JPH04334953A - Multiple structure type motor - Google Patents

Multiple structure type motor

Info

Publication number
JPH04334953A
JPH04334953A JP10262291A JP10262291A JPH04334953A JP H04334953 A JPH04334953 A JP H04334953A JP 10262291 A JP10262291 A JP 10262291A JP 10262291 A JP10262291 A JP 10262291A JP H04334953 A JPH04334953 A JP H04334953A
Authority
JP
Japan
Prior art keywords
rotor
core
cage rotor
squirrel
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10262291A
Other languages
Japanese (ja)
Other versions
JP3253980B2 (en
Inventor
Hideo Suzuki
鈴 木 秀 夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BERUMATEITSUKU KK
Bellmatic Ltd
Original Assignee
BERUMATEITSUKU KK
Bellmatic Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BERUMATEITSUKU KK, Bellmatic Ltd filed Critical BERUMATEITSUKU KK
Priority to JP10262291A priority Critical patent/JP3253980B2/en
Publication of JPH04334953A publication Critical patent/JPH04334953A/en
Application granted granted Critical
Publication of JP3253980B2 publication Critical patent/JP3253980B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Induction Machinery (AREA)

Abstract

PURPOSE:To share a load for rotors at the time of a high speed rotation by winding a second stator winding on a core of a first rotor concentrically oppositely to a stator core in which a stator winding is wound, and providing a second rotor on the same axis of the first rotor at a different rotary shaft oppositely to the core of the first rotor. CONSTITUTION:When wires 19a-19c are energized, a first squirrel-cage rotor (KC) 11 is rotated. When a winding 16 of the KC 11 is energized through brushes 18a-18c, slip rings 17a 17c, a revolving magnetic field is generated at a protruding bent part 12a. The magnetic field is guided to a core 22 through an air gap of the KC 11 and a second squirrel-cage rotor KC 21, an induced current is generated in a conductor 24 mounted in a slot 23, a revolving magnetic field is generated at the core 22 of the KC 21, and the EC 21 is rotated. That is, the KC 21 is rotated with respect to the KC 11, and an output shaft 26 is rotated at a high speed. Since the KC 11, the KC 21 have different rotary shaft, bearings, a load at the time of high speed rotation is shared for bearings 25a, 25b, 8a, 8b.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、商用電源でも加速回
転および円滑な低速回転ならびに慣性力なしで正逆変換
ができる多重構造型モータに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-structure motor capable of accelerated rotation, smooth low-speed rotation, and forward/reverse conversion without inertial force even with a commercial power source.

【0002】0002

【従来の技術】モータには電源の種類によって直流式、
交流式があり、交流式には単相用、3相用、多相用があ
る。また、回転子の種類によって、かご型誘導モータと
巻線型誘導モータがあるが、図4に示すような3相式か
ご型誘導モータが、広く一般に使用されている。
[Prior technology] Depending on the type of power source, motors may be DC type or
There are AC types, and AC types include single-phase, three-phase, and polyphase. Depending on the type of rotor, there are squirrel-cage induction motors and wire-wound induction motors, and a three-phase squirrel-cage induction motor as shown in FIG. 4 is widely used.

【0003】このかご型誘導モータは、固定子巻線51
が巻装された固定子鉄心52に対向位置させて、かご型
回転子53を回転自在に配設されてある。かご型回転子
53は、鉄心54に設けたスロット内に導体55を嵌着
させ、その両端を短絡環56に短絡させたものである。 また、かご型回転子53はケース57にベアリング58
などによって回転自在に支承させてある。
[0003] This squirrel cage induction motor has a stator winding 51.
A squirrel-cage rotor 53 is rotatably disposed so as to face the stator core 52 around which the squirrel-cage rotor 53 is wound. The squirrel cage rotor 53 has a conductor 55 fitted into a slot provided in an iron core 54, and both ends of the conductor 55 are short-circuited to a short-circuit ring 56. Further, the squirrel cage rotor 53 has a bearing 58 in the case 57.
It is rotatably supported by means such as.

【0004】そして、上記固定子巻線51に入力用電線
51aから単相又は3相交流電流を給電すれば、固定子
鉄心52に回転磁界が発生して、かご型回転子53の鉄
心54に嵌着された導体55に電流が誘起されるので、
かご型回転子の鉄心54に誘導磁界が生じ、これにより
かご型回転子53が回転することにより、回転軸59を
介して他装置に動力を供給するものである。
When a single-phase or three-phase alternating current is supplied to the stator winding 51 from the input wire 51a, a rotating magnetic field is generated in the stator core 52, and a rotating magnetic field is generated in the core 54 of the squirrel cage rotor 53. Since a current is induced in the fitted conductor 55,
An induced magnetic field is generated in the iron core 54 of the squirrel-cage rotor, which causes the squirrel-cage rotor 53 to rotate, thereby supplying power to other devices via the rotating shaft 59.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記従
来のかご型誘導モータの回転数は、電源に三相商用電源
を使用したものでは約3500rpm が最高で、更に
回転数を上げるには、回転数と電源周波数とは比例関係
にあることから電源周波数を上昇させねばならない。
[Problems to be Solved by the Invention] However, the maximum rotational speed of the above-mentioned conventional squirrel cage induction motor using a three-phase commercial power source is approximately 3500 rpm, and in order to further increase the rotational speed, it is necessary to increase the rotational speed. Since there is a proportional relationship between the power supply frequency and the power supply frequency, the power supply frequency must be increased.

【0006】しかし商用電源以外の電源、とくに高周波
電源は極めて高価であり、又単に電源周波数を上昇させ
て回転数を上げるのみではモータとしての効率が下がり
、しかも、かご型回転子を支承するベアリング58や軸
受等が加速回転の負荷に耐えられず、このための改良が
余儀なくされ、結果的に価格が高騰するという問題があ
った。さらに、超低速回転を得ようとすると、円滑な回
転が得られなかった。
However, power sources other than commercial power sources, especially high-frequency power sources, are extremely expensive, and simply increasing the power frequency to increase the rotation speed reduces the efficiency of the motor, and the bearings that support the squirrel-cage rotor 58, bearings, etc. cannot withstand the load of accelerated rotation, which necessitates improvements, resulting in a problem of rising prices. Furthermore, when trying to obtain ultra-low speed rotation, smooth rotation could not be obtained.

【0007】そこで、この発明は商用電源でも高速回転
が得られ、かつ加速回転に伴い、多大な負荷がベアリン
グ、軸受等に加わらない等の上記従来の問題点を解消す
ることができると共に、円滑な超低速回転および慣性力
なしの逆転変換が得られる多重構造型モータを提供する
ことを目的とするものである。
Therefore, the present invention can obtain high-speed rotation even with a commercial power supply, and can solve the above-mentioned conventional problems such as not applying a large load to bearings, etc. due to accelerated rotation, and can also smoothly rotate. It is an object of the present invention to provide a multi-structure motor that can provide ultra-low speed rotation and reverse conversion without inertial force.

【0008】[0008]

【課題を解決するための手段】この発明は上記の課題を
解決すべくなされたもので、誘導電導機の固定子巻線が
巻装された固定子鉄心に対向し、その内周壁に沿って僅
かな空隙を保って回転する第1の回転子の鉄心に第2の
固定子巻線を巻装し、その第2の固定子巻線が巻装され
た上記第1の回転子の鉄心に対向させて上記第2の回転
子を、第1の回転子と同軸心上に互に回転軸を異にして
順次配設したものである。
[Means for Solving the Problems] This invention has been made to solve the above-mentioned problems, and includes a stator core in which a stator winding of an induction machine is wound along the inner circumferential wall thereof. A second stator winding is wound around the iron core of the first rotor which rotates with a slight air gap, and the second stator winding is wound around the iron core of the first rotor. The second rotor is placed opposite to the first rotor on the same axis as the first rotor, but with different rotation axes.

【0009】[0009]

【作用】この発明における多重構造型モータにおいて、
第1の固定子巻線に交流電流を供給すれば、上記固定子
鉄心内およびその周辺に回転磁界が発生して従来の一般
のモータと同様に第1の回転子が回転する。また第1の
回転子に巻装させた上記第2の固定子巻線に交流電流を
供給すれば、第2の固定子巻線を巻装した第1の回転子
の鉄心内およびその周辺に回転磁界が発生し、第1の回
転子に対して第2の回転子も回転し、加速回転となる。
[Operation] In the multi-structure motor of this invention,
When alternating current is supplied to the first stator winding, a rotating magnetic field is generated in and around the stator core, causing the first rotor to rotate in the same manner as in a conventional general motor. In addition, if an alternating current is supplied to the second stator winding wound around the first rotor, the inside and the surrounding area of the first rotor core around which the second stator winding is wound will be generated. A rotating magnetic field is generated, and the second rotor also rotates with respect to the first rotor, resulting in accelerated rotation.

【0010】0010

【実施例】以下、この発明に係る多重構造型モータの実
施例として、3相式かご型誘導モータに適用した例につ
いて、図面を参照して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, as an embodiment of the multi-structure motor according to the present invention, an example applied to a three-phase squirrel cage induction motor will be described in detail with reference to the drawings.

