JPH04329620A - Electrode foil for electrolytic capacitor and electrolytic capacitor - Google Patents

Electrode foil for electrolytic capacitor and electrolytic capacitor

Info

Publication number
JPH04329620A
JPH04329620A JP12850891A JP12850891A JPH04329620A JP H04329620 A JPH04329620 A JP H04329620A JP 12850891 A JP12850891 A JP 12850891A JP 12850891 A JP12850891 A JP 12850891A JP H04329620 A JPH04329620 A JP H04329620A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
base material
foil
titanium
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12850891A
Other languages
Japanese (ja)
Inventor
Kazuyuki Adachi
安達 和幸
Mitsuru Mochizuki
充 望月
Manabu Kazuhara
学 数原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP12850891A priority Critical patent/JPH04329620A/en
Publication of JPH04329620A publication Critical patent/JPH04329620A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To obtain a high developability of electrostatic capacitance by spreading an aluminum foil base material with a titanium thin film or a titanium nitride thin film where a gap of adjacent columns is over a predetermined value. CONSTITUTION:A gap of adjacent columns 2 of less than 50Angstrom deteriorates the impregnatability of a driving electrolyte and makes the developability of electrostatic capacitance poor. A gap of adjacent columns 2 of more than 50Angstrom improves the impregnatability of the driving electrolyte and makes the developability of electrostatic capacitance better. Particularly, a range of 50-500Angstrom is very favorable. An aluminum foil is preferably used as the base material 1: an aluminum foil either of microruggedness or of substantial smoothness can be used.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は基材表面に蒸着皮膜を形
成した電解コンデンサ用電極箔および電解コンデンサに
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode foil for an electrolytic capacitor and an electrolytic capacitor in which a vapor-deposited film is formed on the surface of a substrate.

【0002】0002

【従来の技術】アルミニウムなどの弁作用金属の陽極箔
と陰極箔をセパレータを介在させて巻回してコンデンサ
素子とした電解コンデンサは、一般にコンデンサ素子に
駆動用電解液を含浸し、アルミニウムなどの金属製ケー
スや合成樹脂製のケースにコンデンサ素子を収納し、密
閉した構造を有する。
[Prior Art] Electrolytic capacitors are made by winding an anode foil and a cathode foil made of a valve metal such as aluminum with a separator interposed between them to form a capacitor element.Generally, the capacitor element is impregnated with a driving electrolyte, and The capacitor element is housed in a case made of synthetic resin or synthetic resin, and has a sealed structure.

【0003】このような電解コンデンサの駆動用電解液
としては従来、エチレングリコールやγ−ブチロラクト
ンなどの極性有機溶媒の単体あるいはその混合物を主溶
媒とし、これにカルボン酸またはその塩を溶質とし、ま
た必要により糖類、水分、リン酸などを添加剤として溶
解した電解液が一般に使用されている。
Conventionally, the driving electrolyte for such an electrolytic capacitor uses a polar organic solvent such as ethylene glycol or γ-butyrolactone or a mixture thereof as a main solvent, and a carboxylic acid or its salt as a solute. An electrolytic solution in which sugars, water, phosphoric acid, etc. are dissolved as additives is generally used.

【0004】また、電解コンデンサの静電容量を高める
ために、電極材料の基材であるアルミニウム箔の表面積
を化学的にあるいは電気化学的にエッチングにより拡大
することが行なわれているが、エッチングが過度になる
とアルミニウム箔表面の溶解が同時に進行して却って拡
面率の増大を妨げることなどの理由から、エッチング技
術による電極材料の静電容量の増大化には限界があった
。このような問題点を解決するために、弁作用金属であ
るアルミニウム箔を基材とし該基材表面を粗面化した後
に、この基材表面に蒸着法により蒸着皮膜を形成した電
極材料を陰極として使用することも特開昭61−180
420号、特開昭61−214420号、特開昭62−
58609号、特開昭62−15813号、特開昭64
−33918号、特開昭63−100711号、特開平
1−304720号公報などにより知られている。
[0004] Furthermore, in order to increase the capacitance of electrolytic capacitors, the surface area of aluminum foil, which is the base material of the electrode material, is enlarged by chemical or electrochemical etching. There is a limit to increasing the capacitance of the electrode material by etching technology, because if it becomes excessive, the surface of the aluminum foil will simultaneously melt, which will actually hinder the increase in the area enlargement ratio. In order to solve these problems, we used aluminum foil, which is a valve metal, as a base material, roughened the surface of the base material, and then used a vapor-deposited film on the surface of this base material as a cathode material. It can also be used as JP-A-61-180
No. 420, JP-A-61-214420, JP-A-62-
No. 58609, JP-A-62-15813, JP-A-64
-33918, JP-A-63-100711, and JP-A-1-304720.

【0005】予め基材表面に物理的、化学的または電気
化学的に微細な凹凸を形成すると、蒸着箔の静電容量を
増加させる効果が認められる場合があるが、このような
加工は基材の強度、伸度を著しく損ない、また凹凸加工
工程を必要とするのでコスト面で不利な選択を強いられ
ていた。
[0005] When fine irregularities are formed physically, chemically, or electrochemically on the surface of the base material in advance, the effect of increasing the capacitance of the vapor-deposited foil may be observed. It significantly impairs the strength and elongation of the material, and also requires a roughening process, forcing a disadvantageous choice in terms of cost.

【0006】また、蒸着方法について種々の提案が特開
昭56−29669号、特開昭64−33915号、特
開昭64−33918号公報などにより知られている。 即ち、蒸着角度を付けたり、基材を冷却しつつ蒸着する
ことによりチタンを柱状に形成させ、静電容量の発現を
達成することが知られている。
[0006] Furthermore, various proposals regarding vapor deposition methods are known from Japanese Patent Laid-Open Nos. 56-29669, 64-33915, and 64-33918. That is, it is known that titanium is formed into columnar shapes by adjusting the deposition angle or by depositing titanium while cooling the base material, thereby achieving the expression of capacitance.

【0007】[0007]

【発明が解決しようとする課題】実質的に平滑なアルミ
ニウム箔の基材にチタンを柱状に蒸着により形成させる
場合、即ち、図1にチタン蒸着箔皮膜構造の模式図を示
すが、アルミニウム基材1上に形成されたチタンの柱状
物(以下、カラムという)2と他のカラム2の間隔Tが
密であると、相隣なるカラム2、2間に上述した駆動用
電解液が充分に含浸されずに静電容量の発現性が低下し
てしまうという問題点があった。
[Problem to be Solved by the Invention] When titanium is formed in columnar form by vapor deposition on a substantially smooth base material of aluminum foil, that is, as shown in FIG. If the distance T between the titanium pillars (hereinafter referred to as columns) 2 formed on 1 and the other columns 2 is close, the above-mentioned driving electrolyte will be sufficiently impregnated between the adjacent columns 2 and 2. There has been a problem in that the development of capacitance is reduced without being absorbed.

【0008】[0008]

【課題を解決するための手段】このような課題を解決す
るために、本発明者らは種々の実験および検討を行なっ
た結果、相隣なるカラムの間隔(隙間)が50オングス
トローム未満であると、駆動用電解液の含浸性が悪く、
静電容量の発現性が乏しいということが判明した。また
、相隣なるカラムの間隔(隙間)が50オングストロ−
ム以上であると、駆動用電解液の含浸性が改善され、静
電容量の発現性が良好になるということが判明した。 特には、50〜500オングストロ−ムの範囲が非常に
良好である。
[Means for Solving the Problems] In order to solve these problems, the present inventors conducted various experiments and studies, and found that the spacing (gap) between adjacent columns is less than 50 angstroms. , the impregnation of the driving electrolyte is poor;
It was found that the ability to express capacitance was poor. Also, the spacing (gap) between adjacent columns is 50 angstroms.
It has been found that when it is more than 0.0 mm, the impregnating property of the driving electrolyte is improved and the ability to develop capacitance is improved. In particular, a range of 50 to 500 angstroms is very good.

【0009】本発明において、基材としてはアルミニウ
ム箔が好適に使用され、上述のような微細な凹凸が形成
されたアルミニウム箔基材であっても、また実質上平滑
なアルミニウム箔基材であってもよい。平滑なアルミニ
ウム箔を基材に用いることは、引張強度や伸度を損わず
に基材の厚さを薄くすることが可能であり、またコスト
的にも粗面化する工程が不要なために有利である。この
ような基材はコンデンサ素子の陽極箔としても使用でき
るが、陰極箔として使用するのがむしろ好ましい。
[0009] In the present invention, aluminum foil is suitably used as the base material, and it is possible to use an aluminum foil base material having minute irregularities as described above or a substantially smooth aluminum foil base material. You can. By using smooth aluminum foil as the base material, it is possible to reduce the thickness of the base material without compromising tensile strength or elongation, and also because there is no need for a process to roughen the surface in terms of cost. advantageous to Although such a substrate can also be used as an anode foil for a capacitor element, it is more preferable to use it as a cathode foil.

