 が容易に形成
される。筒体1 の下端には円筒状の液切り用網体11
が連設され、この網体11の下端には有底円筒状の粉末
回収容器12が取付けられている。この回収容器12の
底壁13は傾斜状に形成されると共に傾斜方向下方側に
延長されている。また、回収容器12の周壁14下端に
は粉末排出口15が形成されている。前記網体11の周
囲には有底円筒状の冷却液回収容器16が設けられ、こ
の回収容器16の底部に形成された排水口17は配管を
介してタンク8 に接続されている。
A cooling liquid layer 9 is provided at the lower part of the inner circumferential surface of the cylindrical body 1.
A layer thickness adjusting ring 10 is detachably and replaceably attached with a bolt, and this ring 10 suppresses the flow rate of the coolant, thereby easily forming a coolant layer 9 having a substantially constant inner diameter. A cylindrical liquid draining net 11 is attached to the lower end of the cylinder 1.
A cylindrical powder recovery container 12 with a bottom is attached to the lower end of the net body 11. The bottom wall 13 of the recovery container 12 is formed in an inclined shape and extends downward in the direction of the inclination. Further, a powder discharge port 15 is formed at the lower end of the peripheral wall 14 of the collection container 12 . A cylindrical coolant recovery container 16 with a bottom is provided around the net 11, and a drain port 17 formed at the bottom of the recovery container 16 is connected to the tank 8 via piping.

【0013】筒体1 内には溶融金属供給容器19が設
けられ、この供給容器19は黒鉛や窒化珪素等の耐火物
から成り、円筒状の周壁20と、上壁21及び底壁22
とから構成され、筒体1 と同心状とされている。この
供給容器19の上壁21には挿入孔18が形成されてい
て、該供給容器19内に筒体1 の蓋体2 に形成した
開口部3 及び前記挿入孔18を通して注湯用ノズル2
3が挿入されて、該ノズル23から溶融金属25が供給
されるようになっている。また、供給容器19の周壁2
0には、該供給容器19内の溶融金属25を外方に噴出
させるための多数のノズル孔24が形成され、該ノズル
孔24は径方向に貫通状に形成されていて、冷却液層9
 に向けて指向されている。さらに、供給容器19は、
粉末回収容器12の底壁13を貫通する回転駆動軸29
の上端に固定され、該回転駆動軸29は下方において回
転自在に支持されていると共に、モータ等の駆動装置に
よって上下方向の軸心廻りに回転駆動され、供給容器1
9が該駆動軸29と一体回転されるように構成されてい
る。したがって、供給容器19を回転させることで、遠
心力の作用により供給容器19内の溶融金属がノズル孔
24から噴出して、該供給容器19から冷却液層9 に
向けて放射状に飛散する。
A molten metal supply container 19 is provided inside the cylinder 1, and the supply container 19 is made of a refractory material such as graphite or silicon nitride, and has a cylindrical peripheral wall 20, a top wall 21, and a bottom wall 22.
It is made up of , and is concentric with the cylindrical body 1 . An insertion hole 18 is formed in the upper wall 21 of this supply container 19, and a pouring nozzle 2 is inserted into the supply container 19 through an opening 3 formed in the lid 2 of the cylinder 1 and the insertion hole 18.
3 is inserted, and molten metal 25 is supplied from the nozzle 23. Additionally, the peripheral wall 2 of the supply container 19
0 is formed with a large number of nozzle holes 24 for spouting the molten metal 25 in the supply container 19 outward, and the nozzle holes 24 are formed to penetrate in the radial direction, and the cooling liquid layer 9
is oriented towards. Furthermore, the supply container 19 is
A rotary drive shaft 29 passing through the bottom wall 13 of the powder collection container 12
The rotary drive shaft 29 is fixed to the upper end, is rotatably supported below, and is rotationally driven around an axis in the vertical direction by a drive device such as a motor.
9 is configured to rotate integrally with the drive shaft 29. Therefore, by rotating the supply container 19, the molten metal in the supply container 19 is ejected from the nozzle hole 24 due to the action of centrifugal force, and is scattered radially from the supply container 19 toward the coolant layer 9.

【0014】なお、供給容器19の回転方向は、冷却液
層9 の旋回流の進行方向と同方向又は逆方向のどちら
であっても良いが、旋回流と逆方向である方が、供給容
器19から飛散する溶融金属の溶滴の旋回流による分断
効果が良好である。また、供給容器19の回転速度を変
えることによって粉末粒子の大きさを容易にコントロー
ルできる。
The direction of rotation of the supply container 19 may be either the same direction as the direction of rotation of the swirling flow of the cooling liquid layer 9 or the opposite direction, but it is better to rotate the supply container in the direction opposite to the swirling flow. The separation effect due to the swirling flow of the molten metal droplets flying off from No. 19 is good. Furthermore, by changing the rotational speed of the supply container 19, the size of the powder particles can be easily controlled.

【0015】前記構成において、金属粉末を製造するに
は、先ず、ポンプ7 を作動させて、筒体1 内周面に
冷却液層9 を形成し、次に、供給容器19を回転駆動
して該供給容器19内の溶融金属25をノズル孔24か
ら噴出させる。 このノズル孔24から噴出する溶融金属は、供給容器1
9から冷却液層9 に向けて放射状に飛散して、旋回し
ながら流下する冷却液層9 によって分断されると共に
急冷凝固されて金属粉末が製造される。そして、冷却液
層9 中の金属粉末は、冷却液と共に旋回しながら層厚
調整用リング10を越えて流下し、筒体1 の下端より
液切り用網体11に入る。ここで、冷却液は遠心力の作
用で網体11から放射状に外方へ飛散し、一次的に脱液
された液分の少ない金属粉末が得られる。この一次脱液
された金属粉末は粉末回収容器12に入り、ここから排
出されて、遠心分離機等の脱液装置により脱液され、乾
燥装置により乾燥される。また、網体11から飛散され
た冷却液はタンク8 に戻されて循環使用される。
In the above structure, in order to produce metal powder, first, the pump 7 is operated to form a cooling liquid layer 9 on the inner peripheral surface of the cylinder 1, and then the supply container 19 is driven to rotate. The molten metal 25 in the supply container 19 is jetted out from the nozzle hole 24. The molten metal spouted from this nozzle hole 24 is
The metal powder is scattered radially from the cooling liquid layer 9 toward the cooling liquid layer 9, is divided by the cooling liquid layer 9 flowing down while swirling, and is rapidly solidified to produce metal powder. Then, the metal powder in the cooling liquid layer 9 flows down over the layer thickness adjustment ring 10 while swirling together with the cooling liquid, and enters the liquid draining net 11 from the lower end of the cylinder 1. Here, the cooling liquid is scattered radially outward from the mesh body 11 by the action of centrifugal force, and metal powder with a small liquid content that has been temporarily removed is obtained. This primarily deliquified metal powder enters the powder recovery container 12, is discharged from there, is deliquified by a deliquifying device such as a centrifuge, and is dried by a drying device. Further, the coolant splashed from the net body 11 is returned to the tank 8 and used for circulation.

【0016】なお、前記実施例では、冷却用筒体として
円筒状のものを示したが、これに限らず、例えば内周面
が上方に向けて拡開状の回転放物面で形成された漏斗形
状や切頭逆円錐形状としてもよい。この場合、層厚調整
用フランジを取付けなくても、一定内径の冷却液層を形
成することができる。また、図例では、層厚調整用リン
グ10は断面方形状であるが、これに限らず、例えばリ
ング上面の外周縁から下面の内周縁にかけて漸次縮径す
る曲面で形成してもよい。
[0016] In the above-mentioned embodiments, a cylindrical cooling cylinder is shown, but the cooling cylinder is not limited to this. It may also have a funnel shape or a truncated inverted conical shape. In this case, a cooling liquid layer with a constant inner diameter can be formed without attaching a layer thickness adjustment flange. Further, in the illustrated example, the layer thickness adjustment ring 10 has a rectangular cross section, but is not limited to this, and may be formed with a curved surface whose diameter gradually decreases from the outer circumferential edge of the upper surface of the ring to the inner circumferential edge of the lower surface, for example.

【0017】また、本発明は、Al合金やMg合金等の
軽量金属粉末の製造に限らず、鉄やその合金等の金属粉
末の製造に適用できることは勿論である。
The present invention is of course applicable not only to the production of lightweight metal powders such as Al alloys and Mg alloys, but also to the production of metal powders such as iron and its alloys.

【0018】[0018]

【考案の効果】本発明によれば、筒体1 の内周面に沿
って冷却液を噴出供給して、筒体内周面に沿って旋回し
ながら流下する冷却液層9 を形成するので、溶融金属
を供給する冷却液層9 の内周面を安定させることがで
き、温度も均一に保持できる。そして、該冷却液層9 
中に溶融金属を供給するので、品質の安定した急冷凝固
粉末が連続的に生産され、溶融金属を噴出させるノズル
孔24に孔詰りも生じない。
[Effects of the Invention] According to the present invention, the cooling liquid is jetted and supplied along the inner peripheral surface of the cylinder 1 to form the cooling liquid layer 9 that flows down while swirling along the inner peripheral surface of the cylinder. The inner peripheral surface of the cooling liquid layer 9 that supplies molten metal can be stabilized, and the temperature can also be maintained uniform. Then, the cooling liquid layer 9
Since molten metal is supplied into the molten metal, rapidly solidified powder with stable quality is continuously produced, and the nozzle hole 24 through which the molten metal is ejected is not clogged.

【0019】また、連続生産ができることから、溶融金
属供給容器19のノズル孔24を小さくすることができ
るように冷却液層9 に溶融金属を供給するのに、溶融
金属供給容器19を回転駆動して、該供給容器19内の
溶融金属を遠心力の作用によってノズル孔24から噴出
させて、供給容器19から冷却液層9 に向けて放射状
に飛散させ、その飛散させた溶融金属の溶滴をさらに冷
却液層9 の旋回流によって分断するようにしているの
で、より微細な金属粉末を製造できると共に、該微粉化
、冷却液が旋回しながら流下すること及び溶融金属が分
散されて冷却液層9 に供給されること等によって、十
分な冷却速度が確保できる。
Furthermore, since continuous production is possible, the molten metal supply container 19 is rotated to supply the molten metal to the cooling liquid layer 9 so that the nozzle hole 24 of the molten metal supply container 19 can be made small. Then, the molten metal in the supply container 19 is ejected from the nozzle hole 24 by the action of centrifugal force, and is scattered radially from the supply container 19 toward the cooling liquid layer 9, and the droplets of the scattered molten metal are Further, since the cooling liquid layer 9 is divided by the swirling flow, it is possible to produce finer metal powder, and the cooling liquid layer 9 is divided by the pulverization, the cooling liquid flowing down while swirling, and the molten metal being dispersed. 9, a sufficient cooling rate can be ensured.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の金属粉末製造装置の要部断面全体配置
図である。
FIG. 1 is a cross-sectional overall layout diagram of main parts of a metal powder manufacturing apparatus of the present invention.

【図2】従来の金属粉末製造装置の要部断面図である。FIG. 2 is a sectional view of a main part of a conventional metal powder manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1  冷却用筒体 9  冷却液層 19  溶融金属供給容器 24  ノズル孔 1 Cooling cylinder 9 Cooling liquid layer 19 Molten metal supply container 24 Nozzle hole

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  溶融金属供給容器(19)から噴出さ
れた溶融金属を冷却用筒体(1) 内の冷却液により冷
却凝固させて金属粉末を製造する金属粉末製造装置にお
いて、前記筒体(1) の内周面に、該内周面に沿って
冷却液を噴出供給して筒体(1) 内周面に沿って旋回
しながら流下し且つ筒体(1) 下部から排出される冷
却液層(9) を形成し、この冷却液層(9) の内周
面側に溶融金属供給容器(19)を配置すると共に、該
溶融金属供給容器(19)に冷却液層(9) に向けて
指向された多数のノズル孔(24)を貫通形成し、この
ノズル孔(24)から溶融金属供給容器(19)内の溶
融金属を噴出させるべく該溶融金属供給容器(19)を
回転駆動して成ることを特徴とする金属粉末製造装置。
1. A metal powder manufacturing apparatus for manufacturing metal powder by cooling and solidifying molten metal ejected from a molten metal supply container (19) with a cooling liquid in a cooling cylinder (1), wherein the cylinder (19) 1) The cooling liquid is jetted and supplied along the inner circumferential surface of the cylinder body (1) and flows down while swirling along the inner circumferential surface of the cylinder body (1), and is discharged from the lower part of the cylinder body (1). A liquid layer (9) is formed, a molten metal supply container (19) is disposed on the inner peripheral surface side of this cooling liquid layer (9), and a cooling liquid layer (9) is placed in the molten metal supply container (19). A large number of nozzle holes (24) are formed through the molten metal supply container (19), and the molten metal supply container (19) is driven to rotate so that the molten metal in the molten metal supply container (19) is spouted from the nozzle holes (24). A metal powder manufacturing device characterized by:
JP3107574A 1991-05-13 1991-05-13 Metal powder manufacturing equipment Expired - Lifetime JP2672042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3107574A JP2672042B2 (en) 1991-05-13 1991-05-13 Metal powder manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3107574A JP2672042B2 (en) 1991-05-13 1991-05-13 Metal powder manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH04337017A true JPH04337017A (en) 1992-11-25
JP2672042B2 JP2672042B2 (en) 1997-11-05

