JPH0433249A - Nonaqueous solvent secondary battery - Google Patents

Nonaqueous solvent secondary battery

Info

Publication number
JPH0433249A
JPH0433249A JP2137095A JP13709590A JPH0433249A JP H0433249 A JPH0433249 A JP H0433249A JP 2137095 A JP2137095 A JP 2137095A JP 13709590 A JP13709590 A JP 13709590A JP H0433249 A JPH0433249 A JP H0433249A
Authority
JP
Japan
Prior art keywords
positive electrode
metal core
secondary battery
battery
conducting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2137095A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Nose
博義 能勢
Yuji Mochizuki
裕二 望月
Takumi Uchida
内田 卓美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP2137095A priority Critical patent/JPH0433249A/en
Publication of JPH0433249A publication Critical patent/JPH0433249A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a nonaqueous solvent secondary battery suppressing the gas generation at the boundary of individual members at the time of charging and discharging by forming a conducting layer made of carbon on the surface of a metal core, and using a positive electrode coated with a positive electrode mix mainly made of spinel type LiMn2O4 on the conducting layer. CONSTITUTION:A solution diluted with a polyacrylic aqueous solution in methanol and acetaylene black are kneaded, then it is coated on a metal core 8 made of stainless steel, and it is dried to form a conducting layer 9. Electrolytic manganese dioxide and lithium carbonate are mixed at a preset ratio and baked, spinel type LiMn2O4 thus obtained and acetylene black serving as a conducting material are mixed, and a binder solution is kneaded with it. The kneaded object is coated on the conducting layer 9 and dried to form a positive electrode mix 10, then a positive electrode 6 is obtained. A positive electrode lead 7 connected to the metal core 8 of the positive electrode 6 is connected to a positive electrode terminal 12.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は非水溶媒二次電池に関し、特に正極の構造を改
良した非水溶媒二次電池に係わるものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a non-aqueous solvent secondary battery, and particularly to a non-aqueous solvent secondary battery with an improved structure of the positive electrode.

(従来の技術) 近年、カルコゲン化合物を正極合剤の活物質とし、リチ
ウム等のアルカリ金属を負極として用いる非水溶媒二次
電池は、高いエネルギーを有するものとして注目されて
いる。その中でも最近、カルコゲン酸化物を生活物質と
して、この酸化物と、リチウム或いはその酸化物との混
合物よりなる活物質を含む正極合剤からなる正極と、リ
チウムからなる負極を用いた非水溶媒二次電池が開発さ
れている。このような電池としては、例えば二硫化チタ
ン−リチウム電池、二硫化モリブデン−リチウム電池、
二酸化マンガン−リチウム電池等が知られている。これ
ら非水溶媒二次電池の正極は、ニッケル、ステンレス鋼
製の網、エキスバンドメタル等の金属芯体に活物質、結
着剤を含むシート状の正極合剤を圧着一体化した構造に
なっている。
(Prior Art) In recent years, non-aqueous solvent secondary batteries that use a chalcogen compound as the active material of the positive electrode mixture and an alkali metal such as lithium as the negative electrode have attracted attention as having high energy. Among these, recently, non-aqueous solvent dielectrics using chalcogen oxide as a living substance, a positive electrode consisting of a positive electrode mixture containing an active material consisting of this oxide and a mixture of lithium or its oxide, and a negative electrode consisting of lithium have been developed. The next battery is being developed. Examples of such batteries include titanium disulfide-lithium batteries, molybdenum disulfide-lithium batteries,
Manganese dioxide-lithium batteries and the like are known. The positive electrodes of these non-aqueous solvent secondary batteries have a structure in which a sheet-like positive electrode mixture containing an active material and a binder is bonded to a metal core made of nickel, stainless steel mesh, expanded metal, etc. ing.

(発明が解決しようとする課題) しかしながら、上述した非水溶媒二次電池の正極は、製
造プロセスが簡単であり電池の製造コストも安価である
にもかかわらず、実用化されていない。これは前述した
正極を用いて電池を製造すると、電池の充放電サイクル
寿命が短くなり、しかも個々の放電特性が不均質となる
ことによるものである。
(Problems to be Solved by the Invention) However, the positive electrode of the non-aqueous solvent secondary battery described above has not been put into practical use, although the manufacturing process is simple and the manufacturing cost of the battery is low. This is because when a battery is manufactured using the above-mentioned positive electrode, the charge/discharge cycle life of the battery becomes short and the individual discharge characteristics become non-uniform.

即ち、前記非水溶媒二次電池の正極において、前記金属
芯体と正極合剤との圧着界面に導電性不良箇所があると
、電池反応が行われる際に該圧着界面の電流分布が不均
一となり、電流密度の粗密化が生じる。電流密度の粗密
化は、電解液の分解電圧より高い電圧で反応を行う部分
を前記圧着界面に生じさせる。このため、前記導電性不
良箇所が存在したまま電池反応が行われると、前述した
電解液の分解電圧より高い電圧で反応がなされる部分に
おいて、前記正極合剤中の電解液と、金属芯体が反応し
、電解液の分解が生じて、水素ガス、炭酸ガス等のガス
が発生する。このガスは、電池の充放電の繰り返しの度
に、前記金属芯体と正極合剤の界面に少しづつ蓄積され
、該正極合剤を金属芯体から徐々に剥離せしめる。従っ
て、前記金属芯体と正極合剤との界面での接触面積は、
充放電の繰り返しに伴い徐々に減少し、金属芯体と正極
合剤との間の電子伝導性が著しく低下する。その結果、
電池の充放電の繰り返しに伴って前記正極合剤が十分な
機能を有するにもかかわらず、充放電サイクル寿命が低
下し、電池性能の不均一化を生じさせるという問題があ
った。
That is, in the positive electrode of the non-aqueous solvent secondary battery, if there is a poor conductivity at the crimped interface between the metal core and the positive electrode mixture, the current distribution at the crimped interface will be uneven when a battery reaction occurs. As a result, the current density becomes coarser and denser. The coarsening of the current density creates a portion at the pressure bonding interface where a reaction occurs at a voltage higher than the decomposition voltage of the electrolytic solution. Therefore, if a battery reaction is performed while the conductive defective portion is present, the electrolyte in the positive electrode mixture and the metal core may reacts, decomposition of the electrolyte occurs, and gases such as hydrogen gas and carbon dioxide gas are generated. This gas accumulates little by little at the interface between the metal core and the positive electrode mixture each time the battery is repeatedly charged and discharged, causing the positive electrode mixture to gradually peel off from the metal core. Therefore, the contact area at the interface between the metal core and the positive electrode mixture is:
It gradually decreases with repeated charging and discharging, and the electronic conductivity between the metal core and the positive electrode mixture decreases significantly. the result,
Despite the fact that the positive electrode mixture has a sufficient function as the battery is repeatedly charged and discharged, there is a problem in that the charge/discharge cycle life decreases and the battery performance becomes non-uniform.

本発明は上記従来の課題を解決するためになされたもの
で、正極合剤を所定の導電層を介して金属芯体に被覆す
ることによって、該正極合剤を電気的に良好に被覆した
正極を備え、充放電時に前記各部材の界面でのガス発生
を抑制した非水溶媒二次電池を提供しようとするもので
ある。
The present invention has been made in order to solve the above-mentioned conventional problems, and by coating a metal core with a positive electrode mixture through a predetermined conductive layer, the present invention provides a positive electrode that is electrically well coated with the positive electrode mixture. It is an object of the present invention to provide a non-aqueous solvent secondary battery which is equipped with the following and suppresses gas generation at the interfaces of the respective members during charging and discharging.

