JPH04333340A - Method for making fine crystalline grain in non-magnetic steel cylindrical forging - Google Patents

Method for making fine crystalline grain in non-magnetic steel cylindrical forging

Info

Publication number
JPH04333340A
JPH04333340A JP10018991A JP10018991A JPH04333340A JP H04333340 A JPH04333340 A JP H04333340A JP 10018991 A JP10018991 A JP 10018991A JP 10018991 A JP10018991 A JP 10018991A JP H04333340 A JPH04333340 A JP H04333340A
Authority
JP
Japan
Prior art keywords
forging
ring
forged
cylindrical
magnetic steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10018991A
Other languages
Japanese (ja)
Other versions
JP2768849B2 (en
Inventor
Yoshio Kitamura
北村 善男
Kikuo Morita
森田 喜久男
Katsuaki Suzuki
克明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP10018991A priority Critical patent/JP2768849B2/en
Publication of JPH04333340A publication Critical patent/JPH04333340A/en
Application granted granted Critical
Publication of JP2768849B2 publication Critical patent/JP2768849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To eliminate crack and dead metal part and further, to secure fine crystal grains by executing two process forging of ring forging line instead of mandrel forging and also, work with dies (tool). CONSTITUTION:The forging is composed of the ring forging process, by which a cylindrical raw material 12 is formed into the ring 14 having diameter larger than the finished diameter by 25-35% without restricting to circular direction and axial direction of the cylindrical raw material 12, and the forging process, by which this outer peripheral face is forged to the circular direction while rotating this ring 14 to the circular direction after this ring forging. In this ring forging process, as the cylindrical raw material 12 is forged without restricting the circular direction and the axial direction, the development of crack to the end face is restrained and the development of dead metal part is made to be as less as possible.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、非磁性鋼円筒鍛造品の
結晶粒微細化方法に関し、例えば、発電機用保持リング
の製造に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for refining the grains of a cylindrical forged product of non-magnetic steel, and is used, for example, in the production of a retaining ring for a generator.

【0002】0002

【従来の技術】室温でオーステナイト組織を示す鋼は、
溶鋼から凝固した状態から室温に至るまでに変態点がな
いため結晶粒の微細化は熱間鍛造による動的ひずみ再結
晶に頼らざるを得ない。ここで、微細な結晶粒は構造材
として使用される場合、内部欠陥を探傷する超音波の透
過性を良好にするため非常に重要である。
[Prior Art] Steel exhibiting an austenitic structure at room temperature is
Since there is no transformation point between the solidified state of molten steel and room temperature, grain refinement must rely on dynamic strain recrystallization through hot forging. Here, when the fine crystal grains are used as a structural material, they are very important in order to improve the transmittance of ultrasonic waves for detecting internal defects.

【0003】一方、オーステナイト鋼として高MnCr
系鋼を使用する場合、当該鋼はNiCr系鋼に比べて熱
間加工性に劣る。すなわち、表面割れが発生しやすくそ
のため大きなひずみを与えることができず、結晶粒の充
分な微細化がなされない。特に、円柱状鋼塊から円筒鍛
造品をうる場合、前記割れの発生を抑制することが重要
である。
On the other hand, as an austenitic steel, high MnCr
When using NiCr-based steel, the steel has poor hot workability compared to NiCr-based steel. That is, surface cracks are likely to occur, and therefore large strains cannot be applied, and crystal grains cannot be sufficiently refined. In particular, when obtaining a cylindrical forged product from a cylindrical steel ingot, it is important to suppress the occurrence of the cracks.

【0004】ところで、従来においては、図3〜図5に
示す手順で非磁性鋼円筒鍛造品の結晶粒の微細化がなさ
れていた。図3において、高さH0 の円柱状鋼塊1 
はこの柱長方向に高さHの如く圧縮鍛造され、該偏平鍛
造品2 は肉厚Tをもってその中心にポンチング作業等
によって中心孔3Aを形成した後、当該孔付鍛造品3 
を図4および図5に示したマンドレル鍛造加工を行なう
ことで結晶粒を微細化した円筒鍛造品4 を得ている。
[0004] Conventionally, the grain size of non-magnetic steel cylindrical forged products has been refined by the procedure shown in FIGS. 3 to 5. In Fig. 3, a cylindrical steel ingot 1 with a height H0
is compression forged to a height H in the column length direction, and after forming a central hole 3A in the center of the flat forged product 2 with a wall thickness T by punching or the like, the forged product 3 with a hole is formed.
By performing the mandrel forging process shown in FIGS. 4 and 5, a cylindrical forged product 4 with refined crystal grains was obtained.

【0005】ここで、圧縮量は結晶粒微細化のための鍛
造比を得るため予め伸ばし代をもたせたものであり、通
常、Hf/H≧2.00  を経験上の基準としている
。マンドレル鍛造による鍛伸作業は、図4および図5に
示す如く中心孔3Aにマンドレル5 を挿入し、素材 
(孔付鍛造品) 3 の外周面にV字溝6Aを有する上
下一対の金型6 を圧下させることにより、円周方向お
よび半径方向を拘束することによって軸方向に鍛伸する
ことで結晶粒の微細化した肉厚Tfの円筒鍛造品8 を
製作していた。なお、金型6 については少なくとも一
方にV字溝6Aを有するものを採用し、他方は所謂平金
敷を用いてもよい。
[0005] Here, the amount of compression is determined by providing an elongation allowance in advance in order to obtain a forging ratio for grain refinement, and is usually based on an empirical standard of Hf/H≧2.00. The forging work by mandrel forging is performed by inserting the mandrel 5 into the center hole 3A as shown in Figs. 4 and 5, and
(Forged product with holes) By rolling down a pair of upper and lower molds 6 having a V-shaped groove 6A on the outer circumferential surface of 3, the crystal grains are forged in the axial direction by constraining the circumferential direction and the radial direction. A cylindrical forged product 8 with a fine wall thickness Tf was manufactured. The mold 6 may have a V-shaped groove 6A on at least one side, and a so-called flat anvil may be used on the other side.

【0006】[0006]

【発明が解決しようとする課題】前述した従来技術にあ
っては、マンドレル5が素材3 の内周面全長にわたっ
て接触しているため、軸方向の材料の流れ (変形) 
は拘束されたものとなる。更に、円周方向の変形を拘束
した状態で半径方向に圧下力を付与して端面3Bを絞り
出すように変形させようとするため素材の変形は容易で
はない。
[Problem to be Solved by the Invention] In the above-mentioned prior art, since the mandrel 5 is in contact with the material 3 over the entire length of its inner peripheral surface, the material flows (deformed) in the axial direction.
becomes constrained. Further, the material is not easily deformed because it is attempted to deform the end face 3B by applying a rolling force in the radial direction while restraining deformation in the circumferential direction so as to squeeze out the end face 3B.

【0007】すなわち、最も温度が下りやすい端面3B
に引張応力が加わり、材料が伸びにくいため素材円周方
向には曲げの交番ひずみが繰返され、端面3Bに割れ7
 が発生するという課題がある。このため、加熱回数を
増加するとサイクルタイムが長くなるし、肝心な結晶粒
の微細化が行ない難くなっていた。また、図5に示す如
く工具(金型)6 およびマンドレル5 による加工部
にそれら工具5,6 の接触部があるため、デッドメタ
ル9,9Aが大きく結晶粒の微細化ができないという課
題があった。
In other words, the end face 3B where the temperature is most likely to drop
Tensile stress is applied to the material, and since the material is difficult to stretch, alternating bending strain is repeated in the circumferential direction of the material, resulting in cracks 7 on the end surface 3B.
There is a problem that this occurs. For this reason, increasing the number of heating cycles increases the cycle time and makes it difficult to achieve the essential refinement of crystal grains. In addition, as shown in FIG. 5, since there is a contact area between the tools 5 and 6 in the machining area of the tool (die) 6 and the mandrel 5, there is a problem that the dead metals 9 and 9A are large and crystal grains cannot be refined. Ta.

【0008】本発明は、叙述の課題に鑑み、マンドレル
鍛伸法に代替してリング鍛造加工を行なうとともに、そ
の後に、金型 (工具) による加工を行なうことによ
る2工程の鍛伸作業とすることで、割れ、デッドメタル
をなくし、延いては、結晶粒の微細化が保障できるよう
にしたことを目的とする。
In view of the problems described above, the present invention performs a ring forging process instead of the mandrel forging process, and then performs a two-step forging process by performing processing using a die (tool). By doing so, the purpose is to eliminate cracks and dead metals, and by extension ensure the refinement of crystal grains.

【0009】[0009]

【課題を解決するための手段】本発明は、円柱状鋼塊1
0を柱長方向に圧縮鍛造するとともに柱長方向に貫通し
た孔明け加工を施した後、当該非磁性鋼円筒素材12を
鍛伸加工することで結晶粒を微細化する方法において、
前述の目的を達成するために次の技術的手段を講じてい
る。
[Means for Solving the Problems] The present invention provides a cylindrical steel ingot 1
In a method of refining crystal grains by compression forging 0 in the column length direction and drilling a hole penetrating in the column length direction, the non-magnetic steel cylindrical material 12 is forged and stretched,
The following technical measures have been taken to achieve the above objectives.

【0010】すなわち、本発明は、前記鍛伸加工が、円
筒素材12の円周方向および軸方向を拘束しないで該円
筒素材12を仕上げ径より25〜35%大きい径のリン
グ14にするリング鍛造工程と、該リング鍛造後に該リ
ング14を円周方向に回転しつつその外周面を円周方向
に鍛伸する工程よりなることを特徴とするものである。
That is, the present invention is a ring forging process in which the forging process is performed to form the cylindrical material 12 into a ring 14 having a diameter 25 to 35% larger than the finished diameter without constraining the circumferential direction and axial direction of the cylindrical material 12. and a step of forging the outer circumferential surface of the ring 14 in the circumferential direction while rotating the ring 14 in the circumferential direction after the ring forging.

【0011】[0011]

【作用】リング鍛造工程において、円筒素材12は円周
方向および軸方向を拘束しないので端面の割れ発生を抑
制し、デッドメタルをできる限り少なくする。従って、
充分なひずみ量を確保し、結晶粒の均一な微細化ができ
、材料歩留を向上する。
[Operation] In the ring forging process, the cylindrical material 12 is not restrained in the circumferential direction and the axial direction, thereby suppressing the occurrence of cracks on the end face and minimizing dead metal. Therefore,
It ensures a sufficient amount of strain, enables uniform refinement of crystal grains, and improves material yield.

【0012】リング鍛造工程後の鍛伸工程において工具
による外径仕上げがなされ、このときのデッドメタルも
少なくする。
[0012] In the forging process after the ring forging process, the outside diameter is finished using a tool, and dead metal at this time is also reduced.

【0013】[0013]

【実施例】以下、図を参照して本発明の実施例を説明す
る。図1において、10は円柱状鋼塊であり、具体的に
は発電機用保持リングとして使用される18%Mn−1
8%Cr鋼(ASTM  A289Cl、C鋼)である
。この鋼塊10は熱伝導性が悪く、凝固時柱状晶が発達
し異方性が大きく、線膨張係数下で 900℃〜550
 ℃で粒界析出物が生成するため極めて熱間鍛造性が悪
いものである。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings. In Figure 1, 10 is a cylindrical steel ingot, specifically 18% Mn-1 used as a retaining ring for a generator.
It is 8% Cr steel (ASTM A289Cl, C steel). This steel ingot 10 has poor thermal conductivity, develops columnar crystals during solidification, has large anisotropy, and has a linear expansion coefficient of 900°C to 550°C.
Since grain boundary precipitates are formed at ℃, hot forgeability is extremely poor.

【0014】本発明では高さH0 の前述鋼塊10を柱
長方向に高さHとなるように圧縮鍛造し偏平鍛造素材1
1とした後、該素材11をポンチング等によって中心孔
12A を有する肉厚Tの円筒素材12に鍛造し、その
後、当該円筒素材12を鍛伸加工するのに、リング鍛造
工程後に仕上げ鍛伸工程を経由する。リング鍛造工程は
、図1に示す如く中心孔12A より充分に小径のマン
ドレル13を円筒素材12に串差し状に挿通し、円筒素
材12の外周面に平金型 (工具) を圧下させ目標と
する製品の外径に対して25〜35%大きな径にリング
14にリング圧延する。なお、13A は受台を示して
いる。
In the present invention, the above-mentioned steel ingot 10 having a height H0 is compression forged to a height H in the column length direction to obtain a flat forged material 1.
1, the material 11 is forged by punching or the like into a cylindrical material 12 with a wall thickness T having a center hole 12A, and then the cylindrical material 12 is forged and drawn. After the ring forging step, a final forging step is performed. via. In the ring forging process, as shown in Fig. 1, a mandrel 13 with a diameter sufficiently smaller than the center hole 12A is inserted into the cylindrical material 12 in a skewer shape, and a flat die (tool) is pressed down on the outer peripheral surface of the cylindrical material 12 to achieve the target. The ring 14 is rolled into a ring 14 having a diameter 25 to 35% larger than the outer diameter of the product. Note that 13A indicates a pedestal.

【0015】このリング圧延において、円筒素材12は
円周方向および軸方向に拘束しない状態でリング圧延さ
れ、従って、割れの要因はない。このリング圧延段階に
おけるリング14の長さ (高さ) HmはHm/ H
比で1.3〜1.4 となる。また、この圧延において
は、変形域とデッドメタル域とは一致するも前述した通
り、割れは発生しない。
In this ring rolling, the cylindrical material 12 is ring rolled without being constrained in the circumferential and axial directions, so there is no cause for cracking. The length (height) Hm of the ring 14 at this stage of ring rolling is Hm/H
The ratio is 1.3 to 1.4. Further, in this rolling, although the deformation region and the dead metal region coincide, no cracks occur as described above.

【0016】ここで、製品外径に対して25〜35%大
きな径にリング圧延するのは、次の理由による。すなわ
ち、結晶粒の微細化のためにはひずみ量は25%必要で
あり、ひずみ量は微細化のみを図るには多ければ多い程
よい。 しかし、35%以上に拡大するとリング14の肉厚が薄
くなり、次の工程での円周方向に圧縮を加えても据込ま
れることなく座屈する。故に25%〜35%とされてい
る。
The reason why the ring is rolled to a diameter 25 to 35% larger than the outer diameter of the product is as follows. That is, the amount of strain is required to be 25% in order to make the crystal grains finer, and the larger the amount of strain, the better in order to only make the grains finer. However, when the ring 14 is enlarged by more than 35%, the wall thickness of the ring 14 becomes thinner, and even if compression is applied in the circumferential direction in the next step, it will not be upset and will buckle. Therefore, it is set at 25% to 35%.

【0017】次に、リング14はV字溝16A を有す
る金型 (工具)16 の一対を用いてリング14を回
転させながら外周面を円周方向に圧下し、図2に示す如
く側面部14A に円周方向圧縮ひずみ (掘込み) 
を付与して所定の外径にし、その長さを少なくともHf
/H比で1.50以上に鍛伸する。なお、この場合、工
具16は少なくとも一方がV字溝16A を有するもの
であっても構わない。
Next, the outer peripheral surface of the ring 14 is pressed down in the circumferential direction while rotating the ring 14 using a pair of molds (tools) 16 having V-shaped grooves 16A, so that the side surface 14A is formed as shown in FIG. Circumferential compressive strain (digging)
is given to a predetermined outer diameter, and its length is at least Hf
/H ratio of 1.50 or more. In this case, at least one of the tools 16 may have a V-shaped groove 16A.

【0018】また、素材の長さが短い場合には、図2に
示す如くマンドレル17を串差しして回転のための助力
としてもよい。但し、マンドレル17の径は充分に小さ
くし、上下の工具16による圧下力がマンドレル17に
及ばないようにする。次に、非磁性鋼円筒鍛造品 (製
品) の外径820mmφ、内径 500mmφ、長さ
 850mmφのものを従来法と本発明法で製造し、両
者を比較した。
Furthermore, if the length of the material is short, a mandrel 17 may be inserted as shown in FIG. 2 to assist in rotation. However, the diameter of the mandrel 17 is made sufficiently small so that the rolling force from the upper and lower tools 16 does not reach the mandrel 17. Next, non-magnetic steel cylindrical forged products (products) with an outer diameter of 820 mmφ, an inner diameter of 500 mmφ, and a length of 850 mmφ were manufactured using the conventional method and the method of the present invention, and the two were compared.

【0019】[0019]

【表1】 上記表1は、超音波探傷試験で確認したデータである。[Table 1] Table 1 above is data confirmed by an ultrasonic flaw detection test.

【0020】ここで、超音波の透過性 (減衰定数α 
db/cm) は結晶粒が微細である程小さい値となり
良いことを示し、ノイズレベルは未再結晶の粗大結晶粒
の残留を示し、この値が小さい程均一であることを示す
。また、結晶粒度 (ASTM  E112)はその値
が大きい程細粒で良いことを示す。
[0020] Here, the ultrasonic transmittance (attenuation constant α
db/cm) indicates that the finer the crystal grains are, the smaller the value is.The noise level indicates the residual unrecrystallized coarse crystal grains, and the smaller this value is, the more uniform the noise level is. Further, the grain size (ASTM E112) indicates that the larger the value, the finer the grains.

【0021】[0021]

【発明の効果】本発明は以上の通りであり、鍛伸加工に
際してリング鍛造を先行して行ない、円筒素材の円周方
向及び軸方向を拘束しないので、該素材の端面において
割れ発生が抑制され、これにより、充分なひずみ(変形
)が付与できて結晶粒の均一な微細化を図れるとともに
材料歩留りが向上する。
[Effects of the Invention] The present invention is as described above, and since ring forging is performed in advance during forging and drawing, and the circumferential and axial directions of the cylindrical material are not constrained, the occurrence of cracks on the end face of the material is suppressed. As a result, sufficient strain (deformation) can be applied, uniform refinement of crystal grains can be achieved, and the material yield can be improved.

【0022】すなわち、従来技術では変形させる部位に
工具面との接触摩擦によるデッドメタルのため加工再結
晶(微細化)しにくいのに対し、本発明では、変形され
る部位(内周面)には工具(マンドレル)との接触がな
く、デッドメタルは発生せず、また、軸方向に絞り出す
力は作用せず引張応力が発生しないことから素材の端面
に割れが発生しない。
In other words, in the conventional technology, processing recrystallization (refining) is difficult because the part to be deformed is dead metal due to contact friction with the tool surface, whereas in the present invention, the part to be deformed (inner circumferential surface) is Since there is no contact with the tool (mandrel), no dead metal is generated, and since there is no squeezing force in the axial direction and no tensile stress is generated, no cracks occur on the end surface of the material.

【0023】また、本発明によれば、結晶粒の微細化の
ために必要な限界ひずみ量が従来技術の如く工具(マン
ドレル)との接触がないことから、150 %〜200
 %にでき、これにより、鍛造時間の短縮化、エネルギ
消費の削減ができる。
Furthermore, according to the present invention, the critical strain required for grain refinement is 150% to 200% because there is no contact with a tool (mandrel) as in the prior art.
%, thereby shortening forging time and reducing energy consumption.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明実施例の工程図である。FIG. 1 is a process diagram of an embodiment of the present invention.

【図2】本発明の最終鍛造工程の正面図である。FIG. 2 is a front view of the final forging process of the present invention.

【図3】従来例の工程図である。FIG. 3 is a process diagram of a conventional example.

【図4】従来例の鍛造工程の斜視図である。FIG. 4 is a perspective view of a conventional forging process.

【図5】図4の正面図である。FIG. 5 is a front view of FIG. 4;

【符号の説明】[Explanation of symbols]

10  円柱状鋼塊 12  孔付円筒素材 14  リング 15  工具 16  工具 10 Cylindrical steel ingot 12 Cylindrical material with holes 14 Ring 15 Tools 16 Tools

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  円柱状鋼塊(10)を柱長方向に圧縮
鍛造するとともに柱長方向に貫通した孔明け加工を施し
た後、当該非磁性鋼円筒素材(12)を鍛伸加工するこ
とで結晶粒を微細化する方法において、前記鍛伸加工が
、円筒素材(12)の円周方向および軸方向を拘束しな
いで該円筒素材(12)を仕上げ径より25〜35%大
きい径のリング(14)にするリング鍛造工程と、該リ
ング鍛造後に該リング(14)を円周方向に回転しつつ
その外周面を円周方向に鍛伸する工程よりなることを特
徴とする非磁性鋼円筒鍛造品の結晶粒微細化方法。
[Claim 1] After compressing and forging a cylindrical steel ingot (10) in the longitudinal direction of the column and drilling a hole penetrating the column in the longitudinal direction, the non-magnetic steel cylindrical material (12) is forged and stretched. In the method of refining crystal grains, the forging process is performed to form a ring having a diameter 25 to 35% larger than the finished diameter of the cylindrical material (12) without constraining the circumferential direction and axial direction of the cylindrical material (12). A non-magnetic steel cylinder characterized by comprising a ring forging process to form (14), and a process of forging the outer peripheral surface of the ring (14) in the circumferential direction while rotating the ring (14) in the circumferential direction after the ring forging. Grain refinement method for forged products.
JP10018991A 1991-05-01 1991-05-01 Grain refining method for non-magnetic steel cylindrical forgings Expired - Fee Related JP2768849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10018991A JP2768849B2 (en) 1991-05-01 1991-05-01 Grain refining method for non-magnetic steel cylindrical forgings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10018991A JP2768849B2 (en) 1991-05-01 1991-05-01 Grain refining method for non-magnetic steel cylindrical forgings

Publications (2)

Publication Number Publication Date
JPH04333340A true JPH04333340A (en) 1992-11-20
JP2768849B2 JP2768849B2 (en) 1998-06-25

Family

ID=14267359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10018991A Expired - Fee Related JP2768849B2 (en) 1991-05-01 1991-05-01 Grain refining method for non-magnetic steel cylindrical forgings

Country Status (1)

Country Link
JP (1) JP2768849B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224792A (en) * 2001-01-31 2002-08-13 Furukawa Electric Co Ltd:The Method for manufacturing hollow body of polygonal section and hollow body of polygonal section manufactured in the same method
CN109865788A (en) * 2019-02-15 2019-06-11 湖南金天钛业科技有限公司 A kind of efficient upsetting pull forging method of titanium alloy large size forging stock
CN114309383A (en) * 2021-12-27 2022-04-12 中航卓越锻造(无锡)有限公司 Forging process method of fine-grain 18-8 type stainless steel thick-wall ring forging

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4601185B2 (en) * 2001-02-08 2010-12-22 株式会社パイロットコーポレーション Knock mechanical pencil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002224792A (en) * 2001-01-31 2002-08-13 Furukawa Electric Co Ltd:The Method for manufacturing hollow body of polygonal section and hollow body of polygonal section manufactured in the same method
CN109865788A (en) * 2019-02-15 2019-06-11 湖南金天钛业科技有限公司 A kind of efficient upsetting pull forging method of titanium alloy large size forging stock
CN114309383A (en) * 2021-12-27 2022-04-12 中航卓越锻造(无锡)有限公司 Forging process method of fine-grain 18-8 type stainless steel thick-wall ring forging
CN114309383B (en) * 2021-12-27 2023-10-24 中航卓越锻造(无锡)有限公司 Forging process method of fine-grain 18-8 type stainless steel thick-wall ring forging

Also Published As

Publication number Publication date
JP2768849B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
JPS62286640A (en) Forging method for titanium alloy
JP2019512046A (en) Method of manufacturing bar from titanium alloy
JPH04333340A (en) Method for making fine crystalline grain in non-magnetic steel cylindrical forging
JP3242521B2 (en) Manufacturing method of titanium alloy ring
CN108237197A (en) A kind of forging method for improving the flaw detection of structural steel large-sized ring part
JP2000015381A (en) Formation of disk parts with shaft
JP3707799B2 (en) Zirconium alloy tube manufacturing method
US6250125B1 (en) Method for producing iron-base dispersion-strengthened alloy tube
CN113798420B (en) Forging method of non-magnetic retaining ring of 1Mn18Cr18N of turbogenerator
JP3480568B2 (en) High speed tool steel material for cold forging, hollow product made of high speed tool steel, and method of manufacturing the same
CN116689531B (en) Preparation method of high-strength TC4 pipe
JPS6233008B2 (en)
JP2711129B2 (en) Manufacturing method of titanium seamless pipe
SU1563796A1 (en) Method of producing hollow billet having a bottom
RU2635990C2 (en) Method to form part of semispherical shape from hard-deformable titanium alloy bt6-c in one die
JPH04254559A (en) Production of extremely fine wire
RU2532630C2 (en) Manufacturing method of semi-finished products like disks and washers from cylindrical workpiece by hot pressure treatment
SU1540918A1 (en) Method of producing hollow cylindrical articles
CN117564199A (en) Forging method for improving uniformity of mechanical properties of end part of titanium alloy bar
JPH01197005A (en) Manufacture of titanium seamless pipe
CN114160723A (en) Forging forming method for thin-wall large-horn-shaped part
JPH0411618B2 (en)
JPH08332544A (en) Upsetting method of long size stock
CN112342477A (en) Control method of surface layer grain size
JPS6233010B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees