JPH04332108A - Multiple pole magnetization - Google Patents

Multiple pole magnetization

Info

Publication number
JPH04332108A
JPH04332108A JP10125091A JP10125091A JPH04332108A JP H04332108 A JPH04332108 A JP H04332108A JP 10125091 A JP10125091 A JP 10125091A JP 10125091 A JP10125091 A JP 10125091A JP H04332108 A JPH04332108 A JP H04332108A
Authority
JP
Japan
Prior art keywords
permanent magnet
magnetization
cylindrical
yoke
cylindrical permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10125091A
Other languages
Japanese (ja)
Inventor
Seiji Miyazawa
宮沢 清治
Masaaki Sakata
正昭 坂田
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10125091A priority Critical patent/JPH04332108A/en
Publication of JPH04332108A publication Critical patent/JPH04332108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To provide a method for magnetizing multiple poles which enables a magnetic force line for magnetization to be operated to a permanent magnet efficiently and a rare-earth permanent magnet to be used efficiently in a multiple-pole magnetization of an isotropic cylindrical permanent magnet. CONSTITUTION:A multiple-pole magnetization is performed by allowing a cylindrical or column-shaped back yoke consisting of a soft magnetic material to be inscribed to or fixed to an inner-periphery surface of a cylindrical permanent magnet. Also, when a width of one magnetic pole of a isotropic cylindrical permanent magnet, its coating thickness, and a coating thickness of the back yoke are set to W, T, and t, respectively, T<=0.5W<=2t should be true. A high surface magnetic flux density can be obtained. Since a specified surface magnetic flux density can be secured even if the coating thickness of the isotropic cylindrical permanent magnet is made thin, the permanent magnet can be used efficiently.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は等方性円筒状永久磁石の
外周面に多極着磁を行なう多極着磁の方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multipolar magnetization method for magnetizing the outer peripheral surface of an isotropic cylindrical permanent magnet.

【0002】0002

【従来の技術】従来これら円筒状永久磁石には代表的な
材質としてフェライト永久磁石、希土類永久磁石などが
あり、それらの磁石には例えばサイコロ形状にしてどち
らかの面から着磁しても同じ磁束量を得ることができる
等方性永久磁石と、特定の方向に磁気特性を向上させそ
の面方向にのみ高い磁束量を得ることを可能とした異方
性永久磁石とがある。異方性永久磁石を円筒形状に成形
して放射状に異方性を揃えたものがラジアル異方性永久
磁石と呼ばれ、その外周面に多極着磁を行いOA機器な
どに組み込まられるステッピングモータに使用される。 フェライト永久磁石は着磁、つまり磁化のされやすさを
示す保磁力が4KOe程度と低いため等方性、異方性を
問わず比較的着磁を行いやすかった。しかし希土類永久
磁石は一般的に保磁力が7KOeから15KOe程度と
高く、多極着磁ヨークの着磁能力を考慮した磁石の設計
が必要であった。また希土類永久磁石粉と結合材である
樹脂との混合物を磁場中で成形して、ラジアル異方性化
し樹脂結合型円筒状永久磁石として用いることも行われ
ている。希土類永久磁石の中でもSm−Co系の樹脂結
合型磁石はその磁気特性の高さと成形性の良さ、ラジア
ル異方性化の行いやすさなどから、特に数多く使用され
ている。ラジアル異方性の樹脂結合型円筒状永久磁石は
内周面に純鉄などの軟磁性材料よりなるバックヨークを
位置して、その外周面に位置した多極着磁ヨークにより
多極着磁される。この時の円筒状永久磁石の1磁極幅W
と肉厚Tとの関係は、T=0.5W〜0.7Wの範囲が
最も高い表面磁束密度を得ることできる。
[Prior Art] Conventionally, typical materials for these cylindrical permanent magnets include ferrite permanent magnets and rare earth permanent magnets. There are isotropic permanent magnets that can obtain a large amount of magnetic flux, and anisotropic permanent magnets that have improved magnetic properties in a specific direction and can obtain a high amount of magnetic flux only in that plane direction. A radial anisotropic permanent magnet is an anisotropic permanent magnet that is molded into a cylindrical shape and has anisotropy aligned radially.The outer circumferential surface of the magnet is multi-pole magnetized and used in stepping motors that are incorporated into office automation equipment, etc. used for. Ferrite permanent magnets have a low coercive force, which indicates ease of magnetization, of about 4 KOe, so they are relatively easy to magnetize regardless of whether they are isotropic or anisotropic. However, rare earth permanent magnets generally have a high coercive force of about 7 KOe to 15 KOe, and it is necessary to design the magnet in consideration of the magnetizing ability of the multipolar magnetizing yoke. Furthermore, a mixture of rare earth permanent magnet powder and a resin as a binder is molded in a magnetic field to make it radially anisotropic and used as a resin-bonded cylindrical permanent magnet. Among rare earth permanent magnets, Sm--Co resin-bonded magnets are particularly widely used because of their high magnetic properties, good formability, and ease of radial anisotropy. A radially anisotropic resin-bonded cylindrical permanent magnet has a back yoke made of soft magnetic material such as pure iron on its inner circumferential surface, and is multipolarized by a multipolar magnetizing yoke located on its outer circumferential surface. Ru. One magnetic pole width W of the cylindrical permanent magnet at this time
Regarding the relationship between T and thickness T, the highest surface magnetic flux density can be obtained when T is in the range of 0.5W to 0.7W.

【0003】0003

【発明が解決しようとする課題】しかしながら前記した
ようなラジアル異方性永久磁石の他に、最近ではNd系
の等方性の希土類永久磁石が用いられるようになってい
る。しかし等方性の永久磁石はその肉厚に関係なく着磁
極数を設定できるけれども、外周面から着磁した場合は
だんだんと内周面に近ずくほど着磁されて発生する磁束
に寄与する割合が小さくなるという現象を起こしていた
。つまり着磁のための磁力線は着磁ヨークの溝部に巻装
された電線から同芯円状に発生するため、その同芯円の
外側は磁石の厚さを越えているのにその谷間に当たる部
分は着磁ヨーク側に接している面から僅かに磁石内部に
入り込むだけでしかない。特に永久磁石は軟磁性材料な
どとは異なり、磁力線を吸引してその流れを引き寄せる
性質が弱いために顕著である。また希土類永久磁石粉は
フェライト磁石に比較して原料コストも高いため、磁束
の発生に寄与しない部分をそのままにしておくことは、
コストアップの要因でもある。本発明は、以上のような
従来の等方性の円筒状永久磁石の問題点を解決するもの
であり、その目的とするところは、着磁のための磁力線
を効率良く永久磁石に作用させ、希土類永久磁石を効率
良く使用することができる多極着磁の方法を提供すると
ころにある。
However, in addition to the above-mentioned radial anisotropic permanent magnets, Nd-based isotropic rare earth permanent magnets have recently been used. However, although the number of magnetized poles of an isotropic permanent magnet can be set regardless of its wall thickness, if it is magnetized from the outer circumferential surface, the closer it gets to the inner circumferential surface, the more the proportion contributing to the generated magnetic flux will increase. This caused a phenomenon in which the In other words, the lines of magnetic force for magnetization are generated concentrically from the wires wound around the grooves of the magnetizing yoke, so although the outside of the concentric circle exceeds the thickness of the magnet, the part that falls between the valleys only slightly enters the inside of the magnet from the surface in contact with the magnetizing yoke. This is particularly noticeable because, unlike soft magnetic materials, permanent magnets have a weak ability to attract lines of magnetic force and draw their flow. In addition, the raw material cost of rare earth permanent magnet powder is higher than that of ferrite magnets, so leaving parts that do not contribute to magnetic flux generation is
This is also a factor in increasing costs. The present invention solves the problems of the conventional isotropic cylindrical permanent magnet as described above, and its purpose is to efficiently cause lines of magnetic force for magnetization to act on the permanent magnet, An object of the present invention is to provide a multi-pole magnetization method that allows efficient use of rare earth permanent magnets.