[発明の構成] (R題を解決するための手段) 本発明は金属芯体と、この芯体表面に形成され、かつカ
ー謎屡含む導電性樹脂からなる導電層と、この導電層上
に被覆形成したスピネル型LiMn204を主体とする
正極合剤とから構成された正極を具備したことを特徴と
する非水溶媒二次電池である。
[Structure of the Invention] (Means for Solving Problem R) The present invention comprises a metal core, a conductive layer formed on the surface of the core and made of a conductive resin containing a carcinoma, and a conductive layer formed on the conductive layer. This is a non-aqueous solvent secondary battery characterized by comprising a positive electrode composed of a positive electrode mixture mainly composed of spinel-type LiMn204 coated thereon.

上記金属芯体としては、例えばニッケル、鉄、ニッケル
メッキを施した鉄、ステンレス鋼などの金属からなる金
網、エキスバンドメタル、パンチトメタル、金属箔等を
挙げることができる。
Examples of the metal core include a wire mesh made of metal such as nickel, iron, nickel-plated iron, and stainless steel, expanded metal, punched metal, and metal foil.

上記アセチレンブラック、カーボンブラックからなる導
電層の厚さは、3〜1007mの範囲とすることが望ま
しい。この理由は、導電層の厚さを3#未満にすると、
電池の使用時における変形に伴い正極が変形し、金属芯
体が部分的に露出して導電層としての機能が損なわれ、
充分な導電性が得られなくなる恐れがある。一方導電層
の厚さが100−を越えると、金属芯体に該導電層を形
成する工程に手間がかかり、電池の生産性が低下する恐
れがあるからである。
The thickness of the conductive layer made of acetylene black or carbon black is preferably in the range of 3 to 1007 m. The reason for this is that when the thickness of the conductive layer is less than 3#,
As the battery deforms during use, the positive electrode deforms, and the metal core is partially exposed, impairing its function as a conductive layer.
There is a possibility that sufficient conductivity may not be obtained. On the other hand, if the thickness of the conductive layer exceeds 100 mm, the process of forming the conductive layer on the metal core takes time and effort, and there is a risk that the productivity of the battery will decrease.

上記アセチレンブラック、カーボンブラック等のカーボ
ンを含む導電性樹脂からなる導電層は、例えばポリオレ
フィン系樹脂溶液にアセチレンブラックの粉末を分散さ
せ、この分散溶液を金属芯体に塗布、乾燥することによ
り形成される。ここに用いるポリオレフィン系樹脂とし
ては、例えばポリエチレン、ポリプロピレン、ポリアク
リル酸等を挙げることができる。かかる導電性樹脂を構
成するポリオレフィン系樹脂とカーボン粉との配合割合
は、3〜35重量%重量%水リオレフィン系樹脂溶液に
対し、前記カーボンの量粉末が10〜50重量%であり
、10重量%未満にすると、該導電性樹脂の導電性が低
下し、内部抵抗の増加を生じて電池が作動しなくなる恐
れがあり、かといってそのカーボン粉末が50重量%を
越えると、該導電性樹脂の結着力の低下を生じると共に
該導電性樹脂からなる導電層を金属芯体に均一に被覆す
ることが困難となるからである。
The conductive layer made of a conductive resin containing carbon such as acetylene black or carbon black is formed by, for example, dispersing acetylene black powder in a polyolefin resin solution, applying this dispersion solution to a metal core, and drying it. Ru. Examples of the polyolefin resin used here include polyethylene, polypropylene, polyacrylic acid, and the like. The blending ratio of the polyolefin resin and carbon powder constituting the conductive resin is 3 to 35% by weight, 10 to 50% by weight of the carbon powder, and 10 to 50% by weight of the lyolefin resin solution. If the amount is less than 50% by weight, the conductivity of the conductive resin will decrease, causing an increase in internal resistance and the battery may become inoperable.On the other hand, if the amount of carbon powder exceeds 50% by weight, the conductivity This is because the binding force of the resin decreases and it becomes difficult to uniformly coat the metal core with a conductive layer made of the conductive resin.