Family

ID=14462627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3107574A Expired - Lifetime JP2672042B2 (en) 1991-05-13 1991-05-13 Metal powder manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2672042B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264116A (en) * 1993-03-12 1994-09-20 Electroplating Eng Of Japan Co Production of fine metallic powder and apparatus for production thereof
JP2005023424A (en) * 2003-07-03 2005-01-27 General Electric Co <Ge> Process for producing material reinforced with nanoparticle and article formed thereby
CN103949650A (en) * 2014-04-25 2014-07-30 云南锡业集团有限责任公司研究设计院 Preparation method of columnar zinc powder
WO2015034425A1 (en) * 2013-09-05 2015-03-12 Uvån Holding Ab Granulation of molten material
WO2015152814A1 (en) * 2014-04-03 2015-10-08 Uvån Holding Ab Granulation of molten ferrochromium
CN107584133A (en) * 2017-08-18 2018-01-16 江苏天泽教育咨询有限公司 A kind of 3D printing powder preparing unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319312A (en) * 1976-07-28 1978-02-22 Libbey Owens Ford Co Method and apparatus for bending glass sheet
JPS57207102A (en) * 1981-06-16 1982-12-18 Nippon Atomaizu Kako Kk Producing device for metallic powder
JPS6141707A (en) * 1984-08-06 1986-02-28 Kawasaki Steel Corp Apparatus for producing powder metal
JPS61194345A (en) * 1985-02-23 1986-08-28 Ngk Insulators Ltd Method for detecting concentration of gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5319312A (en) * 1976-07-28 1978-02-22 Libbey Owens Ford Co Method and apparatus for bending glass sheet
JPS57207102A (en) * 1981-06-16 1982-12-18 Nippon Atomaizu Kako Kk Producing device for metallic powder
JPS6141707A (en) * 1984-08-06 1986-02-28 Kawasaki Steel Corp Apparatus for producing powder metal
JPS61194345A (en) * 1985-02-23 1986-08-28 Ngk Insulators Ltd Method for detecting concentration of gas

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06264116A (en) * 1993-03-12 1994-09-20 Electroplating Eng Of Japan Co Production of fine metallic powder and apparatus for production thereof
JP2005023424A (en) * 2003-07-03 2005-01-27 General Electric Co <Ge> Process for producing material reinforced with nanoparticle and article formed thereby
JP4521714B2 (en) * 2003-07-03 2010-08-11 ゼネラル・エレクトリック・カンパニイ Method for producing materials reinforced with nanoparticles
WO2015034425A1 (en) * 2013-09-05 2015-03-12 Uvån Holding Ab Granulation of molten material
EA031421B1 (en) * 2013-09-05 2018-12-28 Увон Холдинг Аб Granulation of molten material
US10618112B2 (en) 2013-09-05 2020-04-14 Uvan Holding Ab Granulation of molten material
WO2015152814A1 (en) * 2014-04-03 2015-10-08 Uvån Holding Ab Granulation of molten ferrochromium
CN106102969A (en) * 2014-04-03 2016-11-09 尤万控股股份公司 The pelletize of melted ferrochrome
CN103949650A (en) * 2014-04-25 2014-07-30 云南锡业集团有限责任公司研究设计院 Preparation method of columnar zinc powder
CN107584133A (en) * 2017-08-18 2018-01-16 江苏天泽教育咨询有限公司 A kind of 3D printing powder preparing unit

Also Published As

Publication number Publication date
JP2672042B2 (en) 1997-11-05

Similar Documents

Publication Publication Date Title
JP2719074B2 (en) Method and apparatus for producing metal powder
EP0452685B1 (en) Method of and apparatus for producing metal powder
JP2672042B2 (en) Metal powder manufacturing equipment
US5482532A (en) Method of and apparatus for producing metal powder
EP0543017B1 (en) Method and device for making metallic powder
JP2672043B2 (en) Metal powder manufacturing equipment
JP2774711B2 (en) Method and apparatus for producing metal powder
JP2672041B2 (en) Metal powder manufacturing equipment
JP2672056B2 (en) Method and apparatus for producing metal powder
JP2672038B2 (en) Metal powder manufacturing equipment
JP2719053B2 (en) Metal powder manufacturing method
JP2672035B2 (en) Method and apparatus for producing metal powder
JP2672036B2 (en) Method and apparatus for producing metal powder
JP2618108B2 (en) Metal powder production equipment
JP2672039B2 (en) Metal powder manufacturing method
JP2818532B2 (en) Metal powder manufacturing method
JP2618109B2 (en) Method for producing metal powder and apparatus for producing the same
JPH0417605A (en) Method and apparatus for manufacturing rapidly solidifying metal powder
JPH04228507A (en) Device for producing metal powder
JP2672044B2 (en) Method for producing metal powder
JPH07100804B2 (en) Metal powder manufacturing equipment
JPH04193902A (en) Device for manufacturing metal powder
JPH07103407B2 (en) Continuous production method of rapidly solidified metal powder
JPH03271306A (en) Method and apparatus for manufacturing rapidly cooled and solidified metal powder
JPH04337015A (en) Production of metallic powder