【0004】0004

【課題を解決するための手段】本発明の多極着磁の方法
は、軟磁性材料よりなるパイプ状ヨークの内周面に複数
の溝加工を行ない、この溝部に電線を巻装した一般に多
極着磁ヨークと呼ばれる着磁治具の電線に、一般にパル
ス着磁電源と呼ばれる着磁電源装置からパルス状の着磁
電流を流すことにより、前記パイプ状ヨークの内周面に
位置した等方性円筒状永久磁石の外周面に多極着磁を行
なう多極着磁の方法において、該円筒状永久磁石の内周
面に軟磁性材料よりなる円筒状または円柱状のバックヨ
ークを内装、または固定し多極着磁を行う。または等方
性円筒状永久磁石の1磁極の幅W、同磁石の肉厚T、バ
ックヨークの肉厚tとした時T≦0.5W≦2tの関係
範囲内にある状態で多極着磁を行うものである。
[Means for Solving the Problems] The multi-pole magnetization method of the present invention involves machining a plurality of grooves on the inner peripheral surface of a pipe-like yoke made of a soft magnetic material, and winding electric wires in the grooves. By passing a pulsed magnetizing current from a magnetizing power supply device generally called a pulse magnetization power supply through the electric wire of a magnetization jig called a polar magnetization yoke, an isotropic magnet located on the inner circumferential surface of the pipe-shaped yoke is In a multi-polar magnetization method in which the outer peripheral surface of a cylindrical permanent magnet is multi-pole magnetized, a cylindrical or cylindrical back yoke made of a soft magnetic material is installed on the inner peripheral surface of the cylindrical permanent magnet, or Fixed and multi-pole magnetized. Or, when the width W of one magnetic pole of an isotropic cylindrical permanent magnet, the wall thickness T of the same magnet, and the wall thickness t of the back yoke are multi-pole magnetized within the relational range of T≦0.5W≦2t. This is what we do.

【0005】[0005]

【作用】即ち、本発明は軟磁性材料よりなるパイプ状ヨ
ークの内周面に複数の溝加工を行ない、この溝部に電線
を巻装した一般に多極着磁ヨークと呼ばれる着磁治具の
電線に、一般にパルス着磁電源と呼ばれる着磁電源装置
からパルス状の着磁電流を流すことにより、前記パイプ
状ヨークの内周面に位置した等方性円筒状永久磁石の外
周面に多極着磁を行う多極着磁の方法において、前記し
た等方性円筒状永久磁石の内周面に軟磁性材料よりなる
円筒状、または円柱状のバックヨークを内接し、前記し
た多極着磁ヨークの電線を中心に発生する着磁のための
磁力線をバックヨークで吸引し、着磁面から離れるのに
つれて着磁されない部分が発生する状態を改善するもの
である。また円筒状永久磁石の内周面にバックヨークを
固定しその時の円筒状永久磁石の1磁極幅と磁石の肉厚
、バックヨークの肉厚との関係を適切化して、希土類永
久磁石を効率良く使用することができる。
[Operation] In other words, the present invention involves machining a plurality of grooves on the inner circumferential surface of a pipe-shaped yoke made of a soft magnetic material, and winding electric wires around the grooves of the electric wire of a magnetizing jig, which is generally called a multipolar magnetizing yoke. By applying a pulsed magnetizing current from a magnetizing power supply device generally called a pulsed magnetizing power supply, multipoles are attached to the outer circumferential surface of the isotropic cylindrical permanent magnet located on the inner circumferential surface of the pipe-like yoke. In a multi-pole magnetization method for magnetizing, a cylindrical or cylindrical back yoke made of a soft magnetic material is inscribed in the inner peripheral surface of the above-described isotropic cylindrical permanent magnet, and the above-described multi-polar magnetization yoke is produced. The back yoke attracts the lines of magnetic force for magnetization generated around the electric wire, and improves the situation in which unmagnetized portions occur as the distance from the magnetized surface increases. In addition, by fixing the back yoke to the inner peripheral surface of the cylindrical permanent magnet and optimizing the relationship between the width of one magnetic pole of the cylindrical permanent magnet, the wall thickness of the magnet, and the wall thickness of the back yoke, rare earth permanent magnets can be efficiently manufactured. can be used.

【0006】[0006]