また、導電性樹脂からなる導電層の厚さは、特に金属芯
体への導電層の被覆工程の簡便化と電池性能の安定化の
観点から、80〜100趨の範囲にすることがより望ま
しい。
In addition, the thickness of the conductive layer made of conductive resin is preferably in the range of 80 to 100 mm, especially from the viewpoint of simplifying the process of coating the metal core with the conductive layer and stabilizing battery performance. .

上記スピネル型LiMn2O4は、例えばマンガン酸化
物とリチウム塩を混合し、加熱処理することにより生成
される。
The spinel type LiMn2O4 is produced, for example, by mixing manganese oxide and lithium salt and heat-treating the mixture.

(作 用) 本発明によれば、金属芯体と、この芯体表面に形成され
、かつカーボンからなる導電層とこの導電層上に被覆形
成されたスピネル型LiMn2O4からなる正極合剤と
から構成された正極を用いることによって金属芯体と正
極合剤との界面での導電性を前記導電層により向上でき
、導電性不良箇所の発生を防止できる。このため、前記
金属芯体と電解液との反応によるガスを発生させること
がなく、前記界面の電流密度を均一化できる。
(Function) According to the present invention, the electrode is composed of a metal core, a conductive layer formed on the surface of the core and made of carbon, and a positive electrode mixture made of spinel-type LiMn2O4 coated on the conductive layer. By using such a positive electrode, the conductivity at the interface between the metal core and the positive electrode mixture can be improved by the conductive layer, and occurrence of poor conductivity can be prevented. Therefore, gas is not generated due to the reaction between the metal core and the electrolytic solution, and the current density at the interface can be made uniform.

その結果、金属芯体に正極合剤を電気的に良好に接続で
きるため、安定した放電特性を有すると共に充放電サイ
クル寿命、重負荷特性等が改善された非水溶媒二次電池
を得ることができる。
As a result, the positive electrode mixture can be electrically connected well to the metal core, making it possible to obtain a non-aqueous solvent secondary battery with stable discharge characteristics and improved charge/discharge cycle life, heavy load characteristics, etc. can.

一方、前記正極合剤を金属芯体にカーボンを含む導電性
樹脂からなる導電層を介して被覆することによって、該
導電性樹脂中のカーボンにより前記界面の導電性を向上
でき、かつ前記導電性樹脂の結着力により該金属芯体と
正極合剤の被覆性を良好にでき被覆不良箇所、剥離部の
発生を抑制できる。その結果、前記界面の電流密度を均
一化できると共に、被覆不良箇所、剥離箇所が生じるの
を防止できるため、前記界面での電流密度の粗密化を防
止でき、該電流密度の粗密化に伴うガス発生を抑制でき
る。
On the other hand, by coating a metal core with the positive electrode mixture through a conductive layer made of a conductive resin containing carbon, the carbon in the conductive resin can improve the conductivity of the interface, and Due to the binding force of the resin, the coverage between the metal core and the positive electrode mixture can be improved, and the occurrence of poor coverage and peeling can be suppressed. As a result, the current density at the interface can be made uniform, and the occurrence of coating defects and peeling can be prevented, so it is possible to prevent the current density from becoming coarser and denser at the interface, and the gas caused by the coarser current density can be prevented. The occurrence can be suppressed.

従って、正極合剤の金属芯体からの剥離、脱落の防止及
び金属芯体への正極合剤の電気的に良好な接続により、
安定した放電特性を有すると共に充放電サイクル寿命、
重負荷特性等が改善された非水溶媒二次電池を得ること
ができる。
Therefore, by preventing the positive electrode mixture from peeling or falling off from the metal core, and by ensuring good electrical connection of the positive electrode mixture to the metal core,
It has stable discharge characteristics and a long charge/discharge cycle life.
A non-aqueous solvent secondary battery with improved heavy load characteristics etc. can be obtained.

