JPH04334703A - Power recovering device of fluidized catalytic cracker - Google Patents

Power recovering device of fluidized catalytic cracker

Info

Publication number
JPH04334703A
JPH04334703A JP10273191A JP10273191A JPH04334703A JP H04334703 A JPH04334703 A JP H04334703A JP 10273191 A JP10273191 A JP 10273191A JP 10273191 A JP10273191 A JP 10273191A JP H04334703 A JPH04334703 A JP H04334703A
Authority
JP
Japan
Prior art keywords
rotation speed
regulating valve
bypass flow
steam turbine
speed adjustment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10273191A
Other languages
Japanese (ja)
Inventor
Susumu Kono
進 河野
Kazuko Takeshita
和子 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10273191A priority Critical patent/JPH04334703A/en
Publication of JPH04334703A publication Critical patent/JPH04334703A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To prevent the equipment breakage accompanied by revolution number increase, reduce the fluctuation of flow rate and pressure, and thus secure the state operation all the time by bypassing the exhaust gas from a regenerator which is flowed into a gas expander and providing a flow rate regulating valve on the bypass flow passage. CONSTITUTION:The revolution number control of a steam turbine 4 is performed by conducting the opening/closing operation of a governor 8 (a steam quantity regulating valve) on the basis of a revolution number regulating signal outputted from a revolution number regulating meter 21. Exhaust gas that is from a regeneration tower and run into a gas expander 2, is bypassed, and a bypass flow regulating valve 19 is provided on its bypass flow passage 18. In the case of a generator 5 load interception condition being detected by means of a load interception trip detector 25, the revolution number regulating meter 21 revolution number regulating signal is changed into the bypass flow regulating valve 19 from the governor 8 by means of a signal changeover device 26. The revolution number control of a steam turbine 4 is conducted by the opening/closing operation of the valve 19.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、石油を精製する流動接
触分解装置(FCC装置:Fluid  Catali
tic  Cracking )における動力回収装置
に関する。
[Industrial Application Field] The present invention relates to a fluid catalytic cracking apparatus (FCC apparatus) for refining petroleum.
tic cracking).

【0002】0002

【従来の技術】図3に従来のFCC動力回収装置の一例
を示す。図3において、ガスエキスパンダ2は、FCC
装置にある再生塔1から放出される排ガスを回転エネル
ギに変換して動力回収を行う。圧縮機3は、空気吸入配
管23より吸入された空気を圧縮し、その圧縮空気を再
生搭1に供給する。スチームタービン4は、圧縮機3と
発電機5との間に接続され、回転数を制御する。発電機
5は、ガスエキスパンダ2、圧縮機3、スチームタービ
ン4に一軸で接続されて電力回収を行う。
2. Description of the Related Art FIG. 3 shows an example of a conventional FCC power recovery device. In FIG. 3, the gas expander 2 is FCC
Exhaust gas released from the regenerator 1 in the device is converted into rotational energy to recover power. The compressor 3 compresses the air sucked through the air suction pipe 23 and supplies the compressed air to the regeneration tower 1 . Steam turbine 4 is connected between compressor 3 and generator 5, and controls the rotation speed. The generator 5 is uniaxially connected to the gas expander 2, compressor 3, and steam turbine 4 to recover power.

【0003】圧力調整弁7は、ガスエキスパンダ入口配
管12に取り付けられ、ガスエキスパンダ2に供給され
るガスの圧力を調整する。ガバナ(スチーム量調整弁)
8は、スチームタービン4のスチーム供給配管13に取
り付けられ、スチームタービン4に供給されるスチーム
量を調整する。流量調整弁9は、再生搭1への空気流入
配管14に取り付けられ、再生塔1に供給される空気流
量を調整する。圧力計11は、再生搭1に取り付けられ
、FCC圧力を検出する。
The pressure regulating valve 7 is attached to the gas expander inlet pipe 12 and regulates the pressure of the gas supplied to the gas expander 2. Governor (steam amount adjustment valve)
8 is attached to the steam supply pipe 13 of the steam turbine 4 and adjusts the amount of steam supplied to the steam turbine 4. The flow rate adjustment valve 9 is attached to the air inflow pipe 14 to the regeneration tower 1 and adjusts the flow rate of air supplied to the regeneration tower 1. A pressure gauge 11 is attached to the regeneration tower 1 and detects the FCC pressure.