【0011】図1及び図2には第1実施例を示し、図1
はその縦断面図、図2は図1のイ−イ線に沿って切断し
た断面図である。図1および図2において、円筒形状の
外ケース1はモータベース2に据付けられ、外ケース1
の内面中央部には、鉄製の薄板を重ね合わせて円筒状に
成形して成る固定子鉄心3を固設させてある。
A first embodiment is shown in FIGS. 1 and 2, and FIG.
2 is a longitudinal sectional view thereof, and FIG. 2 is a sectional view taken along line A--I in FIG. 1 and 2, a cylindrical outer case 1 is installed on a motor base 2, and the outer case 1
A stator core 3, which is formed by stacking thin iron plates and forming them into a cylindrical shape, is fixed at the center of the inner surface of the stator core 3.

【0012】固定子鉄心3には図2に示すごとく、多数
のスロット4がモータ軸線上に沿って設けられ、このス
ロット4に3相の固定子巻線5が巻装されて入力用電線
19a〜19cにより三相商用電源が供給されるように
なっている。
As shown in FIG. 2, a large number of slots 4 are provided in the stator core 3 along the motor axis, and three-phase stator windings 5 are wound around the slots 4 to connect input electric wires 19a. Three-phase commercial power is supplied by ~19c.

【0013】内ケース6は両端に軸部6a,6bを有し
、軸部6a,6bを上記外ケース1の取付け孔7a,7
bに第1のベアリング8a,8bを介在させて、上記固
定子鉄心3に対向し、適宜の空隙を保って回転自在に軸
支されている。内ケース6には上記外ケース1に固設さ
れた固定子鉄心3との対向位置に第1のかご型回転子1
1の鉄心12が同様に固設され、その外周部にスロット
13を有して、スロット13内に導体14を嵌着させて
あり、又内周部にもスロット15を有して、そのスロッ
ト15内に第1のかご型回転子11の巻線16が各UV
Wの各相毎に周知の方法で巻装されている。
The inner case 6 has shaft portions 6a, 6b at both ends, and the shaft portions 6a, 6b are inserted into the mounting holes 7a, 7 of the outer case 1.
b is rotatably supported with first bearings 8a and 8b interposed therebetween, facing the stator core 3, and maintaining an appropriate gap. The inner case 6 has a first squirrel cage rotor 1 at a position opposite to the stator core 3 fixed to the outer case 1.
The iron core 12 of No. 1 is similarly fixed, has a slot 13 on its outer periphery, and a conductor 14 is fitted into the slot 13, and also has a slot 15 on its inner periphery. 15, the winding 16 of the first squirrel cage rotor 11 is
Each phase of W is wound in a well-known manner.

【0014】巻線16には、上記内ケース6の軸部6a
に付設したスリップリング17a〜17c及びブラシ1
8a〜18cを介して外部から3相商用電源が供給され
るようになっている。
The winding 16 has a shaft portion 6a of the inner case 6.
Slip rings 17a to 17c and brush 1 attached to
Three-phase commercial power is supplied from the outside via 8a to 18c.

【0015】第1のかご型回転子11の鉄心12に対向
させて第2のかご型回転子21の鉄心22を、第1のか
ご型回転子11の鉄心12と同様に、上記鉄心12との
間に適宜な空隙を保有して配設する。第2のかご型回転
子21は、上記内ケース6の軸部6a,6b内に第2の
ベアリング25a,25bを介して回転自在に支承し、
そのまま軸部6a,6bの軸孔から外方に突出させて出
力軸26として他の装置に連絡するなどして利用するも
のである。また上記鉄心22にも軸線方向に沿ってスロ
ット23を設け、導体24を嵌着させてある。
Similar to the iron core 12 of the first squirrel cage rotor 11, the iron core 22 of the second squirrel cage rotor 21 is placed opposite to the iron core 12 of the first squirrel cage rotor 11. They are arranged with an appropriate gap between them. The second squirrel cage rotor 21 is rotatably supported within the shaft portions 6a, 6b of the inner case 6 via second bearings 25a, 25b,
It is used as an output shaft 26 by protruding outward from the shaft holes of the shaft portions 6a, 6b and connecting to other devices. Further, the iron core 22 is also provided with a slot 23 along the axial direction, into which a conductor 24 is fitted.