(実施例) 以下、本発明を円筒型リチウム二次電池に適用した例に
ついて第1図及び第2図(a) 、(b)を参照して詳
細に説明する。
(Example) Hereinafter, an example in which the present invention is applied to a cylindrical lithium secondary battery will be described in detail with reference to FIG. 1 and FIGS. 2(a) and 2(b).

実施例 図中の1は、底部に絶縁紙2が配置された負極端子を兼
ねる有底円筒型の金属製容器である。
Reference numeral 1 in the drawings indicates a bottomed cylindrical metal container that also serves as a negative electrode terminal and has an insulating paper 2 disposed at the bottom.

前記容器1内には、円筒型の発電要素3が収納されてい
る。この発電要素3は、金属リチウムからなる負極4と
、多孔性ポリプロピレン薄膜にプロピレンカーボネート
を含浸したセパレータ5と、後述する正極6とを、この
順序で積層して帯状物とし、この帯状物を渦巻き状に捲
回することにより構成されている。
A cylindrical power generation element 3 is housed within the container 1. This power generation element 3 consists of a negative electrode 4 made of metallic lithium, a separator 5 made of a porous polypropylene thin film impregnated with propylene carbonate, and a positive electrode 6 to be described later, which are laminated in this order to form a strip. It is constructed by winding it into a shape.

前記正極6は、第2図(a) 、(b)に示す構造にな
っており、次のような方法により製造される。
The positive electrode 6 has the structure shown in FIGS. 2(a) and 2(b), and is manufactured by the following method.

まず導電層9は、ポリアクリル酸水溶液(ポリアクリル
酸濃度3〜35重量%)をメタノールで希釈した溶液1
00重量部と、アセチレングラツク10重量部を混練し
た後、厚さ101のステンレス鋼からなる金属芯体8に
塗布、乾燥して作成する。正極合剤lOは、電解二酸化
マンガンと炭酸リチウムを所定比で混合したものを80
0℃で14時間焼成することにより得られたスピネル型
L i Mn20482重量部と導電材としてアセチレ
ンブラック15重量部とを混合する。つづいて結着剤溶
液は、エチレン単位BO〜70モル%、プロピレン単位
40〜30モル%及びジシクロペンタジェン単位5モル
%以下からなり、分子量103〜107の三元共重合体
のエラストマー3重量部を、含有水分量を0.1重量%
に調整したトルエン溶液に溶解して結着剤溶液とする。
First, the conductive layer 9 is prepared using a solution 1 prepared by diluting a polyacrylic acid aqueous solution (polyacrylic acid concentration 3 to 35% by weight) with methanol.
00 parts by weight and 10 parts by weight of acetylene glue, the mixture is coated on a metal core 8 made of stainless steel with a thickness of 101 mm, and dried. The positive electrode mixture 1O is a mixture of electrolytic manganese dioxide and lithium carbonate at a predetermined ratio.
20482 parts by weight of spinel type Li Mn obtained by firing at 0° C. for 14 hours and 15 parts by weight of acetylene black as a conductive material are mixed. Subsequently, the binder solution is made of a 3-weight terpolymer elastomer containing BO to 70 mol% of ethylene units, 40 to 30 mol% of propylene units, and 5 mol% or less of dicyclopentadiene units, and having a molecular weight of 103 to 107. part, and the water content is 0.1% by weight.
A binder solution is prepared by dissolving it in a toluene solution adjusted to .