【実施例】以下に本発明の実施例を説明する。 (実施例1)Nd−Fe−B磁性粉末(60体積%)と
熱可塑性ナイロン樹脂(40体積%)よりなる混合物を
射出成形して樹脂結合型希土類永久磁石と呼ばれる外径
φ20×内径φ16×長さ10mmの等方性の円筒状永
久磁石を得た。この等方性の円筒状永久磁石の外周面に
24極着磁を行なうべく準備をした。純鉄の外径φ50
×内径φ20.01×長さ(深さ)13mmのヨークは
機械加工によりその内周側に24等分の丸溝を設けた。 その溝は永久磁石に接する側に幅1mmの開口部を設け
てある。ヨークの溝には、絶縁層で表面処理された仕上
がり外径φ1.2mm、芯線外径φ1mmの電気銅線を
巻き線しエポキシ樹脂を含浸し、絶縁処理を兼ねて固定
した。ヨークの外側に冷却のための水冷ジャケットを設
置してある。以上の様な構成をした多極着磁ヨークの口
出し線にパルス着磁電源装置を接続して多極着磁を行う
。パルス着磁電源装置はオイルコンデンサーに電荷を蓄
え、半導体スイッチにより短時間の内に多極着磁ヨーク
へのその電荷を流すタイプのものである。コンデンサー
の容量を800μF、電圧を2500Vに設定し、多極
着磁ヨークに前記した円筒状永久磁石を挿入し、更に円
筒状永久磁石の内側に純鉄製のバックヨークを内接させ
24極着磁を行った。その時のピーク電流値は1100
Aであった。従来例として前記した等方性の円筒状永久
磁石の内側には何も入れず、同様にパルス着磁電源装置
を設定して24極の多極着磁を行った。以上のようにし
て多極着磁した等方性の円筒状永久磁石単体の表面磁束
密度をそれぞれ10個ずつ市販のガウスメーターとホー
ルプローブを用いて測定し、その平均値をまとめた。 その結果を表1に示す。
[Examples] Examples of the present invention will be described below. (Example 1) A mixture of Nd-Fe-B magnetic powder (60% by volume) and thermoplastic nylon resin (40% by volume) is injection molded to produce a resin-bonded rare earth permanent magnet.Outer diameter φ20×Inner diameter φ16× An isotropic cylindrical permanent magnet with a length of 10 mm was obtained. Preparations were made to perform 24-pole magnetization on the outer peripheral surface of this isotropic cylindrical permanent magnet. Pure iron outer diameter φ50
A yoke with an inner diameter of 20.01 mm and a length (depth) of 13 mm was machined to have 24 equally divided round grooves on its inner circumferential side. The groove has an opening with a width of 1 mm on the side in contact with the permanent magnet. In the groove of the yoke, an electric copper wire having a finished outer diameter of 1.2 mm and a core outer diameter of 1 mm, which had been surface-treated with an insulating layer, was wound and impregnated with epoxy resin, and fixed to serve as an insulation treatment. A water cooling jacket is installed on the outside of the yoke for cooling. A pulse magnetization power supply device is connected to the lead wire of the multi-pole magnetizing yoke configured as described above to perform multi-pole magnetization. The pulse magnetization power supply device stores electric charge in an oil capacitor and uses a semiconductor switch to flow the electric charge to the multi-pole magnetization yoke within a short period of time. The capacitance of the capacitor was set to 800 μF and the voltage was set to 2500 V, the above-mentioned cylindrical permanent magnet was inserted into the multi-pole magnetized yoke, and a back yoke made of pure iron was inscribed inside the cylindrical permanent magnet for 24-pole magnetization. I did it. The peak current value at that time was 1100
It was A. As a conventional example, nothing was placed inside the isotropic cylindrical permanent magnet described above, and 24-pole multipole magnetization was performed by setting up the pulse magnetization power supply in the same manner. The surface magnetic flux densities of 10 individual isotropic cylindrical permanent magnets magnetized with multiple poles as described above were measured using a commercially available Gauss meter and a Hall probe, and the average values were compiled. The results are shown in Table 1.

【表1】 本発明の多極着磁の方法によれば、同一の永久磁石と同
一の多極着磁ヨークを用いて、従来例の方法より高い表
面磁束密度を得ることをができるものである。 (実施例2)Nd−Fe−B磁性粉末(60体積%)と
熱可塑性ナイロン樹脂(40体積%)よりなる混合物を
射出成形して樹脂結合型希土類永久磁石と呼ばれる外径
φ20×内径φ16×長さ10mmの等方性の円筒状永
久磁石の外周面に24極着磁を行った。等方性の円筒状
永久磁石の内周面には外径φ15.95×内径φ13×
長さ10mmの純鉄製のバックヨークを接着材で固定し
た。使用した多極着磁ヨークなどは以下のとうりである
。純鉄の外径φ50×内径φ20.01×長さ(深さ)
13mmのヨークは機械加工によりその内周側に24等
分の丸溝を設けた。その溝は永久磁石に接する側に幅1
mmの開口部を設けてある。ヨークの溝には、絶縁層で
表面処理された仕上がり外径φ1.2mm、芯線外径φ
1mmの電気銅線を巻き線しエポキシ樹脂を含浸し、絶
縁処理を兼ねて固定した。ヨークの外側に冷却のための
水冷ジャケットを設置してある。以上の様な構成をした
多極着磁ヨークの口出し線にパルス着磁電源装置を接続
して多極着磁を行う。パルス着磁電源装置はオイルコン
デンサーに電荷を蓄え、半導体スイッチにより短時間の
内に多極着磁ヨークへその電荷を流すタイプのものであ
る。コンデンサーの容量を800μF、電圧を2500
Vに設定し、多極着磁ヨークに前記した円筒状永久磁石
を挿入し、更に円筒状永久磁石の内側に固定した純鉄製
のバックヨークの内側に純鉄の丸棒を内接させ24極着
磁を行った。その時のピーク電流値は1100Aであっ
た。従来例として前記した等方性の円筒状永久磁石の内
側に純鉄の丸棒を内接させ、同様にパルス着磁電源装置
を設定して24極の多極着磁を行った。以上のようにし
て多極着磁した等方性の円筒状永久磁石の表面磁束密度
をそれぞれ10個ずつ市販のガウスメーターとホールプ
ローブを用いて測定し、その平均値をまとめた。 その結果を表2に示す。
[Table 1] According to the multipolar magnetization method of the present invention, it is possible to obtain a higher surface magnetic flux density than the conventional method using the same permanent magnet and the same multipolar magnetization yoke. be. (Example 2) A mixture consisting of Nd-Fe-B magnetic powder (60% by volume) and thermoplastic nylon resin (40% by volume) is injection molded to produce a resin-bonded rare earth permanent magnet.Outer diameter φ20×Inner diameter φ16× The outer peripheral surface of an isotropic cylindrical permanent magnet with a length of 10 mm was magnetized with 24 poles. The inner peripheral surface of the isotropic cylindrical permanent magnet has an outer diameter of φ15.95×inner diameter of φ13×
A pure iron back yoke with a length of 10 mm was fixed with adhesive. The multi-pole magnetized yoke used is as follows. Pure iron outer diameter φ50 x inner diameter φ20.01 x length (depth)
The 13 mm yoke was machined to have 24 equally divided round grooves on its inner circumferential side. The groove has a width of 1 on the side in contact with the permanent magnet.
An opening of mm is provided. The groove of the yoke has a finished outer diameter of 1.2 mm, which is surface-treated with an insulating layer, and a core wire outer diameter of φ.
A 1 mm electric copper wire was wound, impregnated with epoxy resin, and fixed to serve as an insulation treatment. A water cooling jacket is installed on the outside of the yoke for cooling. A pulse magnetization power supply device is connected to the lead wire of the multi-pole magnetizing yoke configured as described above to perform multi-pole magnetization. The pulse magnetization power supply device stores electric charge in an oil capacitor and uses a semiconductor switch to quickly flow the electric charge to a multi-pole magnetizing yoke. Capacity of capacitor is 800μF, voltage is 2500
V, insert the above-mentioned cylindrical permanent magnet into the multi-pole magnetized yoke, and further inscribe a pure iron round bar inside the pure iron back yoke fixed inside the cylindrical permanent magnet to create 24 poles. Magnetization was performed. The peak current value at that time was 1100A. As a conventional example, a round bar of pure iron was inscribed inside the above-mentioned isotropic cylindrical permanent magnet, and a pulse magnetization power supply device was similarly set to perform multipole magnetization with 24 poles. The surface magnetic flux densities of 10 isotropic cylindrical permanent magnets magnetized with multiple poles as described above were measured using a commercially available Gauss meter and a Hall probe, and the average values were summarized. The results are shown in Table 2.

【表2】 本発明の多極着磁の方法によれば同一の永久磁石と同一
の多極着磁ヨークを用いて、従来例の方法より高い表面
磁束密度を得ることをができるものである。 (実施例3)Nd−Fe−B磁性粉末(60体積%)と
熱可塑性ナイロン樹脂(40体積%)よりなる混合物を
射出成形して樹脂結合型希土類永久磁石と呼ばれる外径
φ20、長さ10mmの等方性の円筒状永久磁石を得て
、内径寸法と磁石の肉厚をそれぞれφ17、T=1.5
、φ17.5、T=1.25、φ18、T=1mmに加
工した。肉厚を3種類に設定した等方性の円筒状永久磁
石の外周面に24極着磁を行った。それぞれの円筒状永
久磁石の内周面には外径寸法をそれぞれの円筒状永久磁
石に合わせた内径φ14mmで長さ10mmの純鉄製の
バックヨークを接着材で固定した。使用した多極着磁ヨ
ークなどは以下のとうりである。純鉄の外径φ50×内
径φ20.01×長さ(深さ)13mmのヨークは機械
加工によりその内周側に24等分の丸溝を設けた。その
溝は永久磁石に接する側に幅1mmの開口部を設けてあ
る。ヨークの溝には、絶縁層で表面処理された仕上がり
外径φ1.2mm、芯線外径φ1mmの電気銅線を巻き
線しエポキシ樹脂を含浸し、絶縁処理を兼ねて固定した
。ヨークの外側に冷却のための水冷ジャケットを設置し
てある。以上の様な構成をした多極着磁ヨークの口出し
線にパルス着磁電源装置を接続して多極着磁を行う。 パルス着磁電源装置はオイルコンデンサーに電荷を蓄え
、半導体スイッチにより短時間の内に多極着磁ヨークへ
その電荷を流すタイプのものである。コンデンサーの容
量を800μF、電圧を2500Vに設定し、多極着磁
ヨークに前記した円筒状永久磁石を挿入し、更に円筒状
永久磁石の内側に固定した純鉄製のバックヨークの内側
に純鉄の丸棒を内接させ24極着磁を行った。その時の
ピーク電流値は1100Aであった。従来例として前記
した等方性の円筒状永久磁石の内径をφ17mmにし、
その内側に純鉄の丸棒を内接させ、同様にパルス着磁電
源装置を設定して24極の多極着磁を行った。以上のよ
うにして多極着磁した等方性の円筒状永久磁石の表面磁
束密度をそれぞれ10個ずつ市販のガウスメーターとホ
ールプローブを用いて測定し、その平均値をまとめた。 その結果を表3に示す。
[Table 2] According to the multi-pole magnetization method of the present invention, it is possible to obtain a higher surface magnetic flux density than the conventional method using the same permanent magnet and the same multi-pole magnetization yoke. . (Example 3) A mixture of Nd-Fe-B magnetic powder (60% by volume) and thermoplastic nylon resin (40% by volume) was injection molded to produce a resin-bonded rare earth permanent magnet with an outer diameter of 20 mm and a length of 10 mm. An isotropic cylindrical permanent magnet is obtained, and the inner diameter and wall thickness of the magnet are φ17 and T=1.5, respectively.
, φ17.5, T=1.25, φ18, T=1 mm. The outer peripheral surface of an isotropic cylindrical permanent magnet with three types of wall thickness was magnetized with 24 poles. A back yoke made of pure iron having an inner diameter of 14 mm and a length of 10 mm, whose outer diameter matched the outer diameter of each cylindrical permanent magnet, was fixed to the inner peripheral surface of each cylindrical permanent magnet with an adhesive. The multi-pole magnetized yoke used is as follows. A yoke made of pure iron with an outer diameter of 50 mm, an inner diameter of 20.01 mm, and a length (depth) of 13 mm was machined to have 24 equally divided round grooves on its inner circumferential side. The groove has an opening with a width of 1 mm on the side in contact with the permanent magnet. In the groove of the yoke, an electric copper wire having a finished outer diameter of 1.2 mm and a core outer diameter of 1 mm, which had been surface-treated with an insulating layer, was wound and impregnated with epoxy resin, and fixed to serve as an insulation treatment. A water cooling jacket is installed on the outside of the yoke for cooling. A pulse magnetization power supply device is connected to the lead wire of the multi-pole magnetizing yoke configured as described above to perform multi-pole magnetization. The pulse magnetization power supply device stores electric charge in an oil capacitor and uses a semiconductor switch to quickly flow the electric charge to a multi-pole magnetizing yoke. The capacity of the capacitor was set to 800 μF and the voltage was set to 2500 V, the above-mentioned cylindrical permanent magnet was inserted into the multi-pole magnetized yoke, and a pure iron back yoke was fixed inside the cylindrical permanent magnet. A round bar was inscribed and 24-pole magnetization was performed. The peak current value at that time was 1100A. As a conventional example, the inner diameter of the isotropic cylindrical permanent magnet described above is φ17 mm,
A round bar of pure iron was inscribed inside the magnet, and a pulse magnetization power supply device was similarly set up to perform multipole magnetization with 24 poles. The surface magnetic flux densities of 10 isotropic cylindrical permanent magnets magnetized with multiple poles as described above were measured using a commercially available Gauss meter and a Hall probe, and the average values were summarized. The results are shown in Table 3.

【表3】 本発明の多極着磁の方法によれば、等方性永久磁石の外
周1磁極の幅Wを2.6mmとした時、磁石の肉厚Tが
1.25mmつまりT=0.5Wの時に高い磁束密度を
得ることができる。また必要とされる表面磁束密度が、
少なくてもよい場合にはT≦0.5Wとすれば永久磁石
の使用量を少なくできるため磁石のコストも小さくなる
。次にバックヨークの厚さの適性値を実験により求めた
。等方性の円筒状永久磁石は外径φ20、内径φ17.
5mmの前記の表から一番特性の良い寸法のものを使用
した。永久磁石の内周面に固定するバックヨークはその
肉厚tをそれぞれ0.5、0.63、0.8mmとした
。前記と同様な条件で24極の多極着磁を行い、同様な
測定方法で測定した10個ずつの平均値を表4にまとめ
た。
[Table 3] According to the multi-pole magnetization method of the present invention, when the width W of one outer magnetic pole of an isotropic permanent magnet is 2.6 mm, the thickness T of the magnet is 1.25 mm, that is, T = 0 A high magnetic flux density can be obtained at .5W. In addition, the required surface magnetic flux density is
If a smaller amount is acceptable, by setting T≦0.5W, the amount of permanent magnet used can be reduced, and the cost of the magnet can also be reduced. Next, we determined the appropriate thickness of the back yoke through experiments. The isotropic cylindrical permanent magnet has an outer diameter of φ20 and an inner diameter of φ17.
The size having the best characteristics from the above table of 5 mm was used. The thickness t of the back yoke fixed to the inner peripheral surface of the permanent magnet was 0.5, 0.63, and 0.8 mm, respectively. Multi-pole magnetization of 24 poles was performed under the same conditions as above, and the average values of 10 magnets each measured using the same measuring method are summarized in Table 4.

【表4】 バックヨークの肉厚tは、t=0.63mm以上つまり
永久磁石の肉厚T=1.25mmの半分以上T=≦2t
の関係があれば所定の表面磁束密度を得ることができる
[Table 4] The wall thickness t of the back yoke is t = 0.63 mm or more, that is, more than half of the permanent magnet wall thickness T = 1.25 mm T = ≦2t
If the relationship is satisfied, a predetermined surface magnetic flux density can be obtained.

【0007】[0007]

【発明の効果】以上述べたように本発明の多極着磁の方
法によれば、次のような効果を有するものである。 (1)等方性円筒状永久磁石の外周面に多極着磁を行う
多極着磁の方法において、該円筒状永久磁石の内周面に
軟磁性材料よりなる円筒状または円柱状のバックヨーク
を内接、または固定し多極着磁を行うことにより、着磁
のための磁力線を効率良く永久磁石に作用させることが
できるため、高い表面磁束密度を得ることができる。 (2)等方性円筒状永久磁石の1磁極の幅W、同磁石の
肉厚T、バックヨークの肉厚tとした時T≦0.5W≦
2tの関係範囲内にある状態で多極着磁を行うことによ
り、等方性円筒状永久磁石の肉厚を薄くしても所定の表
面磁束密度を確保できるため、永久磁石を効率良く使用
することができる。
As described above, the multipolar magnetization method of the present invention has the following effects. (1) In a multipolar magnetization method in which the outer peripheral surface of an isotropic cylindrical permanent magnet is multipole magnetized, a cylindrical or cylindrical back made of a soft magnetic material is attached to the inner peripheral surface of the cylindrical permanent magnet. By inscribing or fixing the yoke and performing multi-pole magnetization, the lines of magnetic force for magnetization can be made to efficiently act on the permanent magnet, so a high surface magnetic flux density can be obtained. (2) When width W of one magnetic pole of an isotropic cylindrical permanent magnet, thickness T of the magnet, and thickness t of the back yoke, T≦0.5W≦
By performing multi-pole magnetization within the 2t relational range, the specified surface magnetic flux density can be ensured even if the wall thickness of the isotropic cylindrical permanent magnet is made thinner, so the permanent magnet can be used efficiently. be able to.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】軟磁性材料よりなるパイプ状ヨークの内周
面に複数の溝加工を行ない、この溝部に電線を巻装した
一般に多極着磁ヨークと呼ばれる着磁治具の電線に、一
般にパルス着磁電源と呼ばれる着磁電源装置からパルス
状の着磁電流を流すことにより、前記パイプ状ヨークの
内周面に位置した等方性円筒状永久磁石の外周面に多極
着磁を行なう多極着磁の方法において、該円筒状永久磁
石の内周面に軟磁性材料よりなる円筒状または円柱状の
バックヨークを内接させ多極着磁を行うことを特徴とす
る多極着磁の方法。
Claim 1: A plurality of grooves are formed on the inner peripheral surface of a pipe-shaped yoke made of a soft magnetic material, and electric wires are wound around the grooves of a magnetizing jig, which is generally called a multipolar magnetizing yoke. Multipolar magnetization is performed on the outer peripheral surface of the isotropic cylindrical permanent magnet located on the inner peripheral surface of the pipe-shaped yoke by passing a pulsed magnetizing current from a magnetizing power supply device called a pulsed magnetizing power supply. A method of multipolar magnetization, characterized in that a cylindrical or cylindrical back yoke made of a soft magnetic material is inscribed in the inner peripheral surface of the cylindrical permanent magnet to perform multipolar magnetization. the method of.
【請求項2】上記多極着磁の方法においてパイプ状ヨー
クの内周面に位置した円筒状永久磁石が等方性であり、
かつ内周面に内接した軟磁性材料よりなる円筒状または
円柱状のバックヨークが該円筒状永久磁石の内周面に固
定されていることを特徴とする多極着磁の方法。
2. In the multi-pole magnetization method, the cylindrical permanent magnet located on the inner peripheral surface of the pipe-like yoke is isotropic;
A method of multipolar magnetization, characterized in that a cylindrical or cylindrical back yoke made of a soft magnetic material inscribed in the inner circumferential surface is fixed to the inner circumferential surface of the cylindrical permanent magnet.
【請求項3】上記多極着磁の方法においてパイプ状ヨー
クの内周面に位置した円筒状永久磁石が等方性であり、
かつ該円筒状永久磁石の内周面に内接し、固定されてい
る軟磁性材料よりなる円筒状のバックヨークとが、前記
した円筒状永久磁石の1磁極の幅W、同磁石の肉厚T、
バックヨークの肉厚tとした時T≦0.5W≦2tの関
係範囲内にあることを特徴とする多極着磁の方法。
3. In the multi-pole magnetization method, the cylindrical permanent magnet located on the inner peripheral surface of the pipe-like yoke is isotropic;
A cylindrical back yoke made of a soft magnetic material inscribed and fixed to the inner circumferential surface of the cylindrical permanent magnet has a width W of one magnetic pole of the cylindrical permanent magnet and a wall thickness T of the magnet. ,
A multi-pole magnetization method characterized in that when the wall thickness of the back yoke is t, the relationship is within the range of T≦0.5W≦2t.
JP10125091A 1991-05-07 1991-05-07 Multiple pole magnetization Pending JPH04332108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10125091A JPH04332108A (en) 1991-05-07 1991-05-07 Multiple pole magnetization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10125091A JPH04332108A (en) 1991-05-07 1991-05-07 Multiple pole magnetization

Publications (1)

Publication Number Publication Date
JPH04332108A true JPH04332108A (en) 1992-11-19

Family

ID=14295670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10125091A Pending JPH04332108A (en) 1991-05-07 1991-05-07 Multiple pole magnetization

Country Status (1)

Country Link
JP (1) JPH04332108A (en)

Similar Documents

Publication Publication Date Title
US7205693B2 (en) Rotor-stator structure for electrodynamic machines
JP3864986B2 (en) Thin hybrid magnetized ring magnet, thin hybrid magnetized ring magnet with yoke, and brushless motor
JP4697736B2 (en) Magnetization method of permanent magnet
WO2005104337A1 (en) Anisotropic bond magnet for four-magnetic-pole motor, motor using the same, device for orientation processing of anisotropic bond magnet for four-magnetic-pole motor
JPS604663B2 (en) Permanent magnet motor with solid non-magnetic armature
JPS645340A (en) Rotating electric machine
CN106253518A (en) The manufacture method of rotor, motor and rotor
JP2940048B2 (en) Permanent magnet magnetization method
JP2004056835A (en) Bonded magnet for motor and motor
JPH04332108A (en) Multiple pole magnetization
JPH0259993B2 (en)
JPS629202B2 (en)
JP4013916B2 (en) Orientation processing device for anisotropic bonded magnet for 4-pole motor
CN102623133B (en) A kind of method for Sintered NdFeB magnet multipole magnetization
JPH04146607A (en) Multipolar magnetizing method
Ślusarek et al. Multi-pole magnetization of magnets of high density magnetic energy
JPH062630U (en) Bipolar magnetizer
JPH041486B2 (en)
JPH04186709A (en) Multipole magnetization
CN115101319A (en) Radial multi-pole magnetic ring preparation device and preparation method
JPS60167308A (en) Cylinder type permanent magnet
PL210617B1 (en) Production method of magnetizing head for multipolar magnetizing of durable magnets, especially of high magnetic density
JPS63198311A (en) Manufacture of magnet with magnetic anisotropy circumferentially
JP2003333817A (en) Dc brush motor device
JPH04107812U (en) Magnetizing device