【0016】上記第1の導体14及び第2の導体24の
各両端は図示しないが短絡環により短絡されていること
は従来構造のかご型誘導モータと同様である。また上記
固定子鉄心3、第1のかご型回転子11の鉄心12、お
よび第2のかご型回転子21の鉄心22は、薄板鉄板又
は薄板硅素鋼板、ニッケル鋼板等の軟磁性体を使用して
いる。さらにまた、上記導体14及び導体24は銅製の
条や棒、アルミニウム製の条や棒等の良導体をスロット
13,23内に埋込み、又は鋳込み等により装着する。
Although not shown, both ends of the first conductor 14 and the second conductor 24 are short-circuited by a short-circuit ring, as in the squirrel-cage induction motor of conventional structure. In addition, the stator core 3, the core 12 of the first squirrel cage rotor 11, and the core 22 of the second squirrel cage rotor 21 are made of a soft magnetic material such as a thin iron plate, a thin silicon steel plate, or a nickel steel plate. ing. Furthermore, the conductor 14 and the conductor 24 are mounted by embedding a good conductor such as a copper strip or rod or an aluminum strip or rod into the slots 13, 23, or by casting.

【0017】次に上記構成の多重構成モータの動作につ
いて説明する。上記入力用電線19a〜19cに商用3
相電源を接続し通電すれば、固定子巻線5の図示しない
U,V,W相の各コイルに3相交流電流が流れて、固定
子鉄心3の突曲部3aに回転磁界が発生する。この回転
磁界は固定子鉄心3と第1のかご型回転子11の鉄心1
2との空隙を通過して第1のかご型回転子11の鉄心1
2に誘導され、鉄心12の外周部に設けられたスロット
13内に装着された導体14に3相誘導電流(以下単に
誘導電流と略称する)が生じ、この誘導電流により、第
1のかご型回転子11の鉄心12に回転磁界が発生する
ことにより第1のかご型回転子11が回転する。
Next, the operation of the multi-component motor having the above structure will be explained. Commercial 3 is connected to the above input electric wires 19a to 19c.
When the phase power source is connected and energized, three-phase alternating current flows through each coil of the U, V, and W phases (not shown) of the stator winding 5, and a rotating magnetic field is generated in the protruding portion 3a of the stator core 3. . This rotating magnetic field is applied to the stator core 3 and the core 1 of the first squirrel cage rotor 11.
The iron core 1 of the first squirrel cage rotor 11 passes through the gap between the
2, a three-phase induced current (hereinafter simply referred to as induced current) is generated in the conductor 14 installed in the slot 13 provided on the outer periphery of the iron core 12, and this induced current causes the first cage type When a rotating magnetic field is generated in the iron core 12 of the rotor 11, the first squirrel cage rotor 11 rotates.

【0018】次にブラシ18a〜18cおよびスリップ
リング17a〜17cを介して3相商用電源を上記第1
のかご型回転子11の巻線16に接続し通電すれば、巻
線16には図示しないU,V,W相の各コイルに3相交
流電流が流れて、鉄心12の突曲部12aに回転磁界が
発生する。この回転磁界は固定子鉄心3と第1のかご型
回転子11との作用と全く同様に、第1のかご型回転子
11と第2のかご型回転子21との空隙を通過して第2
のかご型回転子の鉄心22に誘導され、鉄心22の外周
部に設けられたスロット23に装着された導体24に誘
導電流が発生し、この誘導電流により第2のかご型回転
子21の鉄心22に回転磁界が生じて、第2のかご型回
転子21が回転する。
Next, a three-phase commercial power source is connected to the first
When the winding 16 of the squirrel-cage rotor 11 is connected and energized, three-phase alternating current flows through the U, V, and W phase coils (not shown) in the winding 16, and the protruding portion 12a of the iron core 12 flows. A rotating magnetic field is generated. This rotating magnetic field passes through the gap between the first squirrel-cage rotor 11 and the second squirrel-cage rotor 21, in exactly the same way as the action between the stator core 3 and the first squirrel-cage rotor 11, and passes through the gap between the first squirrel-cage rotor 11 and the second squirrel-cage rotor 21. 2
An induced current is induced in the iron core 22 of the squirrel cage rotor and generated in the conductor 24 installed in the slot 23 provided on the outer periphery of the iron core 22, and this induced current causes the iron core of the second squirrel cage rotor 21 to flow. A rotating magnetic field is generated at 22, causing the second squirrel cage rotor 21 to rotate.

【0019】ここで第1のかご型回転子11が固定子鉄
心3、つまり外ケース1に対して毎分3300回転し、
第1のかご型回転子11に対し、第2のかご型回転子2
1が同速の毎分3300回転すると出力軸26の回転数
は3300+3300=6600rpm の加速回転数
となる。
Here, the first squirrel cage rotor 11 rotates at 3300 revolutions per minute with respect to the stator core 3, that is, the outer case 1,
For the first squirrel cage rotor 11, the second squirrel cage rotor 2
1 rotates at the same speed of 3300 rpm, the rotation speed of the output shaft 26 becomes an accelerated rotation speed of 3300+3300=6600 rpm.