この結着剤溶液100重量部を前記LiMn2o4とア
セチレンブラックの混合物97重量部に混練する。次い
で、この混線物を前記導電層9上に塗布、乾燥して正極
合剤lOを作成する。このようにして正極6を製造した
。さらに、正極6の金属芯体8と接続された正極り一ド
7を正極端子12へ接続する。同様に負極4と接続して
いる負極り一ド13を金属製容器1に接続し、封口板1
1で封口し金属製容器1の開口部を内方へ折曲して密封
口して、第1図の本発明実施例の円筒型リチウム二次電
池はなっている。
100 parts by weight of this binder solution is kneaded with 97 parts by weight of the mixture of LiMn2o4 and acetylene black. Next, this mixed material is applied onto the conductive layer 9 and dried to prepare a positive electrode mixture IO. In this way, the positive electrode 6 was manufactured. Furthermore, the positive electrode wire 7 connected to the metal core 8 of the positive electrode 6 is connected to the positive electrode terminal 12 . Similarly, the negative electrode gate 13 connected to the negative electrode 4 is connected to the metal container 1, and the sealing plate 1 is connected to the metal container 1.
The cylindrical lithium secondary battery of the embodiment of the present invention shown in FIG. 1 is completed by sealing the metal container 1 with the metal container 1 and bending the opening inward to seal it.

(比較例) 金属芯体に正極合剤を導電層を介さずに直接被覆して構
成した正極を用いた以外、実施例と同様な構造の円筒型
リチウム二次電池を組み立てた。
(Comparative Example) A cylindrical lithium secondary battery having the same structure as the example was assembled, except that a positive electrode formed by directly coating a metal core with a positive electrode mixture without intervening a conductive layer was used.

しかして、本実施例及び比較例のリチウム二次電池につ
いて、20℃の室温で150mAの電流により7時間充
電を行い、この後2.OVの放電電圧を示すまで放電を
行う工程を1サイクルとして、放電容量の特性評価を行
った。その結果、第3図に示す特性図を得た。なお図中
のAは5本実施例の二次電池の特性線、Bは比較例の二
次電池の特性線を示す。この第3図から明らがなように
本実施例の二次電池Aは、サイクル数の増加に伴う放電
容量の低下は緩やかで優れた放電特性を有することがわ
かる。これに対し、比較例の二次電池Bにおいては、サ
イクル数の増加に伴う放電容量の低下が著しくなること
がわかる。特にサイクル数が100回付近になると放電
容量が極端に低下する。
The lithium secondary batteries of this example and comparative example were charged at a room temperature of 20° C. with a current of 150 mA for 7 hours, and then 2. Characteristic evaluation of the discharge capacity was performed using the process of discharging until the discharge voltage of OV was shown as one cycle. As a result, a characteristic diagram shown in FIG. 3 was obtained. Note that A in the figure shows the characteristic line of the secondary battery of the fifth example, and B shows the characteristic line of the secondary battery of the comparative example. As is clear from FIG. 3, it can be seen that the secondary battery A of this example has excellent discharge characteristics, with a gradual decrease in discharge capacity as the number of cycles increases. On the other hand, it can be seen that in secondary battery B of Comparative Example, the discharge capacity decreases significantly as the number of cycles increases. In particular, when the number of cycles approaches 100, the discharge capacity decreases extremely.

また、本実施例及び比較例の二次電池について、750
mAの負荷による重負荷放電を行った。その結果、第4
図に示す放電接続時間と電池端子電圧との関係の特性図
を得た。なお、図中のAは本実施例の二次電池の特性線
、Bは比較例の二次電池の特性線を示す。この第4図か
ら明らかなように本実施例の二次電池は、比較例の二次
電池に比べて放電端子電圧が急激に減少するまでの放電
接続時間が長くなり、重負荷における放電特性が大幅に
改善されていることがわかる。特に、比較例の二次電池
は放電時間が25分間を越えると急激に電圧が低下する
のに対して、実施例の二次電池は45分間を越えても急
激な電圧低下が生じず、安定した電池特性を示している
In addition, for the secondary batteries of this example and comparative example, 750
Heavy load discharge was performed with a load of mA. As a result, the fourth
A characteristic diagram of the relationship between discharge connection time and battery terminal voltage shown in the figure was obtained. Note that A in the figure shows the characteristic line of the secondary battery of the present example, and B shows the characteristic line of the secondary battery of the comparative example. As is clear from FIG. 4, the secondary battery of this example has a longer discharge connection time until the discharge terminal voltage rapidly decreases than the secondary battery of the comparative example, and has poor discharge characteristics under heavy loads. It can be seen that it has been significantly improved. In particular, the secondary battery of the comparative example has a rapid voltage drop when the discharge time exceeds 25 minutes, whereas the secondary battery of the example does not have a sudden voltage drop even after 45 minutes and remains stable. This shows the battery characteristics.

更に、本実施例及び比較例の二次電池を各々100個に
ついて、前述した放電容量の特性評価試験を50サイク
ル行ない、その時点での電池容量分布を調べた。その結
果を下記第1表に示す。なお、下記第1表のXは本実施
例及び比較例の二次電池100個の電池容量の平均値で
あり、δは前記各容量値から得られた標準偏差を示す。
Further, the above-described discharge capacity characteristic evaluation test was performed for 50 cycles on 100 secondary batteries of the present example and the comparative example, and the battery capacity distribution at that time was examined. The results are shown in Table 1 below. Note that X in Table 1 below is the average value of the battery capacity of 100 secondary batteries of the present example and comparative example, and δ represents the standard deviation obtained from each of the above-mentioned capacity values.

第1表 上記第1表から明らかなように、本実施例の二次電池は
比較例の二次電池に比べて、電池容量にバラツキが少な
く個々の電池の性能が向上され、かつ均一化されており
、電池性能の安定化がなされていることがわかる。
Table 1 As is clear from Table 1 above, the secondary battery of this example has less variation in battery capacity than the secondary battery of the comparative example, and the performance of each individual battery is improved and uniform. It can be seen that the battery performance has been stabilized.

[発明の効果] 以上詳述した如く、本発明によれば正極合剤を所定の導
電層を介して金属芯体に被覆することによって、該正極
合剤を金属芯体に対して電気的に良好に被覆した正極を
備え、充放電時に前記各部材の界面でのガス発生を抑制
でき、ひいては電池容量の安定化を達成した充放電サイ
クル寿命、重負荷放電特性を向上した非水溶媒二次電池
を提供できる。
[Effects of the Invention] As detailed above, according to the present invention, by coating the metal core with the positive electrode mixture through a predetermined conductive layer, the positive electrode mixture is electrically connected to the metal core. A non-aqueous solvent secondary battery equipped with a well-coated cathode that suppresses gas generation at the interface of each member during charging and discharging, which in turn stabilizes battery capacity and improves charge-discharge cycle life and heavy-load discharge characteristics. We can provide batteries.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す非水溶媒二次電池の断面
図、第2図(a)は本発明の電池に用いられる正極を示
す正面図、(b)は同図(a)のA−A線断面図、第3
図は本発明の実施例A及び比較例Bの充放電サイクル数
と放電容量との関係を示す特性図、第4図は本実施例A
及び比較例Bの放電接続時間と電池端子電圧との関係を
示す特性図である。 1・・・容器、     3・・・発電要素、4・・・
負極、      5・・・セパレータ、6・・・正極
、     8・・・金属芯体、9・・・導電層、  
  IO・・・正極合剤。 $1図
FIG. 1 is a cross-sectional view of a non-aqueous solvent secondary battery showing an example of the present invention, FIG. 2(a) is a front view showing a positive electrode used in the battery of the present invention, and FIG. A-A cross-sectional view of , 3rd
The figure is a characteristic diagram showing the relationship between the number of charge/discharge cycles and the discharge capacity of Example A of the present invention and Comparative Example B, and Figure 4 is a characteristic diagram showing the relationship between the number of charge/discharge cycles and discharge capacity of Example A of the present invention.
and FIG. 9 is a characteristic diagram showing the relationship between discharge connection time and battery terminal voltage of Comparative Example B. 1... Container, 3... Power generation element, 4...
Negative electrode, 5... Separator, 6... Positive electrode, 8... Metal core, 9... Conductive layer,
IO...Positive electrode mixture. $1 figure

Claims (1)

【特許請求の範囲】[Claims]  金属芯体と、この芯体表面に形成されかつカーボンを
含む導電層と、該導電層上に被覆形成したスピネル型L
iMn_2O_4を主体とする正極合剤とから構成され
た正極を具備したことを特徴とする非水溶媒二次電池。
A metal core, a conductive layer formed on the surface of the core and containing carbon, and a spinel type L coated on the conductive layer.
1. A non-aqueous solvent secondary battery comprising a positive electrode composed of a positive electrode mixture mainly composed of iMn_2O_4.
JP2137095A 1990-05-29 1990-05-29 Nonaqueous solvent secondary battery Pending JPH0433249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2137095A JPH0433249A (en) 1990-05-29 1990-05-29 Nonaqueous solvent secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2137095A JPH0433249A (en) 1990-05-29 1990-05-29 Nonaqueous solvent secondary battery

Publications (1)

Publication Number Publication Date
JPH0433249A true JPH0433249A (en) 1992-02-04

Family

ID=15190755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2137095A Pending JPH0433249A (en) 1990-05-29 1990-05-29 Nonaqueous solvent secondary battery

Country Status (1)

Country Link
JP (1) JPH0433249A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100297402B1 (en) * 1993-12-09 2001-12-01 카이저, 크루거 Rechargeable battery
JP2005353377A (en) * 2004-06-09 2005-12-22 Nissan Motor Co Ltd Polymer battery, manufacturing method therefor, battery pack and vehicle installing these
CN100463257C (en) * 2005-01-28 2009-02-18 三星Sdi株式会社 Anode active material, method of preparing the same, and anode and lithium battery employing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100297402B1 (en) * 1993-12-09 2001-12-01 카이저, 크루거 Rechargeable battery
JP2005353377A (en) * 2004-06-09 2005-12-22 Nissan Motor Co Ltd Polymer battery, manufacturing method therefor, battery pack and vehicle installing these
CN100463257C (en) * 2005-01-28 2009-02-18 三星Sdi株式会社 Anode active material, method of preparing the same, and anode and lithium battery employing the same

Similar Documents

Publication Publication Date Title
JP3111791B2 (en) Non-aqueous electrolyte secondary battery
EP3663265A2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
US20200083531A1 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JPH10112318A (en) Nonaqueous electrolyte secondary battery
JP2000011991A (en) Organic electrolyte secondary battery
JP2001110453A (en) Nonaqueous electrolytic solution secondary battery
JPH0676860A (en) Secondary battery and manufacture thereof
JP2000357505A (en) Nonaqueous electrolyte secondary battery
CN217507387U (en) Battery core and battery
JPH07105970A (en) Non-aqueous secondary battery and its manufacture
JPH11126600A (en) Lithium ion secondary battery
JPH0433249A (en) Nonaqueous solvent secondary battery
JPH07130389A (en) Nonaqueous electrolyte secondary battery
JP4069988B2 (en) Lithium ion secondary battery
US5788720A (en) Method for manufacturing positive electrode plates for an alkaline storage battery
JP2003331823A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the battery
JP3432922B2 (en) Solid electrolyte secondary battery
JPH0367462A (en) Nonaqueous solvent secondary battery
JPH09129264A (en) Manufacture of nonaqueous electrolyte secondary battery
JP2005071712A (en) Manufacturing method of positive electrode
JPH0982364A (en) Nonaqueous electrolyte secondary battery
CN110024203A (en) Electrode assembly and rechargeable battery including the electrode assembly
JPH07130394A (en) Nonaqueous electrolyte secondary battery
JP3489381B2 (en) Non-aqueous electrolyte secondary battery