【0010】一方、本発明に用いられるコンデンサ素子
の陰極箔としては、5〜60μmの厚さの実質上平滑な
アルミニウム箔が基材として使用されるが、特に10〜
40μmのものが好適に使用される。アルミニウム基材
へのチタンの付着形成法としては真空蒸着法、スパッタ
リング法、イオンプレーティング法、CVD法などを例
示することができる。また、真空中または酸素ガス、窒
素やアルゴンなどの不活性ガスなどの雰囲気中で50〜
3000オングストロ−ムの厚さに付着形成するのが好
ましい。特に窒素ガス中で蒸着条件を選ぶと窒化チタン
蒸着膜を形成させることができる。該窒化チタン蒸着膜
にはTiNx(0<x≦4/3)で表わされる部分的に
窒化されたチタン薄膜も含まれる。また、該窒化チタン
蒸着膜には窒化チタンと酸化チタンの混合膜も含まれる
On the other hand, as the cathode foil of the capacitor element used in the present invention, a substantially smooth aluminum foil with a thickness of 5 to 60 μm is used as a base material, and in particular, a substantially smooth aluminum foil with a thickness of 10 to 60 μm is used as the base material.
A thickness of 40 μm is preferably used. Examples of methods for depositing titanium on the aluminum base material include vacuum evaporation, sputtering, ion plating, and CVD. In addition, in vacuum or in an atmosphere of inert gas such as oxygen gas, nitrogen or argon,
Preferably, the deposit is deposited to a thickness of 3000 angstroms. In particular, if the deposition conditions are selected in nitrogen gas, a titanium nitride deposited film can be formed. The titanium nitride deposited film also includes a partially nitrided titanium thin film represented by TiNx (0<x≦4/3). Further, the titanium nitride deposited film also includes a mixed film of titanium nitride and titanium oxide.

【0011】本発明において使用される駆動用電解液の
有機極性溶媒としては、電解コンデンサに通常使用され
る有機極性溶媒であればいずれも使用できる。
As the organic polar solvent of the driving electrolyte used in the present invention, any organic polar solvent commonly used in electrolytic capacitors can be used.

【0012】好ましい溶媒としては、アミド類、ラクト
ン類、グリコ−ル類、硫黄化合物類、ケトン類、エ−テ
ル類または炭酸塩類が使用できる。好ましい具体例とし
ては、炭酸プロピレン、N,N−ジメチルホルムアミド
、N−メチルホルムアミド、γ−ブチロラクトン、N−
メチルピロリドン、ジメチルスルホキシド、エチレンシ
アノヒドリン、エチレングリコ−ル、エチレングリコ−
ルモノまたはジアルキルエ−テル、3−アルキル−1,
3−オキサゾリジン−2−オンなどが使用できる。 特に好ましくは、ラクトン類、エチレングリコ−ル類な
どが用いられる。
Preferred solvents include amides, lactones, glycols, sulfur compounds, ketones, ethers and carbonates. Preferred specific examples include propylene carbonate, N,N-dimethylformamide, N-methylformamide, γ-butyrolactone, N-
Methylpyrrolidone, dimethyl sulfoxide, ethylene cyanohydrin, ethylene glycol, ethylene glycol
mono- or dialkyl ether, 3-alkyl-1,
3-oxazolidin-2-one and the like can be used. Particularly preferably, lactones, ethylene glycols, etc. are used.

【0013】本発明において使用される駆動用電解液の
溶質としては、電解コンデンサに通常使用される溶質で
あればいずれも使用できる。特に好ましくは、芳香族カ
ルボン酸または不飽和ジカルボン酸の4級アルキルアン
モニウム塩、芳香族カルボン酸アンモニウム塩などが採
用される。
As the solute of the driving electrolyte used in the present invention, any solute that is commonly used in electrolytic capacitors can be used. Particularly preferred are quaternary alkyl ammonium salts of aromatic carboxylic acids or unsaturated dicarboxylic acids, ammonium aromatic carboxylic acids, and the like.

【0014】好ましい溶質としては、ホウ酸やリン酸な
どの無機酸またはその塩、ケイタングステン酸などのヘ
テロポリ酸またはその塩、フェノ−ル性水酸基を有する
有機酸またはその塩、スルホン酸基を有する有機酸また
はその塩、ギ酸やドデシル酸に代表される鎖式モノカル
ボン酸またはその塩、安息香酸やサリチル酸に代表され
る芳香族モノカルボン酸またはその塩、アジピン酸やセ
バシン酸に代表されるる鎖式ジカルボン酸またはその塩
、マレイン酸やシトラコン酸などの不飽和ジカルボン酸
またはその塩、フタル酸やニトロフタル酸やテトラヒド
ロフタル酸からなる環式ジカルボン酸またはその塩、ク
エン酸に代表されるトリカルボン酸またはその塩を例示
することができる。特に好ましくは、芳香族カルボン酸
または不飽和ジカルボンサンの4級アルキルアンモニウ
ム酸、芳香族カルボン酸のアンモニウム塩が採用される
Preferred solutes include inorganic acids or salts thereof such as boric acid and phosphoric acid, heteropolyacids such as tungstic acid or salts thereof, organic acids having a phenolic hydroxyl group or salts thereof, and organic acids having a sulfonic acid group. Organic acids or their salts, chain monocarboxylic acids or their salts such as formic acid and dodecylic acid, aromatic monocarboxylic acids or their salts such as benzoic acid and salicylic acid, and chains such as adipic acid and sebacic acid. dicarboxylic acids or their salts, unsaturated dicarboxylic acids or their salts such as maleic acid or citraconic acid, cyclic dicarboxylic acids or their salts consisting of phthalic acid, nitrophthalic acid or tetrahydrophthalic acid, tricarboxylic acids such as citric acid or The salt thereof can be exemplified. Particularly preferred are aromatic carboxylic acids, quaternary alkyl ammonium acids of unsaturated dicarboxylic acids, and ammonium salts of aromatic carboxylic acids.

【0015】また、塩としてはアンモニウム塩、第1〜
第3級アミン塩、第4級アンモニウム塩を例示すること
ができる。また、伝導度を高めるために水分を添加する
が、コンデンサ特性の経時変化を抑止するためには15
%以下、好ましくは8%以下、特に好ましくは5%以下
が採用される。
[0015] As the salt, ammonium salt,
Examples include tertiary amine salts and quaternary ammonium salts. In addition, water is added to increase conductivity, but 15% water is added to prevent changes in capacitor characteristics over time.
% or less, preferably 8% or less, particularly preferably 5% or less.

【0016】[0016]

【実施例】【Example】

【0017】<実施例1>厚さ12μm、引張強度1.
2Kg/cm巾の平滑なアルミニウム基材に相隣なるカ
ラムの間隔が100オングストロ−ムであるチタンの蒸
着皮膜を0.1μmの厚さに形成し、これを陰極箔とし
、陽極酸化皮膜の形成された90μmの陽極箔とともに
セパレ−タを介して巻回してコンデンサ素子を製作し、
このコンデンサ素子に、水分1wt%、γ−ブチロラク
トン74wt%、o−フタル酸テトラエチルアンモニウ
ム塩25wt%からなる駆動用電解液を含浸させ、定格
25V・3300μFの電解コンデンサを製作した。静
電容量の発現性を調べるために、電解コンデンサの静電
容量を測定したところ、3350μFであった。
<Example 1> Thickness: 12 μm, tensile strength: 1.
A titanium vapor-deposited film with a thickness of 0.1 μm was formed on a smooth aluminum base material with a width of 2 kg/cm with a spacing of 100 angstroms between adjacent columns, and this was used as a cathode foil to form an anodic oxide film. A capacitor element was manufactured by winding the 90 μm anode foil with a separator in between.
This capacitor element was impregnated with a driving electrolytic solution consisting of 1 wt % water, 74 wt % γ-butyrolactone, and 25 wt % tetraethylammonium o-phthalate to produce an electrolytic capacitor with a rating of 25 V and 3300 μF. In order to investigate the development of capacitance, the capacitance of the electrolytic capacitor was measured and found to be 3350 μF.

【0018】<実施例2>厚さ12μm、引張強度1.
2Kg/cm巾の平滑なアルミニウム基材に相隣なるカ
ラムの間隔が100オングストロ−ムであるチタンの蒸
着皮膜を0.1μmの厚さに形成し、これを陰極箔とし
、陽極酸化皮膜の形成された90μmの陽極箔とともに
セパレ−タを介して巻回してコンデンサ素子を製作し、
このコンデンサ素子に、水分1wt%、γ−ブチロラク
トン74wt%、o−フタル酸テトラメチルアンモニウ
ム塩25wt%からなる駆動用電解液を含浸させ、定格
25V・3300μFの電解コンデンサを製作した。静
電容量の発現性を調べるために、電解コンデンサの静電
容量を測定したところ、3310μFであった。
<Example 2> Thickness: 12 μm, tensile strength: 1.
A titanium vapor-deposited film with a thickness of 0.1 μm was formed on a smooth aluminum base material with a width of 2 kg/cm with a spacing of 100 angstroms between adjacent columns, and this was used as a cathode foil to form an anodic oxide film. A capacitor element was manufactured by winding the 90 μm anode foil with a separator in between.
This capacitor element was impregnated with a driving electrolytic solution consisting of 1 wt % water, 74 wt % γ-butyrolactone, and 25 wt % tetramethylammonium o-phthalate to produce an electrolytic capacitor with a rating of 25 V and 3300 μF. In order to investigate the development of capacitance, the capacitance of the electrolytic capacitor was measured and found to be 3310 μF.

【0019】<実施例3>厚さ12μm、引張強度1.
2Kg/cm巾の平滑なアルミニウム基材に相隣なるカ
ラムの間隔が100オングストロ−ムである窒化チタン
の蒸着皮膜を0.1μmの厚さに形成し、これを陰極箔
とし、陽極酸化皮膜の形成された90μmの陽極箔とと
もにセパレ−タを介して巻回してコンデンサ素子を製作
し、このコンデンサ素子に、水分1wt%、γ−ブチロ
ラクトン74wt%、o−フタル酸テトラエチルアンモ
ニウム塩25wt%からなる駆動用電解液を含浸させ、
定格25V・3300μFの電解コンデンサを製作した
。静電容量の発現性を調べるために、電解コンデンサの
静電容量を測定したところ、3290μFであった。
<Example 3> Thickness: 12 μm, tensile strength: 1.
A titanium nitride vapor-deposited film with a 100 angstrom spacing between adjacent columns was formed to a thickness of 0.1 μm on a smooth aluminum substrate with a width of 2 kg/cm, and this was used as a cathode foil to form an anodized film. A capacitor element was manufactured by winding the formed 90 μm anode foil with a separator in between, and this capacitor element was coated with a driving solution consisting of 1 wt% moisture, 74 wt% γ-butyrolactone, and 25 wt% tetraethylammonium o-phthalate salt. Impregnated with electrolyte for
I made an electrolytic capacitor with a rating of 25V and 3300μF. In order to investigate the development of capacitance, the capacitance of the electrolytic capacitor was measured and found to be 3290 μF.

【0020】<実施例4>厚さ20μm、引張強度2.
0Kg/cm巾の平滑なアルミニウム基材に相隣なるカ
ラムの間隔が100オングストロ−ムである窒化チタン
の蒸着皮膜を0.1μmの厚さに形成し、これを陰極箔
とし、陽極酸化皮膜の形成された90μmの陽極箔とと
もにセパレ−タを介して巻回してコンデンサ素子を製作
し、このコンデンサ素子に、水分1wt%、γ−ブチロ
ラクトン74wt%、o−フタル酸テトラエチルアンモ
ニウム塩25wt%からなる駆動用電解液を含浸させ、
定格25V・3300μFの電解コンデンサを製作した
。静電容量の発現性を調べるために、電解コンデンサの
静電容量を測定したところ、3295μFであった。
<Example 4> Thickness: 20 μm, tensile strength: 2.
A vapor-deposited film of titanium nitride with a thickness of 0.1 μm with an interval of 100 angstroms between adjacent columns was formed on a smooth aluminum substrate with a width of 0 kg/cm, and this was used as a cathode foil to form an anodized film. A capacitor element was manufactured by winding the formed 90 μm anode foil with a separator in between, and this capacitor element was coated with a driving solution consisting of 1 wt% moisture, 74 wt% γ-butyrolactone, and 25 wt% tetraethylammonium o-phthalate salt. Impregnated with electrolyte for
I made an electrolytic capacitor with a rating of 25V and 3300μF. In order to investigate the development of capacitance, the capacitance of the electrolytic capacitor was measured and found to be 3295 μF.

【0021】<実施例5>厚さ40μm、引張強度4.
0Kg/cm巾の平滑なアルミニウム基材に相隣なるカ
ラムの間隔が100オングストロ−ムであるチタンの蒸
着皮膜を0.1μmの厚さに形成し、これを陰極箔とし
、陽極酸化皮膜の形成された90μmの陽極箔とともに
セパレ−タを介して巻回してコンデンサ素子を製作し、
このコンデンサ素子に、水分1wt%、γ−ブチロラク
トン74wt%、o−フタル酸テトラエチルアンモニウ
ム塩25wt%からなる駆動用電解液を含浸させ、定格
25V・3300μFの電解コンデンサを製作した。静
電容量の発現性を調べるために、電解コンデンサの静電
容量を測定したところ、3320μFであった。
<Example 5> Thickness: 40 μm, tensile strength: 4.
A titanium vapor-deposited film with a thickness of 0.1 μm was formed on a smooth aluminum base material with a width of 0 kg/cm with a spacing of 100 angstroms between adjacent columns, and this was used as a cathode foil to form an anodic oxide film. A capacitor element was manufactured by winding the 90 μm anode foil with a separator in between.
This capacitor element was impregnated with a driving electrolytic solution consisting of 1 wt % water, 74 wt % γ-butyrolactone, and 25 wt % tetraethylammonium o-phthalate to produce an electrolytic capacitor with a rating of 25 V and 3300 μF. In order to investigate the development of capacitance, the capacitance of the electrolytic capacitor was measured and found to be 3320 μF.

【0022】<比較例1>厚さ12μm、引張強度1.
2Kg/cm巾の平滑なアルミニウム基材に相隣なるカ
ラムの間隔が20オングストロ−ムであるチタンの蒸着
皮膜を0.1μmの厚さに形成し、これを陰極箔とし、
陽極酸化皮膜の形成された90μmの陽極箔とともにセ
パレ−タを介して巻回してコンデンサ素子を製作し、こ
のコンデンサ素子に、水分1wt%、γ−ブチロラクト
ン74wt%、o−フタル酸テトラエチルアンモニウム
塩25wt%からなる駆動用電解液を含浸させ、定格2
5V・3300μFの電解コンデンサを製作した。静電
容量の発現性を調べるために、電解コンデンサの静電容
量を測定したところ、2640μFであった。
<Comparative Example 1> Thickness: 12 μm, tensile strength: 1.
A titanium vapor-deposited film with a thickness of 0.1 μm was formed on a smooth aluminum base material with a width of 2 kg/cm, and the spacing between adjacent columns was 20 angstroms, and this was used as a cathode foil.
A capacitor element is manufactured by winding the anode foil with a 90 μm thick anode foil formed with an anodized film through a separator, and this capacitor element is coated with 1 wt% moisture, 74 wt% γ-butyrolactone, and 25 wt% tetraethylammonium o-phthalate salt. Impregnated with driving electrolyte consisting of %, rated 2
I made a 5V/3300μF electrolytic capacitor. In order to investigate the development of capacitance, the capacitance of the electrolytic capacitor was measured and found to be 2640 μF.

【0023】<実施例6>厚さ12μm、引張強度1.
2Kg/cm巾の平滑なアルミニウム基材に相隣なるカ
ラムの間隔が50オングストロ−ムであるチタンの蒸着
皮膜を0.1μmの厚さに形成し、これを陰極箔とし、
陽極酸化皮膜の形成された90μmの陽極箔とともにセ
パレ−タを介して巻回してコンデンサ素子を製作し、こ
のコンデンサ素子に、水分12wt%、エチレングリコ
−ル74wt%、アジピン酸アンモニウム塩14wt%
からなる駆動用電解液を含浸させ、定格25V・330
0μFの電解コンデンサを製作した。静電容量の発現性
を調べるために、電解コンデンサの静電容量を測定した
ところ、3280μFであった。
<Example 6> Thickness: 12 μm, tensile strength: 1.
A titanium vapor-deposited film with a thickness of 0.1 μm was formed on a smooth aluminum base material with a width of 2 kg/cm with a spacing of 50 angstroms between adjacent columns, and this was used as a cathode foil.
A capacitor element is manufactured by winding it together with a 90 μm anode foil on which an anodized film is formed through a separator, and this capacitor element contains 12 wt% of moisture, 74 wt% of ethylene glycol, and 14 wt% of ammonium adipate salt.
Impregnated with driving electrolyte consisting of
A 0 μF electrolytic capacitor was manufactured. In order to investigate the development of capacitance, the capacitance of the electrolytic capacitor was measured and found to be 3280 μF.

【0024】<実施例7>厚さ12μm、引張強度1.
2Kg/cm巾の平滑なアルミニウム基材に相隣なるカ
ラムの間隔が70オングストロ−ムであるチタンの蒸着
皮膜を0.1μmの厚さに形成し、これを陰極箔とし、
陽極酸化皮膜の形成された90μmの陽極箔とともにセ
パレ−タを介して巻回してコンデンサ素子を製作し、こ
のコンデンサ素子に、水分12wt%、エチレングリコ
−ル74wt%、アジピン酸アンモニウム塩14wt%
からなる駆動用電解液を含浸させ、定格25V・330
0μFの電解コンデンサを製作した。静電容量の発現性
を調べるために、電解コンデンサの静電容量を測定した
ところ、3340μFであった。
<Example 7> Thickness: 12 μm, tensile strength: 1.
A titanium vapor-deposited film with a 70 angstrom spacing between adjacent columns was formed on a smooth aluminum base material with a width of 2 kg/cm to a thickness of 0.1 μm, and this was used as a cathode foil.
A capacitor element is manufactured by winding it together with a 90 μm anode foil on which an anodized film is formed through a separator, and this capacitor element contains 12 wt% of moisture, 74 wt% of ethylene glycol, and 14 wt% of ammonium adipate salt.
Impregnated with driving electrolyte consisting of
A 0 μF electrolytic capacitor was manufactured. In order to investigate the development of capacitance, the capacitance of the electrolytic capacitor was measured and found to be 3340 μF.

【0025】<比較例2>厚さ12μm、引張強度1.
2Kg/cm巾の平滑なアルミニウム基材に相隣なるカ
ラムの間隔が30オングストロ−ムであるチタンの蒸着
皮膜を0.1μmの厚さに形成し、これを陰極箔とし、
陽極酸化皮膜の形成された90μmの陽極箔とともにセ
パレ−タを介して巻回してコンデンサ素子を製作し、こ
のコンデンサ素子に、水分12wt%、エチレングリコ
−ル74wt%、アジピン酸アンモニウム塩14wt%
からなる駆動用電解液を含浸させ、定格25V・330
0μFの電解コンデンサを製作した。静電容量の発現性
を調べるために、電解コンデンサの静電容量を測定した
ところ、2610μFであった。
<Comparative Example 2> Thickness: 12 μm, tensile strength: 1.
A titanium vapor-deposited film with a thickness of 0.1 μm was formed on a smooth aluminum base material with a width of 2 kg/cm, and the spacing between adjacent columns was 30 angstroms, and this was used as a cathode foil.
A capacitor element is manufactured by winding it together with a 90 μm anode foil on which an anodized film is formed through a separator, and this capacitor element contains 12 wt% of moisture, 74 wt% of ethylene glycol, and 14 wt% of ammonium adipate salt.
Impregnated with driving electrolyte consisting of
A 0 μF electrolytic capacitor was manufactured. In order to investigate the development of capacitance, the capacitance of the electrolytic capacitor was measured and found to be 2610 μF.

【0026】[0026]

【発明の効果】上述したように本発明ではチタン蒸着箔
の相隣なるチタンのカラムの間隔を50オングストロ−
ムとしたことにより静電容量の良好なる発現性が得るこ
とができる。
Effects of the Invention As described above, in the present invention, the interval between adjacent titanium columns of titanium-deposited foil is set to 50 angstroms.
By making the film thinner, it is possible to obtain good development of capacitance.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】チタン蒸着箔皮膜構造の模式図。FIG. 1 is a schematic diagram of a titanium-deposited foil film structure.

【符合の説明】[Explanation of sign]

1  アルミニウム基材 2  カラム 1 Aluminum base material 2 Column

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】アルミニウム箔基材上に相隣なるカラムの
間隔が50オングストロ−ム以上のチタン薄膜および/
または窒化チタン薄膜を形成することを特徴とした電解
コンデンサ用電極箔の製造方法。
[Claim 1] A titanium thin film and/or a titanium thin film on an aluminum foil base material with an interval of 50 angstroms or more between adjacent columns.
Alternatively, a method for manufacturing an electrode foil for an electrolytic capacitor, characterized by forming a titanium nitride thin film.
【請求項2】陽極箔と陰極箔をセパレ−タを介在させて
巻回してコンデンサ素子とした電解コンデンサにおいて
、アルミニウム箔基材上に相隣なるカラムの間隔が50
オングストロ−ム以上のチタン薄膜および/または窒化
チタン薄膜を形成した電極箔をコンデンサ素子の陰極箔
として使用したことを特徴とする電解コンデンサ。
Claim 2: An electrolytic capacitor in which a capacitor element is formed by winding an anode foil and a cathode foil with a separator interposed therebetween, in which the interval between adjacent columns on an aluminum foil base material is 50 mm.
An electrolytic capacitor characterized in that an electrode foil on which a titanium thin film and/or a titanium nitride thin film of angstrom or more is formed is used as a cathode foil of a capacitor element.
【請求項3】基材に実質上平滑なアルミニウム箔を使用
したことを特徴とする請求項2に記載の電解コンデンサ
3. The electrolytic capacitor according to claim 2, wherein a substantially smooth aluminum foil is used as the base material.
JP12850891A 1991-05-01 1991-05-01 Electrode foil for electrolytic capacitor and electrolytic capacitor Pending JPH04329620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12850891A JPH04329620A (en) 1991-05-01 1991-05-01 Electrode foil for electrolytic capacitor and electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12850891A JPH04329620A (en) 1991-05-01 1991-05-01 Electrode foil for electrolytic capacitor and electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH04329620A true JPH04329620A (en) 1992-11-18

Family

ID=14986483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12850891A Pending JPH04329620A (en) 1991-05-01 1991-05-01 Electrode foil for electrolytic capacitor and electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH04329620A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019468A1 (en) * 1998-09-30 2000-04-06 Nippon Chemi-Con Corporation Solid electrolyte capacitor and its manufacturing method
WO2000058979A1 (en) * 1999-03-29 2000-10-05 Nippon Chemi-Con Corporation Solid electrolytic capacitor and production method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000019468A1 (en) * 1998-09-30 2000-04-06 Nippon Chemi-Con Corporation Solid electrolyte capacitor and its manufacturing method
WO2000058979A1 (en) * 1999-03-29 2000-10-05 Nippon Chemi-Con Corporation Solid electrolytic capacitor and production method thereof
US6504704B1 (en) 1999-03-29 2003-01-07 Nippon Chem-Con Corporation Solid electrolytic capacitor and production method thereof

Similar Documents

Publication Publication Date Title
US4785380A (en) Solid electrolytic capacitor, and method of manufacturing same
US4934033A (en) Method of manufacturing a solid electrolytic capacitor
CN103578773B (en) A kind of capacitor cathode paper tinsel and capacitor and preparation method thereof
JPH04329620A (en) Electrode foil for electrolytic capacitor and electrolytic capacitor
JPH02249221A (en) Solid electrolytic capacitor
JPH0574664A (en) Electrolytic capacitor and manufacture of electrode foil for the same capacitor
US4929316A (en) Method of manufacturing organic semi-conductor solid electrolytic capacitor
JPH0529180A (en) Electrolytic capacitor
JPH05190400A (en) High capacitance electrolytic capacitor electrode material and its manufacturing method
JPH0529179A (en) Electrolytic capacitor
JPH08213288A (en) Anodic foil for electrolytic capacitor and manufacture thereof
JPH0430510A (en) Electrolytic capacitor
JPH1032147A (en) Electrolytic capacitor
JP3254702B2 (en) Electrolytic capacitor and method for manufacturing the same
JPH01304720A (en) Electrolytic capacitor
JPH04368114A (en) Electrolytic capacitor for acoustic use
JP2736480B2 (en) Electrolytic capacitor
JPH1070044A (en) Electrolyte for driving electrolytic capacitor, and electrolytic capacitor using the same
KR100348923B1 (en) electrolyte for driving electrolytic condenser and electrolytic condenser using the same
JPH05190401A (en) Electrolytic capacitor for acoustic use
JPH0262026A (en) Electrolyte for driving electrolytic capacitor
JPH0416932B2 (en)
JPH05343266A (en) Aluminum electrolytic capacitor and its manufacture
JPH09186052A (en) Electrolyte for driving electrolyte capacitor
JPH04340211A (en) Electrolyte for driving electrolytic capacitor and electrolytic capacitor