【0020】この発明の多重構造型モータの構成が、上
記のように第1のかご型回転子11と第2のかご型回転
子21が回転軸を異にし、従って軸受、ベアリングを異
にしているので、第1のベアリング8a,8b及び第2
のベアリング25a,25bは各々の内輪と外輪との回
転数の差が何れも3300rpm となり、出力軸26
の回転数が上記の高回転となるにも拘らず、加速回転に
伴う負荷は第1と第2の両ベアリング25a,25bの
軸受部8a,8bにより分担されるので、従来のような
高速回転に伴う重負荷を担うことがなくなる。また、回
転磁界も商用周波数程度の低周波で良いので、鉄心の材
質も特に特殊のものを使用する必要がなく、極めて安価
なモータとすることができる。
The configuration of the multi-structure motor of the present invention is such that the first squirrel cage rotor 11 and the second squirrel cage rotor 21 have different rotation axes as described above, and therefore have different bearings. Therefore, the first bearings 8a, 8b and the second
The difference in rotational speed between the inner and outer rings of the bearings 25a and 25b is 3300 rpm, and the output shaft 26
Even though the rotational speed is as high as mentioned above, the load accompanying the accelerated rotation is shared by the bearing parts 8a and 8b of both the first and second bearings 25a and 25b, so the high-speed rotation as in the conventional case is not achieved. This eliminates the need to carry the heavy load associated with this. Furthermore, since the rotating magnetic field can be of a low frequency such as the commercial frequency, there is no need to use a special material for the iron core, and the motor can be made at an extremely low cost.

【0021】さらにまた、第1のかご型回転子11に対
し、第2のかご型回転子21を同回転数で逆回転すると
、出力軸26の回転数が0で静止状態となる。この回転
数が0の静止状態でもトルクを有する。そして、第1の
かご型回転子11の回転数に対し、逆回転状態にある第
2のかご型回転子21の回転数を僅かに変えることによ
って、出力軸26の回転数は両者の回転数の差で円滑に
出力される。
Furthermore, when the second squirrel cage rotor 21 is rotated in the opposite direction to the first squirrel cage rotor 11 at the same rotation speed, the output shaft 26 becomes stationary at zero rotation speed. Even in a stationary state where the rotation speed is 0, it has torque. Then, by slightly changing the rotation speed of the second squirrel cage rotor 21 which is in a reverse rotation state with respect to the rotation speed of the first squirrel cage rotor 11, the rotation speed of the output shaft 26 can be adjusted to the rotation speed of both of them. The output is smooth due to the difference in

【0022】図3はこの発明の第2実施例を示し、長尺
な円筒状の外ケース31の1側内面に固定子巻線32が
巻装された固定子鉄心33を固設させ(入力用電源図示
省略)、その固定子鉄心33に空隙をおいて第1のかご
型回転子34の鉄心35を配設する。鉄心35には上記
第1実施例と同様に鉄心35のスロット内に導体36を
嵌着させる。
FIG. 3 shows a second embodiment of the present invention, in which a stator core 33 around which a stator winding 32 is wound is fixed to the inner surface of one side of a long cylindrical outer case 31 (input The iron core 35 of the first squirrel cage rotor 34 is disposed in the stator core 33 with a gap in between. A conductor 36 is fitted into the slot of the iron core 35 in the same manner as in the first embodiment.

【0023】第1のかご型回転子34の一側の回転軸3
7は外ケース31の一端の取付孔38aに第1のベアリ
ング39aを介して回転自在に支承させてある。第1の
かご型回転子34の他側はそのまま外ケース31内の他
側に延長し、両側端に軸部41a,41bを有する内ケ
ース部40を形成し、その軸部41bを外ケース31の
左端の取付孔38bに第1ベアリング39bを介して回
転自在に支承させてある。
Rotating shaft 3 on one side of first squirrel cage rotor 34
7 is rotatably supported in a mounting hole 38a at one end of the outer case 31 via a first bearing 39a. The other side of the first squirrel cage rotor 34 extends to the other side inside the outer case 31 to form an inner case part 40 having shaft parts 41a and 41b at both ends, and the shaft part 41b is connected to the outer case 31. It is rotatably supported through a first bearing 39b in a mounting hole 38b at the left end of the mounting hole 38b.

【0024】内ケース部40には、上記第1実施例と同
様に固定子巻線42が巻装された固定子鉄心43が固設
され、固定子巻線42には軸部41bに付設したスリッ
プリング44a〜44c及びブラシ45a〜45cを介
して外部の商用3相交流電源が接続されるとともに、第
2のかご型回転子46が第2のベアリング47a,47
bにて回転自在に支承されている。
A stator core 43 having a stator winding 42 wound thereon is fixedly attached to the inner case portion 40 in the same manner as in the first embodiment. An external commercial three-phase AC power source is connected via slip rings 44a to 44c and brushes 45a to 45c, and the second squirrel cage rotor 46 is connected to second bearings 47a and 47.
It is rotatably supported at b.

【0025】第2のかご型回転子46の鉄心48は上記
固定子鉄心43に適宜の空隙を保って対向位置させてあ
り、鉄心48のスロット内に導体49を設けてあること
は上記第1実施例と同様である。また第2のかご型回転
子46の回転軸50の一方を出力軸50aとして軸部4
1bの軸孔内から外ケース31の外方に突出し、他の装
置に連結させて利用するようになっている。
The iron core 48 of the second squirrel-cage rotor 46 is located opposite the stator iron core 43 with an appropriate gap therebetween, and the fact that the conductor 49 is provided in the slot of the iron core 48 is similar to the first stator core 43. This is similar to the example. Further, one of the rotating shafts 50 of the second squirrel cage rotor 46 is used as the output shaft 50a, and the shaft portion 4
It protrudes outward from the outer case 31 from within the shaft hole of 1b, and is used by being connected to other devices.

【0026】上記の構成としたので、固定子巻線32に
商用3相交流電流を供与すれば、これにより回転磁界が
生じて第1のかご型回転子34の鉄心35に装着された
導体36に誘導電流が流れ、この誘導電流により鉄心3
5に回転磁界が生ずることから第1のかご型回転子34
が回転する。
With the above configuration, when a commercial three-phase alternating current is supplied to the stator winding 32, a rotating magnetic field is generated and the conductor 36 attached to the iron core 35 of the first squirrel cage rotor 34 An induced current flows through the iron core 3.
Since a rotating magnetic field is generated in the first squirrel cage rotor 34
rotates.

【0027】次に内ケース部40内の固定子巻線42に
もブラシ45a〜45c及びスリップリング44a〜4
4cを介して同じく商用3相交流電流を供与すると、固
定子鉄心43に回転磁界が生じ、この回転磁界により第
2のかご型回転子46の鉄心48のスロット内に設けら
れた導体49に誘導電流が発生し、この誘導電流により
鉄心48に回転磁界が生じるので第2のかご型回転子4
6が回転する。
Next, brushes 45a to 45c and slip rings 44a to 4 are also attached to the stator winding 42 in the inner case portion 40.
When a commercial three-phase alternating current is similarly applied through the rotor 4c, a rotating magnetic field is generated in the stator core 43, and this rotating magnetic field induces induction in the conductor 49 provided in the slot of the core 48 of the second squirrel cage rotor 46. A current is generated, and this induced current generates a rotating magnetic field in the iron core 48, so that the second squirrel cage rotor 4
6 rotates.

【0028】従って本実施例においても、第1実施例と
同様に外ケース31に対して第1のかご型回転子34を
3300rpm で回転させ、次いで第2のかご型回転
子46を第1のかご型回転子に対し3300rpm で
回転させると、出力軸50aからは3300+3300
=6600rpm の回転出力を取出すことができる。 また、この場合も第1実施例と同様に第1のベアリング
39a,39bと第2のベアリング47a,47bとに
は回転に伴う負荷が分担されるので重負荷を担うことが
なくなり、しかも第1実施例に比しモータ外径の径小化
を図り得るので、遠心力を小さくできて全体の回転負荷
を小さくする利点がある。その他は第1実施例と同じで
ある。
Therefore, in this embodiment as well, the first squirrel cage rotor 34 is rotated at 3300 rpm with respect to the outer case 31 as in the first embodiment, and then the second squirrel cage rotor 46 is rotated at 3300 rpm. When the squirrel cage rotor is rotated at 3300 rpm, the output from the output shaft 50a is 3300+3300.
A rotational output of =6600 rpm can be extracted. Also in this case, as in the first embodiment, the load associated with rotation is shared between the first bearings 39a, 39b and the second bearings 47a, 47b, so the heavy load is not borne by the first bearings 39a, 39b and the second bearings 47a, 47b. Since the outer diameter of the motor can be made smaller than in the embodiment, there is an advantage that the centrifugal force can be reduced and the overall rotational load can be reduced. The rest is the same as the first embodiment.