【0004】流量計15は、空気流入配管14に流れる
空気流量を検出する。回転計16は、スチームタービン
4の回転数を検出する。圧力調節計20は、圧力計11
の検出信号に基づいて圧力調整弁7の弁開度を調節する
。回転数調節計21は、回転計16の検出信号に基づい
てガバナ8の弁開度を調節する。流量調節計22は、流
量計15の検出信号に基づいて流量調整弁9の弁開度を
調節する。抽気復水器24は、スチームタービン4に接
続されている。また、12,13,14,17および2
3は、それぞれ各種配管である。
[0004] The flow meter 15 detects the flow rate of air flowing into the air inflow pipe 14. The tachometer 16 detects the rotation speed of the steam turbine 4. The pressure regulator 20 is the pressure gauge 11
The valve opening degree of the pressure regulating valve 7 is adjusted based on the detection signal. The rotation speed controller 21 adjusts the valve opening degree of the governor 8 based on the detection signal from the rotation meter 16. The flow rate regulator 22 adjusts the opening degree of the flow rate regulating valve 9 based on the detection signal from the flow meter 15 . The extraction condenser 24 is connected to the steam turbine 4. Also, 12, 13, 14, 17 and 2
3 are various types of piping.

【0005】このようにして構成されるFCC動力回収
装置において、圧縮機3によって圧縮された圧縮空気は
、配管14を介して再生搭1に一定に供給され、燃焼反
応する。このとき、再生搭1から得られる排ガスは、配
管12を介してガスエキスパンダ2に入り、ポリトロー
プ変化により回転エネルギに変換され、配管17を介し
て排ガス回収装置に回収される。
[0005] In the FCC power recovery system constructed in this manner, compressed air compressed by the compressor 3 is constantly supplied to the regeneration tower 1 via the pipe 14, where it undergoes a combustion reaction. At this time, the exhaust gas obtained from the regeneration tower 1 enters the gas expander 2 via the pipe 12, is converted into rotational energy by polytropic change, and is recovered via the pipe 17 to the exhaust gas recovery device.

【0006】再生搭1の圧力は、圧力調整弁7によって
一定の圧力となるように制御されている。ガスエキスパ
ンダ2、圧縮機3、スチームタービン4、発電機5は一
軸で接続されており(これらの構成機器をトレインと称
す)、圧縮機3で消費された動力をガスエキスパンダ2
で回収し、スチームタービン4の回転により発電機5を
駆動してトレインバランスをとり、トレイン回転数を常
に一定に保つ。例えばガスエキスパンダ出力:+650
0kw,圧縮機消費動力:−5000kw,スチームタ
ービン動力:+8000kw,発電機負荷:−9500
kwである。
The pressure in the regeneration column 1 is controlled by a pressure regulating valve 7 to be a constant pressure. The gas expander 2, compressor 3, steam turbine 4, and generator 5 are connected by a single shaft (these components are called a train), and the power consumed by the compressor 3 is transferred to the gas expander 2.
The steam turbine 4 rotates to drive the generator 5 to balance the train and keep the train rotational speed constant. For example, gas expander output: +650
0kw, compressor power consumption: -5000kw, steam turbine power: +8000kw, generator load: -9500
It is kw.

【0007】ここで、発電機5の負荷が減少すると、ス
チームタービン4の回転数が上昇する。これを防止する
ためには、ガバナ弁8を絞ってスチームタービン4に供
給されるスチーム量を少なくし、スチームタービン4の
出力を減少させる必要がある。このようにトレイン回転
数を一定に制御することは、発電機5の負荷に応じてス
チーム量を調節することにつながる。
[0007] Here, when the load on the generator 5 decreases, the rotational speed of the steam turbine 4 increases. In order to prevent this, it is necessary to throttle the governor valve 8 to reduce the amount of steam supplied to the steam turbine 4, thereby reducing the output of the steam turbine 4. Controlling the train rotation speed to be constant in this way leads to adjusting the amount of steam according to the load of the generator 5.

【0008】上記のような従来のFCC動力回収装置に
おいて、再生塔1に供給される圧縮空気の流量および再
生塔1の圧力をほぼ一定とする場合、回転数の調整はガ
バナ弁8の開閉によりスチーム量を増減して、スチーム
タービン4の出力を上下させることで行なっていた。
In the conventional FCC power recovery device as described above, when the flow rate of compressed air supplied to the regeneration tower 1 and the pressure of the regeneration tower 1 are kept approximately constant, the rotation speed is adjusted by opening and closing the governor valve 8. This was done by increasing or decreasing the amount of steam and increasing or decreasing the output of the steam turbine 4.

【0009】[0009]

【発明が解決しようとする課題】上記したように、従来
、再生塔1に流入される空気流量と再生塔圧力をほぼ一
定に保つため、トレイン回転数の調整をスチームタービ
ン4に供給されるスチーム量の調整により行なっていた
。しかしながら、この方法では、発電機5の負荷遮断に
より、その負荷がゼロになった場合、ガバナ弁8を全閉
にしてスチームタービン4の出力をゼロにしても、圧縮
機3の消費動力に比べてガスエキスパンダ2の回収動力
が大きくなる。このため、トレイン回転数が許容範囲を
越えて上昇し、機器の破損を招くことになる。
[Problems to be Solved by the Invention] As described above, conventionally, in order to keep the air flow rate flowing into the regeneration tower 1 and the regeneration tower pressure approximately constant, the train rotational speed has been adjusted by adjusting the speed of the steam supplied to the steam turbine 4. This was done by adjusting the amount. However, in this method, when the load of the generator 5 becomes zero due to load interruption, even if the governor valve 8 is fully closed and the output of the steam turbine 4 is reduced to zero, the power consumption of the compressor 3 is still Therefore, the recovery power of the gas expander 2 increases. As a result, the train rotational speed increases beyond the allowable range, resulting in damage to the equipment.

【0010】本発明は上記のような点に鑑みなされたも
ので、発電負荷の大幅な減少が生じた場合でも、トレイ
ン回転数を安定に保つことのできる流動接触分解装置の
動力回収装置を提供することを目的とする。
The present invention has been made in view of the above points, and provides a power recovery device for a fluid catalytic cracker that can maintain a stable train rotation speed even when the power generation load is significantly reduced. The purpose is to

【0011】[0011]

【課題を解決するための手段】本発明は、スチームター
ビンの回転数に応じて出力される回転数調節信号に基づ
いてスチーム量調整弁を開閉操作し、スチームタービン
の回転数制御を行う流動接触分解装置の動力回収装置に
おいて、ガスエキスパンダに流入される再生塔からの排
ガスをバイパスし、そのバイパス流路上にバイパス流量
調整弁を設けることにより、発電機の負荷遮断状態が検
出された場合に、回転数調節信号をスチーム量調整弁か
らバイパス流量調整弁に切替え、このバイパス流量調整
弁の開閉操作によりスチームタービンの回転数制御を行
う。
[Means for Solving the Problems] The present invention provides a fluid contact system that controls the rotational speed of a steam turbine by opening and closing a steam amount regulating valve based on a rotational speed adjustment signal output in accordance with the rotational speed of a steam turbine. In the power recovery device of the cracker, the exhaust gas from the regeneration tower that flows into the gas expander is bypassed, and a bypass flow rate adjustment valve is provided on the bypass flow path. , the rotation speed adjustment signal is switched from the steam amount adjustment valve to the bypass flow rate adjustment valve, and the rotation speed of the steam turbine is controlled by opening and closing the bypass flow rate adjustment valve.

【0012】0012

【作用】上記の構成によれば、発電機負荷遮断により発
電負荷がゼロになった場合、スチームタービンの出力を
ゼロにすべくスチーム量調整弁を全閉にすると同時に、
余分な回収動力を減少させるためにバイパス流量調整弁
を開いてガスエキスパンダに流れる排ガス量を少なくで
きる。これにより、ガスエキスパンダの回収動力を小さ
くして、トレイン回転数の上昇を防ぐことができる。
[Operation] According to the above configuration, when the power generation load becomes zero due to generator load cutoff, the steam amount regulating valve is fully closed in order to reduce the output of the steam turbine to zero, and at the same time,
In order to reduce excess recovery power, the amount of exhaust gas flowing into the gas expander can be reduced by opening the bypass flow control valve. This makes it possible to reduce the recovery power of the gas expander and prevent the train rotational speed from increasing.

【0013】[0013]

【実施例】以下、図面を参照して本発明の一実施例に係
る流動接触分解装置の動力回収装置を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A power recovery device for a fluid catalytic cracking apparatus according to an embodiment of the present invention will be described below with reference to the drawings.

【0014】図1にその構成を示す。なお、図1におい
て、図3と同一の部分には、同一符号を付し、以下の説
明は省略するものとする。本実施例では、ガスエキスパ
ンダ2の入口流路に取り付けられた圧力調整弁7の後方
にバイパス流路18を設け、このバイパス流路18上に
バイパス流量調整弁19を備えている。バイパス流路1
8は、ガスエキスパンダ2に流入される再生塔1からの
排ガスをバイパスする。バイパス流量調整弁19は、回
転数調節計21から出力される回転数調節信号によって
開閉操作され、バイパス流路18によってバイパスされ
る排ガスの流量を調整する。
FIG. 1 shows its configuration. Note that in FIG. 1, the same parts as in FIG. 3 are given the same reference numerals, and the following explanation will be omitted. In this embodiment, a bypass passage 18 is provided behind the pressure regulating valve 7 attached to the inlet passage of the gas expander 2, and a bypass flow regulating valve 19 is provided on the bypass passage 18. Bypass flow path 1
8 bypasses the exhaust gas from the regeneration tower 1 that flows into the gas expander 2. The bypass flow rate adjustment valve 19 is opened and closed by a rotation speed adjustment signal output from the rotation speed controller 21, and adjusts the flow rate of the exhaust gas bypassed by the bypass passage 18.

【0015】また、同実施例では、負荷遮断トリップ検
出器25および信号切替器26を備えている。負荷遮断
トリップ検出器25は、発電機5または発電システムに
取り付けられ、発電機5の負荷遮断状態を検出して、負
荷遮断トリップ信号を信号切替器26に出力する。信号
切替器26は、負荷遮断トリップ検出器25の検出結果
に応じて回転数調節計21から出力される回転数調節信
号をガバナ(スチーム量調整弁)8またはバイパス流量
調整弁19に選択的に供給するものであって、負荷遮断
トリップ検出器25により発電機5の負荷遮断状態が検
出された場合に、回転数調節信号をバイパス流量調整弁
19に供給する。
The same embodiment also includes a load shedding trip detector 25 and a signal switch 26. The load shedding trip detector 25 is attached to the generator 5 or the power generation system, detects the load shedding state of the generator 5, and outputs a load shedding trip signal to the signal switch 26. The signal switch 26 selectively transmits the rotation speed adjustment signal output from the rotation speed controller 21 to the governor (steam amount adjustment valve) 8 or the bypass flow rate adjustment valve 19 according to the detection result of the load shedding trip detector 25. When the load shedding trip detector 25 detects a load shedding state of the generator 5, a rotation speed adjustment signal is supplied to the bypass flow rate regulating valve 19.

【0016】上記のような構成からなる動力回収装置で
は、通常運転時においては発電負荷に応じてスチームタ
ービン4の流入スチーム量を調整してトレインパワーバ
ランスをとり、トレイン回転数を一定に保つ。ここで、
発電負荷が遮断すると、発電負荷分だけ負荷が減少し、
トレイン回転数が上昇するので、これを防止するため、
回収する動力を減らす必要がある。このような場合には
、ガバナ弁8を全閉にしてスチームタービン4による動
力回収をゼロにし、さらにバイパス流量調整弁19を開
いて、ガスエキスパンダ2に流れる排ガスを少なくし、
ガスエキスパンダ2による動力回収分を減少させる。
In the power recovery device configured as described above, during normal operation, the amount of steam flowing into the steam turbine 4 is adjusted according to the power generation load to balance the train power and keep the train rotational speed constant. here,
When the power generation load is cut off, the load decreases by the amount of power generation load,
The train rotation speed will increase, so to prevent this,
It is necessary to reduce the power to be recovered. In such a case, the governor valve 8 is fully closed to reduce power recovery by the steam turbine 4 to zero, and the bypass flow rate adjustment valve 19 is further opened to reduce the amount of exhaust gas flowing into the gas expander 2.
The amount of power recovered by the gas expander 2 is reduced.

【0017】例えば通常運転時において、ガスエキスパ
ンダ出力:+6500kw,圧縮機消費動力:−500
0kw,スチームタービン動力:+8000kw,発電
機負荷:−9500kwでトレインパワーバランスをと
って回転数を一定に保った状態から、発電負荷遮断によ
り発電機負荷の9500kwがゼロとなり消費動力が減
少したとする。このような場合、ガバナ弁8は全閉にな
り、スチームタービン動力は8000kwからゼロにな
る。しかし、トレインパワーバランスをとると、エキス
パンダ回収動力が1500kw余分となる。ここで、バ
イパス流量調整弁19が負荷遮断トリップ信号を受けて
通常運転の全閉の状態から開状態になる。これにより、
バイパス流路18に排ガスが流れ、ガスエキスパンダ2
の通常流量が減少し、そのエキスパンダ動力が必要動力
以下に抑えられる。
For example, during normal operation, gas expander output: +6500 kW, compressor power consumption: -500
Suppose that from a state where the train power is balanced and the rotation speed is kept constant with 0kw, steam turbine power: +8000kw, and generator load: -9500kw, the generator load of 9500kw becomes zero due to generation load cutoff, and the power consumption decreases. . In such a case, the governor valve 8 becomes fully closed, and the steam turbine power decreases from 8000 kW to zero. However, if the train power is balanced, the expander recovery power will be 1500kW extra. Here, the bypass flow rate regulating valve 19 receives the load cutoff trip signal and changes from the fully closed state of normal operation to the open state. This results in
Exhaust gas flows into the bypass flow path 18, and the gas expander 2
The normal flow rate of the expander is reduced, and the expander power is suppressed below the required power.

【0018】この様子を図2に示す。図2に示すように
、負荷遮断トリップ検出器25によって負荷遮断状態が
検出されると、信号切替器26は負荷遮断トリップ信号
により回転数調節計21の回転数調節信号をバイパス流
量調整弁19に供給する。これにより、通常のガバナ8
による制御からバイパス流量調整弁19による制御に切
り替わり、発電負荷遮断のように負荷が大きく減少する
ような異常状態においても、トレインパワーバランスを
一定に保つことができ、トレイン回転数の上昇を防いで
一定に制御できるのみか、圧縮機空気流量や圧力変動を
少なくして安定した運転ができる。
FIG. 2 shows this situation. As shown in FIG. 2, when the load shedding state is detected by the load shedding trip detector 25, the signal switch 26 sends the rotation speed adjustment signal of the rotation speed controller 21 to the bypass flow rate regulating valve 19 in response to the load shedding trip signal. supply This allows the normal governor 8
Control is switched from control by the bypass flow rate adjustment valve 19 to control by the bypass flow rate adjustment valve 19, and even in abnormal conditions such as power generation load cutoff where the load is greatly reduced, the train power balance can be kept constant and the train rotation speed can be prevented from increasing. Not only can it be controlled at a constant level, but stable operation can be achieved by reducing compressor air flow rate and pressure fluctuations.

【0019】[0019]

【発明の効果】以上のように本発明によれば、発電機負
荷遮断のような大幅な負荷減少に対して、回転数制御を
ガバナ弁からガスエキスパンダのバイパス流量調整弁に
移行することで、トレイン回転数の上昇を確実に抑える
ことができる。これにより、回転数上昇による機器破損
の懸念を解消できると共に、流量、圧力変動を少なくし
、常に安定運転を保証することができるものである。
[Effects of the Invention] As described above, according to the present invention, in response to a significant load reduction such as generator load cutoff, rotation speed control is transferred from the governor valve to the gas expander bypass flow rate adjustment valve. , it is possible to reliably suppress the increase in train rotation speed. This eliminates concerns about equipment damage due to increased rotational speed, reduces flow rate and pressure fluctuations, and ensures stable operation at all times.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例に係る動力回収装置の模式的
構成を示す図。
FIG. 1 is a diagram showing a schematic configuration of a power recovery device according to an embodiment of the present invention.

【図2】同実施例の信号切替器の模式的構成を示す図。FIG. 2 is a diagram showing a schematic configuration of a signal switch according to the same embodiment.

【図3】従来の動力回収装置の模式的構成を示す図。FIG. 3 is a diagram showing a schematic configuration of a conventional power recovery device.

【符号の説明】[Explanation of symbols]

1…再生搭、2…ガスエキスパンダ、3…圧縮機、4…
スチームタービン、5…発電機、7…圧力調整弁、8…
ガバナ、9…流量調整弁、11…圧力計、12…ガスエ
キスパンダ入口配管、13…スチーム供給配管、14…
空気流入配管、15…流量計、16…回転数、17…配
管、18…バイパス流路、19…バイパス流量調整弁、
20…圧力調節計、21…回転数調節計、22…流量調
節計、23…空気流入配管、24…抽気復水器、25…
負荷遮断トリップ検出器、26…信号切替器。
1... Regeneration tower, 2... Gas expander, 3... Compressor, 4...
Steam turbine, 5... Generator, 7... Pressure regulating valve, 8...
Governor, 9...Flow rate adjustment valve, 11...Pressure gauge, 12...Gas expander inlet piping, 13...Steam supply piping, 14...
Air inflow piping, 15...flow meter, 16...rotation speed, 17...piping, 18...bypass flow path, 19...bypass flow rate adjustment valve,
20... Pressure controller, 21... Rotation speed controller, 22... Flow rate controller, 23... Air inflow piping, 24... Bleed air condenser, 25...
Load shedding trip detector, 26...signal switch.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  再生塔に圧縮空気を送り込む圧縮機と
、この圧縮機によって送られる圧縮空気により上記再生
塔から得られる排ガスの内部エネルギを回転エネルギに
変換して動力回収を行うガスエキスパンダと、上記圧縮
機および上記ガスエキスパンダと一軸で接続されて電力
回収を行う発電機と、上記圧縮機と上記発電機との間に
接続されて回転数制御を行うスチームタービンと、この
スチームタービンの回転数を検出する回転数検出手段と
、この回転数検出手段の検出結果に応じて上記スチーム
タービンの回転数を調節するための回転数調節信号を出
力する回転数調節手段と、この回転数調節手段から出力
される上記回転数調節信号によって開閉操作され、上記
スチームタービンに供給されるスチーム量を調整するス
チーム量調整弁と、上記ガスエキスパンダに流入される
上記再生塔からの排ガスをバイパスするバイパス手段と
、上記回転数調節手段から出力される上記回転数調節信
号によって開閉操作され、上記バイパス手段によってバ
イパスされる排ガスの流量を調整するバイパス流量調整
弁と、上記発電機の負荷遮断状態を検出する負荷遮断状
態検出手段と、この負荷遮断状態検出手段の検出結果に
応じて上記回転数調節手段から出力される上記回転数調
節信号を上記スチーム量調整弁または上記バイパス流量
調整弁に選択的に供給する切替手段であって、上記負荷
遮断状態検出手段によって上記発電機の負荷遮断状態が
検出された場合に、上記回転数調節信号を上記バイパス
流量調整弁に供給する切替手段とを具備したことを特徴
とする流動接触分解装置の動力回収装置。
Claim 1: A compressor that sends compressed air to a regeneration tower, and a gas expander that uses the compressed air sent by the compressor to convert internal energy of exhaust gas obtained from the regeneration tower into rotational energy and recover power. , a generator connected to the compressor and the gas expander in a single shaft to recover power; a steam turbine connected between the compressor and the generator to control the rotation speed; A rotation speed detection means for detecting the rotation speed, a rotation speed adjustment means for outputting a rotation speed adjustment signal for adjusting the rotation speed of the steam turbine according to the detection result of the rotation speed detection means, and the rotation speed adjustment. a steam amount adjustment valve that is opened and closed by the rotation speed adjustment signal outputted from the means and that adjusts the amount of steam supplied to the steam turbine; and a steam amount adjustment valve that bypasses the exhaust gas from the regeneration tower that flows into the gas expander. a bypass means; a bypass flow regulating valve that is opened and closed by the rotational speed adjustment signal outputted from the rotational speed adjustment means and adjusts the flow rate of exhaust gas bypassed by the bypass means; A load shedding state detection means to detect the load shedding state and selectively transmitting the rotational speed adjustment signal outputted from the rotational speed adjustment means to the steam amount regulating valve or the bypass flow regulating valve according to the detection result of the load shedding state detection means. switching means for supplying the rotation speed adjustment signal to the bypass flow rate regulating valve when the load shedding state of the generator is detected by the load shedding state detecting means. A power recovery device for a fluid catalytic cracking device characterized by:
JP10273191A 1991-05-08 1991-05-08 Power recovering device of fluidized catalytic cracker Withdrawn JPH04334703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10273191A JPH04334703A (en) 1991-05-08 1991-05-08 Power recovering device of fluidized catalytic cracker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10273191A JPH04334703A (en) 1991-05-08 1991-05-08 Power recovering device of fluidized catalytic cracker

Publications (1)

Publication Number Publication Date
JPH04334703A true JPH04334703A (en) 1992-11-20

Family

ID=14335398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10273191A Withdrawn JPH04334703A (en) 1991-05-08 1991-05-08 Power recovering device of fluidized catalytic cracker

Country Status (1)

Country Link
JP (1) JPH04334703A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528276A (en) * 2008-05-06 2011-11-17 インビスタ テクノロジーズ エス エイ アール エル Power recovery
JP2021516741A (en) * 2018-03-16 2021-07-08 ユーオーピー エルエルシー Process improvement by adding power recovery turbine equipment to existing processes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011528276A (en) * 2008-05-06 2011-11-17 インビスタ テクノロジーズ エス エイ アール エル Power recovery
JP2021516741A (en) * 2018-03-16 2021-07-08 ユーオーピー エルエルシー Process improvement by adding power recovery turbine equipment to existing processes
EP3766168A4 (en) * 2018-03-16 2021-11-24 Uop Llc Process improvement through the addition of power recovery turbine equipment in existing processes

Similar Documents

Publication Publication Date Title
US6223520B1 (en) Gas turbine combined plant, method of operating the same, and steam-cooling system for gas turbine hot section
JPH04334703A (en) Power recovering device of fluidized catalytic cracker
US6155076A (en) Method to optimize thermodynamic expansion in gas liquefaction processes
CN102953837B (en) Gas turbine apparatus, controlling means thereof, and control method thereof
JP3612153B2 (en) City gas line energy recovery turbine controller
CA2392384C (en) Operation method for combined plant
JP4918436B2 (en) Gas turbine fuel gas supply device
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPS62223421A (en) Sliding pressure operation control method for coal gasification compound power generating plant
JP3137498B2 (en) Fuel gas supply device for gas turbine and control method therefor
JPS63143305A (en) Turbine overload preventing method
JPH03199892A (en) Control of amount of supply gas for waste heat boiler
JPH0565804A (en) Control method for two-stage gas mixing type turbo-generator
JPS6139494B2 (en)
JPS60108509A (en) Steam turbine protecting device in combined cycle plant
SU983322A1 (en) System for controlling supercharging compressor of high pressure boiler
JP3219584B2 (en) Gas turbine output control device
JPS63279001A (en) Method of controlling temperature of exhaust gas from boiler
JPH05118297A (en) Control device of compressor
JPS6291608A (en) Control device for power plant
JPS62241990A (en) Generation plant coal gasification power
JPS6349523Y2 (en)
JPH11351504A (en) Boiler controlling device
JPS5815683B2 (en) Boiler pump turbine
JPH0337333A (en) Power generator utilizing compressed air

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806