【0029】以上、この発明の実施例を、かご型回転子
及び商用3相交流電流電源を使用した2重構造型モータ
について述べたが、巻線型回転子や単相交流電源の使用
にも適応できることは勿論、ヒステリシスモータ、リア
クタンスモータ、ステッピングモータ等にも適用するこ
とができ、回転子の数を増やして3重、4重の多重構造
型とすることもできる。また、用途としては研削、穿孔
用スピンドルモータ、高速ブロア用モータ、レーザ用ポ
リゴンミラーの回転装置、各種工作機械、XYテーブル
等にも適用することができる。
Although the embodiments of the present invention have been described above with respect to a dual-structure motor using a squirrel cage rotor and a commercial three-phase AC power source, it is also applicable to use with a wound rotor and a single-phase AC power source. Of course, it can also be applied to hysteresis motors, reactance motors, stepping motors, etc., and the number of rotors can be increased to create triple or quadruple structure types. It can also be applied to spindle motors for grinding and drilling, motors for high-speed blowers, rotating devices for polygon mirrors for lasers, various machine tools, XY tables, etc.

【0030】[0030]

【発明の効果】以上のごとく、この発明に係わる多重構
造型モータは、誘導電導機の固定子巻線が巻装された固
定子鉄心に対向して同心状に第1の回転子を設け、この
第1の回転子の鉄心に第2の固定子巻線を巻装し、第1
の回転子の鉄心に対向させて第2の回転子を設けたので
、商用電源の低周波数でも高速回転が得られるとともに
、複数の回転子を同軸線上に回転軸を異にして順次配設
したので、加速回転に伴う多大の負荷が各回転子に分担
されるので、軸受部分に高速回転用の大きなものを使用
する必要もなく、使用上便利で、かつ安価なモータとす
ることができる。また、一方の回転子を逆転させること
により超低速回転が得られ、超精密加工等に応用できる
。さらに、慣性力なしで正逆変換が円滑にできる。
As described above, the multi-structure motor according to the present invention has a first rotor arranged concentrically opposite to a stator core around which stator windings of an induction machine are wound. A second stator winding is wound around the core of the first rotor, and the first
Since a second rotor was installed opposite the iron core of the rotor, high-speed rotation was obtained even at the low frequency of the commercial power supply, and multiple rotors were arranged sequentially on the same axis with different rotation axes. Therefore, a large load due to accelerated rotation is shared between each rotor, so there is no need to use a large bearing for high-speed rotation, and the motor can be convenient to use and inexpensive. Furthermore, by rotating one rotor in the opposite direction, ultra-low speed rotation can be obtained, which can be applied to ultra-precision machining, etc. Furthermore, forward and reverse conversion can be smoothly performed without inertial force.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明の実施第1例を示す多重構造型モータ
の縦断面図である。
FIG. 1 is a longitudinal sectional view of a multi-structure motor showing a first embodiment of the present invention.

【図2】図1のイ−イ線に沿って切断した断面図である
FIG. 2 is a sectional view taken along line E--I in FIG. 1;

【図3】この発明の実施第2例を示す多重構造型モータ
の縦断面図である。
FIG. 3 is a longitudinal sectional view of a multi-structure motor showing a second example of implementation of the present invention.

【図4】従来例としてのかご型誘導モータの概略縦断面
図である。
FIG. 4 is a schematic longitudinal sectional view of a squirrel cage induction motor as a conventional example.

【符号の説明】[Explanation of symbols]

1    外ケース 3    固定子鉄心 5    固定子巻線 6    内ケース 11  第1のかご型回転子 12  鉄心 16  巻線 21  第2のかご型回転子 22  鉄心 24  導体 1 Outer case 3 Stator core 5 Stator winding 6 Inner case 11 First squirrel cage rotor 12 Iron core 16 Winding wire 21 Second squirrel cage rotor 22 Iron core 24 Conductor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  モータの固定子巻線が巻装された固定
子鉄心に対向して同心状に第1の回転子を設け、この第
1の回転子の鉄心に第2の固定子巻線を巻装し、上記第
1の回転子の鉄心に対向させて、第2の回転子を、第1
の回転子の同軸線上に回転軸を異にして順次配設してな
ることを特徴とする多重構造型モータ。
Claim 1: A first rotor is provided concentrically opposite to a stator core around which a stator winding of a motor is wound, and a second stator winding is disposed on the core of the first rotor. is wound around the core of the first rotor, and the second rotor is wound around the core of the first rotor.
A multi-structure motor characterized in that different rotation axes are sequentially arranged on a coaxial line of a rotor.
JP10262291A 1991-05-08 1991-05-08 Multi-structure motor Expired - Fee Related JP3253980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10262291A JP3253980B2 (en) 1991-05-08 1991-05-08 Multi-structure motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10262291A JP3253980B2 (en) 1991-05-08 1991-05-08 Multi-structure motor

Publications (2)

Publication Number Publication Date
JPH04334953A true JPH04334953A (en) 1992-11-24
JP3253980B2 JP3253980B2 (en) 2002-02-04

Family

ID=14332348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10262291A Expired - Fee Related JP3253980B2 (en) 1991-05-08 1991-05-08 Multi-structure motor

Country Status (1)

Country Link
JP (1) JP3253980B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031857A1 (en) * 1998-11-20 2000-06-02 Hitachi, Ltd. Wound-rotor induction motor and energy conversion facility for variable speed electric machine
JP2003507995A (en) * 1999-08-13 2003-02-25 オートモウティヴ、モーション、テクノロジ、リミティド Assembly of rotatable members
KR100480124B1 (en) * 2002-10-26 2005-04-06 엘지전자 주식회사 Shading coil type single-phase induction motor
KR100480123B1 (en) * 2002-10-26 2005-04-07 엘지전자 주식회사 Shading coil type single-phase induction motor
JP2012075265A (en) * 2010-09-29 2012-04-12 Aisin Seiki Co Ltd Multiplex rotor motor
WO2012073889A1 (en) * 2010-12-02 2012-06-07 株式会社マキタ Power tool
JP2012115964A (en) * 2010-12-02 2012-06-21 Makita Corp Power tool
JP2013039628A (en) * 2011-08-11 2013-02-28 Makita Corp Motor-driven tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101201729B1 (en) * 2012-04-03 2012-11-15 이춘우 drive apparatus with variable speed

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031857A1 (en) * 1998-11-20 2000-06-02 Hitachi, Ltd. Wound-rotor induction motor and energy conversion facility for variable speed electric machine
JP2003507995A (en) * 1999-08-13 2003-02-25 オートモウティヴ、モーション、テクノロジ、リミティド Assembly of rotatable members
KR100480124B1 (en) * 2002-10-26 2005-04-06 엘지전자 주식회사 Shading coil type single-phase induction motor
KR100480123B1 (en) * 2002-10-26 2005-04-07 엘지전자 주식회사 Shading coil type single-phase induction motor
JP2012075265A (en) * 2010-09-29 2012-04-12 Aisin Seiki Co Ltd Multiplex rotor motor
WO2012073889A1 (en) * 2010-12-02 2012-06-07 株式会社マキタ Power tool
JP2012115964A (en) * 2010-12-02 2012-06-21 Makita Corp Power tool
US9731410B2 (en) 2010-12-02 2017-08-15 Makita Corporation Power tool
JP2013039628A (en) * 2011-08-11 2013-02-28 Makita Corp Motor-driven tool

Also Published As

Publication number Publication date
JP3253980B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
US6819026B2 (en) Induction motor
US5631512A (en) Synchronous motor having magnetic poles of permanent magnet and magnetic poles of a soft magnetic material
US7134180B2 (en) Method for providing slip energy control in permanent magnet electrical machines
US5804896A (en) High speed spindle motor and apparatus equipped with high speed spindle motor
US5525851A (en) Apparatus for producing high-speed rotation
JP3466591B2 (en) Rotating electric machine
US3758800A (en) Reluctance synchronous motors and rotors for same
US5187401A (en) Combination hysteresis-reluctance-permanent-magnet motor
US6891301B1 (en) Simplified hybrid-secondary uncluttered machine and method
JPH04334953A (en) Multiple structure type motor
JP2003134788A (en) Permanent magnet rotary electric machine
US3243620A (en) Synchronous induction motors having an improved rotor construction
JP4212982B2 (en) Rotating electric machine
JP4177189B2 (en) Rotating electric machine and pulley apparatus using the rotating electric machine
US2103165A (en) Self starting synchronous inductor motor
US1491441A (en) High-speed alternating-current dynamo-electric machine
JPH0332338A (en) Magnetic bearing formed integrally with motor
CN203151303U (en) Power drive device of magnetic suspension bearing
US3848146A (en) Ac motor
JP3508298B2 (en) Shape of rotor pole in salient pole type rotating machine
US1947163A (en) One pole motor
JP3380342B2 (en) Induction motor
JPH1084661A (en) Magnetic levitation motor
JPS58224547A (en) Low-inertia induction motor for vvvf control
JPH05146120A (en) Motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees