JPH04328257A - Paste type nickel pole - Google Patents

Paste type nickel pole

Info

Publication number
JPH04328257A
JPH04328257A JP3187097A JP18709791A JPH04328257A JP H04328257 A JPH04328257 A JP H04328257A JP 3187097 A JP3187097 A JP 3187097A JP 18709791 A JP18709791 A JP 18709791A JP H04328257 A JPH04328257 A JP H04328257A
Authority
JP
Japan
Prior art keywords
nickel
nickel hydroxide
paste
active material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3187097A
Other languages
Japanese (ja)
Other versions
JP3080441B2 (en
Inventor
Koji Isawa
浩次 石和
Kunihiko Miyamoto
邦彦 宮本
Hirohito Teraoka
浩仁 寺岡
Katsuyuki Hata
秦 勝幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16200056&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04328257(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP03187097A priority Critical patent/JP3080441B2/en
Publication of JPH04328257A publication Critical patent/JPH04328257A/en
Application granted granted Critical
Publication of JP3080441B2 publication Critical patent/JP3080441B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To increase an active material utilization factor, improve cycle performance, and obtain a long-life paste type nickel electrode by using nickel hydroxide which is diffracted by an X-ray to have a half-value width of 0.8 deg./2theta or more so as to increase a ratio of beta-NiOOH crystals. CONSTITUTION:A paste type nickel electrode is composed of a metal porous body for a substrate, and active material mainly comprising nickel hydroxide filled in it. Nickel hydroxide is put sedimentarily in pH-controlled neutralizing liquid to produce that having a small crystallization of a half-value width of 0.8 deg./2theta or more at the 101 surface peak for X-ray diffraction to be active material. The paste type nickel pole also includes metal cobalt or cobalt oxide which is not be eutectic with nickel hydroxide.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はカドミウム、亜鉛、水素
吸蔵合金等を負極とするアルカリ蓄電池用のペースト式
ニッケル極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a paste-type nickel electrode for alkaline storage batteries having a negative electrode made of cadmium, zinc, hydrogen storage alloy, or the like.

【0002】0002

【従来の技術】従来アルカリ蓄電池用ニッケル極として
は、例えばカーボニルニッケルをパンチドメタル上に焼
結成形した基板に硝酸ニッケル等のニッケル塩を水溶液
の形で充填後、アルカリ液中で水酸化ニッケルに転化し
た、いわゆる焼結式が主流であった。焼結式の利点とし
て、基板であるカーボニルニッケルの焼結体が孔径数〜
10μmの非常に微細な細孔構造であるため、元来不導
体である水酸化ニッケルの集電能力に優れていることが
挙げられる。反面ニッケル極全体に占める基板体積の比
率が20%程度必要であり、その分活物質の充填量が制
限されてしまい、ニッケル極としての容量密度が450
mAh/cc程度しか得られないという欠点があった。
[Prior Art] Conventionally, nickel electrodes for alkaline storage batteries are made by filling a substrate made of carbonyl nickel sintered on a punched metal with a nickel salt such as nickel nitrate in the form of an aqueous solution, and then nickel hydroxide in an alkaline solution. The so-called sintering method was the mainstream. The advantage of the sintering method is that the carbonyl nickel sintered body that is the substrate has a pore diameter of
Because it has a very fine pore structure of 10 μm, it has excellent current collecting ability from nickel hydroxide, which is originally a nonconductor. On the other hand, the ratio of the substrate volume to the entire nickel electrode is required to be about 20%, which limits the amount of active material filled, and the capacity density of the nickel electrode is 450%.
There was a drawback that only about mAh/cc could be obtained.

【0003】これらの欠点を改良する試みとして、ペー
スト式ニッケル極が提案されている。ペースト式ニッケ
ル極は孔径100〜500μmのスポンジ状あるいはフ
ェルト状金属多孔体を基板とし、この基板の孔に粉末状
水酸化ニッケルを適当な溶媒やバインダーでペースト状
に調製したものを充填し、乾燥、加圧して得られるもの
である。また、ニッケル極全体に占める基板の体積比率
を10%未満に低下させることができるため、活物質の
充填量を増加することが可能となり、同容量密度に換算
すると600mAh/cc程度まで向上することができ
る。このペースト式ニッケル極に使用される前記粉末状
水酸化ニッケルは原理的には焼結式と同様に硝酸ニッケ
ル、硫酸ニッケル等のニッケル塩の水溶液を過剰の苛性
ソーダや苛性カリ等のアルカリ水溶液と、直径1〜数1
0ミクロンの粒子を生成させるように反応させ、沈澱物
を水洗、乾燥して得られるものが一般的である。
Paste type nickel electrodes have been proposed as an attempt to improve these drawbacks. Paste-type nickel electrodes use a sponge-like or felt-like porous metal material with a pore diameter of 100 to 500 μm as a substrate, and the pores of this substrate are filled with a paste of powdered nickel hydroxide prepared with an appropriate solvent or binder, and then dried. , obtained by applying pressure. In addition, since the volume ratio of the substrate to the entire nickel electrode can be reduced to less than 10%, it is possible to increase the amount of active material filled, and when converted to the same capacity density, it can be increased to about 600 mAh/cc. Can be done. In principle, the powdered nickel hydroxide used in this paste type nickel electrode is made by mixing an aqueous solution of a nickel salt such as nickel nitrate or nickel sulfate with an excess alkaline aqueous solution such as caustic soda or caustic potash, as in the sintering type. 1 to number 1
It is generally obtained by reacting to produce 0 micron particles, washing the precipitate with water, and drying it.

【0004】0004

【発明が解決しようとする課題】しかしながら、前記方
法にて作製したペースト式ニッケル極には数々の問題点
が存在する。とりわけ、充放電を行った際の水酸化ニッ
ケルの利用率が小さいという問題、充放電サイクルによ
る活物質の膨潤が著しく顕著なものである問題が挙げら
れる。このような問題を生ずる原因として基板の集電性
能の差が挙げられる。前記の通り焼結式基板の孔径が数
〜10μmであるのに対し、ペースト式の基板であるス
ポンジ状及びフェルト状金属多孔体は100〜500μ
mと数十倍も大きい。すなわち反応の際の活物質中の電
荷移動距離が長くなってしまい、抵抗による分極が大き
くなる傾向にある。分極の大きい電極における欠点とし
て放電電圧の低下ならびに充電中に不可逆な充電生成物
を生ずることが挙げられる。この不可逆な充電生成物は
一般にγ−NiOOHとして知られており、正常なニッ
ケル極の充電生成物であるβ−NiOOHと比較して放
電されにくく、また結晶がC軸方向に伸びた形態のため
活物質の膨潤を生じ易いことが知られている。すなわち
焼結方式とペースト方式を比較すると水酸化ニッケルと
して同じものを使用した場合、基板の集電能力の違いに
起因してペースト方式は利用率低下や活物質の膨潤をお
こし易い欠点があり、その原因は不可逆な充電生成物で
あるγ−NiOOHの生成が大きく関与していると言う
ことができる。
However, the paste-type nickel electrode produced by the above method has a number of problems. Particularly, the problem is that the utilization rate of nickel hydroxide is low during charging and discharging, and the problem that swelling of the active material due to charging and discharging cycles is extremely noticeable. One of the causes of such problems is the difference in current collection performance of the substrates. As mentioned above, the pore diameter of the sintered substrate is several to 10 μm, whereas the pore diameter of the sponge-like and felt-like metal porous materials, which are paste-type substrates, is 100 to 500 μm.
It is several tens of times larger than m. That is, the distance of charge transfer in the active material during reaction becomes longer, and polarization due to resistance tends to increase. Disadvantages of highly polarized electrodes include a reduction in discharge voltage and the formation of irreversible charging products during charging. This irreversible charging product is generally known as γ-NiOOH, and it is less likely to be discharged compared to β-NiOOH, which is a charging product of a normal nickel electrode, and because the crystals are elongated in the C-axis direction. It is known that active materials tend to swell. In other words, when comparing the sintering method and the paste method, when the same nickel hydroxide is used, the paste method has the drawback that the utilization rate decreases and the active material is more likely to swell due to the difference in the current collecting ability of the substrate. It can be said that the cause of this is largely related to the generation of γ-NiOOH, which is an irreversible charging product.

【0005】この問題に対する対策として、焼結式にお
いても広く知られていたコバルト化合物の添加をペース
ト方式に、例えば特公昭57−5344、特公昭60−
60449に示される様に金属コバルト、特開昭61−
138458に示される様に一酸化コバルトといった導
電性に優れた形態のコバルトを配合することで、分極を
抑制する試みが広く行われている。また特開平1−26
0762、特開平2−30061に示される様に水酸化
ニッケルの結晶中にカドミウムまたは亜鉛等を共晶状態
にして添加する試みも同様に行われている。しかしなが
ら何れの方法も上記問題に対して充分な対策とは言えず
、例えば利用率に関しても焼結式が95%以上であるの
に対しペースト式では90%前後が限界であり、サイク
ル寿命に関しても焼結式が500サイクル以上であるの
に対しペースト式が300サイクル前後と劣っているの
が現状で、これらの問題がペースト式ニッケル極の普及
を妨げる大きな障害となっていた。
As a countermeasure to this problem, the addition of a cobalt compound, which was widely known in the sintering method, was added to the paste method.
60449, metallic cobalt, JP-A-61-
As shown in No. 138458, attempts have been made widely to suppress polarization by incorporating a form of cobalt with excellent conductivity such as cobalt monoxide. Also, JP-A-1-26
0762 and JP-A-2-30061, attempts have also been made to add cadmium, zinc, etc. in a eutectic state to nickel hydroxide crystals. However, neither method can be said to be a sufficient countermeasure against the above problems; for example, in terms of utilization rate, the sintering method is over 95%, while the paste method has a limit of around 90%, and the cycle life is also limited. Currently, the sinter type has a cycle life of over 500 cycles, while the paste type has an inferior cycle life of around 300 cycles, and these problems have been a major obstacle to the spread of paste type nickel electrodes.

【0006】本発明は前記従来の問題を解決するために
なされたもので、高利用率でかつ長寿命のペースト式ニ
ッケル極を提供しようとするものである。
The present invention has been made to solve the above-mentioned conventional problems, and aims to provide a paste-type nickel electrode that has a high utilization rate and a long life.

【0007】[0007]

【課題を解決するための手段】本発明は三次元構造を有
する金属多孔体を基板とし、化学式Ni(OH)2であ
らわすことのできる水酸化ニッケルを主体とする活物質
を充填してなるペースト式ニッケル極において、上記水
酸化ニッケルは、X線回折における(101)面ピーク
の半価幅が0.8°/2θ以上である結晶性の小さいも
のを使用し、かつ上記水酸化ニッケルと共晶状態を形成
しない金属コバルトあるいはコバルト酸化物を活物質中
に含むことを特徴とするペースト式ニッケル極である。
[Means for Solving the Problems] The present invention provides a paste formed by using a metal porous body having a three-dimensional structure as a substrate and filling it with an active material mainly consisting of nickel hydroxide, which can be expressed by the chemical formula Ni(OH)2. In the formula nickel electrode, the nickel hydroxide used is one with low crystallinity, in which the half width of the (101) plane peak in X-ray diffraction is 0.8°/2θ or more, and together with the nickel hydroxide. This is a paste-type nickel electrode characterized in that the active material contains metallic cobalt or cobalt oxide that does not form a crystalline state.

【0008】前記三次元構造を有する金属多孔体として
はスポンジ状ニッケルやフェルト状ニッケルを挙げるこ
とができる。前記水酸化ニッケルの製造方法としては硝
酸ニッケルや硫酸ニッケル等のニッケル塩の水溶液と苛
性ソーダや苛性カリ等のアルカリ水溶液との中和反応で
得られるが、反応雰囲気のpHを調節することにより、
同じ水酸化ニッケルでもX線回折における(101)面
ピークの半値幅の異なる結晶を得ることができる。
Examples of the metal porous body having the three-dimensional structure include sponge-like nickel and felt-like nickel. The method for producing nickel hydroxide is a neutralization reaction between an aqueous solution of a nickel salt such as nickel nitrate or nickel sulfate and an alkaline aqueous solution such as caustic soda or caustic potash, but by adjusting the pH of the reaction atmosphere,
Even with the same nickel hydroxide, crystals with different half widths of (101) plane peaks in X-ray diffraction can be obtained.

【0009】さらに水酸化ニッケルにカドミウム、亜鉛
から選択された金属元素を共晶状態で添加、および金属
コバルト、水酸化コバルト、一般化コバルトを添加する
ことにより性能が向上する。
Furthermore, the performance is improved by adding a metal element selected from cadmium and zinc in a eutectic state to nickel hydroxide, and adding metal cobalt, cobalt hydroxide, and generalized cobalt.

【0010】0010

【作用】同じ水酸化ニッケルNi(OH)2であっても
結晶性の大小により、γ−NiOOHの生成度合いが異
なる傾向にある。それは充電時の反応でNi(OH)2
結晶は電解液界面のプロトン移動の自由度が結晶化の大
小により異なり、結晶性の小さいものの方がプロトン移
動の自由度は高い傾向にあり、反面プロトン移動の不自
由なものほどγ−NiOOHを生成しやすい傾向にある
ことから、全体的には結晶性の大きなNi(OH)2は
γ−NiOOHを生成しやすいと言うことができる。
[Operation] Even with the same nickel hydroxide, Ni(OH)2, the degree of production of γ-NiOOH tends to vary depending on the degree of crystallinity. It is a reaction during charging and Ni(OH)2
The degree of freedom of proton movement at the interface of the electrolyte differs depending on the degree of crystallization, and the less crystallinity tends to have a higher degree of freedom of proton movement, whereas the less free the movement of protons, the less γ-NiOOH Since Ni(OH)2 has a tendency to easily generate γ-NiOOH, it can be said that Ni(OH)2 having high crystallinity as a whole tends to easily generate γ-NiOOH.

【0011】Ni(OH)2の結晶性を示す尺度として
は数々の方法があるが、発明者は特にX線回折を行った
ときの(101)面、Cu  Kα管球を使用した場合
2θ値で38.7付近に見られるピークの半価幅との間
に高い相関性を見いだして本発明を作成した。充電時に
β−NiOOH+γ−NiOOH量に対するγ−NiO
OHの比率が小さいほど、ニッケル極の利用率は高く、
また活物質の膨潤度合いが小さいため、サイクル寿命が
大きい傾向にある。
[0011] There are many methods to indicate the crystallinity of Ni(OH)2, but the inventors have specifically measured the (101) plane when performing X-ray diffraction, and the 2θ value when using a Cu Kα tube. The present invention was created by finding a high correlation between the peak width at half maximum observed around 38.7. γ-NiO for β-NiOOH + γ-NiOOH amount during charging
The smaller the OH ratio, the higher the utilization rate of the nickel electrode.
Furthermore, since the degree of swelling of the active material is small, the cycle life tends to be long.

【0012】0012

【実施例】以上本発明の効果を実施例により詳細に説明
する。まず主活物質である水酸化ニッケルを下記の方法
で調製した。反応雰囲気のpHが一定に管理された環境
下で硫酸ニッケル水溶液と苛性ソーダ水溶液を順次投入
し、結晶成長、水洗、乾燥を経て、粒径1〜30μmの
水酸化ニッケルを作製した。反応雰囲気のpH値を4種
類にさせることにより結晶性の異なるNi(OH)2を
4種類得ることができた。
EXAMPLES The effects of the present invention will be explained in detail with reference to examples. First, nickel hydroxide, which is the main active material, was prepared by the following method. In an environment where the pH of the reaction atmosphere was controlled to be constant, a nickel sulfate aqueous solution and a caustic soda aqueous solution were sequentially added, and nickel hydroxide with a particle size of 1 to 30 μm was produced through crystal growth, water washing, and drying. By changing the pH value of the reaction atmosphere to four types, it was possible to obtain four types of Ni(OH)2 with different crystallinity.

【0013】この水酸化ニッケルを島津製作所(株)製
XD−34型X線回折分析装置にCu  Kα管球およ
びグラフィトモノクロメータを装着して結晶性を測定し
たところ、(101)面を示す38.7°付近のピーク
の半価幅が0.9、0.8、0.7、0.6°に相当す
るチャートを示した。チャートの一例を図1に示す。こ
の水酸化ニッケル100重量部に対して一酸化コバルト
10重量部、カルボキシメチルセルロース0.3重量部
を水30重量部と共に混練してペースト状に調製後、こ
のペーストを孔径300μmのスポンジ状ニッケル多孔
体に充填し、乾燥、加圧、リード溶接を経て、本発明の
ペースト式ニッケル極を作製した。
When the crystallinity of this nickel hydroxide was measured using an XD-34 model X-ray diffraction analyzer manufactured by Shimadzu Corporation equipped with a Cu Kα tube and a graphite monochromator, it was found that it showed a (101) plane. A chart is shown in which the half width of the peak near 38.7° corresponds to 0.9, 0.8, 0.7, and 0.6°. An example of the chart is shown in FIG. After kneading 10 parts by weight of cobalt monoxide and 0.3 parts by weight of carboxymethyl cellulose with 30 parts by weight of water to 100 parts by weight of this nickel hydroxide to prepare a paste, this paste was applied to a sponge-like porous nickel material with a pore diameter of 300 μm. The paste-type nickel electrode of the present invention was produced by filling the nickel electrode into a paste, drying, pressurizing, and lead welding.

【0014】このペースト式ニッケル極をペースト式カ
ドミウム極、ナイロン製セパレータと共に捲回して電池
缶に挿入し、AAサイズのニッケルカドミウム蓄電池を
作製し、0.3C充電/1C充電の充放電サイクルを5
00サイクル行った。その時のサイクル数に対するニッ
ケル極理論容量に対する利用率の推多を図2に示す。
This paste-type nickel electrode was wound together with a paste-type cadmium electrode and a nylon separator and inserted into a battery can to produce an AA size nickel-cadmium storage battery, and the charge-discharge cycle of 0.3C charging/1C charging was performed for 5 times.
00 cycles were performed. Figure 2 shows the estimated utilization rate for the theoretical capacity of the nickel electrode with respect to the number of cycles at that time.

【0015】次に500サイクル終了後の電池を充電状
態で分解し、ニッケル極を取り出し粉砕処理して同様に
X線回折分析を行い、2θで13°付近に見られるγ−
NiOOHのピーク高さ(P−γ)と、19°付近にみ
られるβ−NiOOHのピーク(P−β)を測定し、(
P−γ)/(P−γ)+(P−β))の値から全体中の
γ−NiOOHの比率を算出した。上記半値幅に対する
γ−NiOOHの比率を図3に示す。
Next, after completing 500 cycles, the battery was disassembled in a charged state, the nickel electrode was taken out, pulverized, and subjected to X-ray diffraction analysis in the same manner.
The peak height of NiOOH (P-γ) and the peak of β-NiOOH (P-β) observed around 19° were measured, and (
The ratio of γ-NiOOH in the whole was calculated from the value of P-γ)/(P-γ)+(P-β)). FIG. 3 shows the ratio of γ-NiOOH to the half width.

【0016】図2によると、(101)面ピークの半価
幅が0.9、0.8°の水酸化ニッケルを使用したニッ
ケル極の場合、利用率が95%と高く、かつ500サイ
クルを経ても利用率の変化がほとんど見られない。図3
のγ−NiOOH比率も20%未満と小さい傾向にある
。これに対し、0.7、0.6°のものは利用率が最高
でも90%であり、しかもサイクル中の低下が著しく3
00サイクル付近で初期の50%未満に低下している。 これに対応してγ−NiOOH比率は40%〜80%と
非常に高い傾向にあり、活物質膨潤による電解液の偏在
を起こしていた。
According to FIG. 2, in the case of a nickel electrode using nickel hydroxide with a (101) plane peak width at half maximum of 0.9 and 0.8°, the utilization rate is as high as 95%, and it can be used for 500 cycles. There is almost no change in the utilization rate over time. Figure 3
The γ-NiOOH ratio also tends to be small, less than 20%. On the other hand, the maximum utilization rate of 0.7 and 0.6 degrees is 90%, and the decrease during the cycle is remarkable by 3.
It decreases to less than 50% of the initial value around 00 cycles. Correspondingly, the γ-NiOOH ratio tended to be extremely high at 40% to 80%, causing uneven distribution of the electrolyte due to swelling of the active material.

【0017】本実施例はコバルト系の添加剤として−酸
化コバルトを使用したが、代用として金属コバルトや水
酸化コバルト等のコバルト酸化物を使用しても同様な効
果が得られる。またここでは詳細な結果を示さないが、
水酸化ニッケルにカドミウムまたは亜鉛を3〜7重量%
共晶添加したペースト式ニッケル極においては700サ
イクルの経過後も利用率の変化は見られず、良好な特性
を示した。
Although cobalt oxide was used as the cobalt-based additive in this embodiment, the same effect can be obtained by using a cobalt oxide such as metallic cobalt or cobalt hydroxide as a substitute. Although detailed results are not shown here,
3-7% by weight of cadmium or zinc in nickel hydroxide
In the paste-type nickel electrode with eutectic addition, no change in utilization rate was observed even after 700 cycles, showing good characteristics.

【0018】[0018]

【発明の効果】以上の説明で明らかなように、本発明に
よれば水酸化ニッケルの利用率が高くかつ長寿命のペー
スト式ニッケル極を得ることができ、その工業的価値は
大である。
As is clear from the above explanation, according to the present invention, it is possible to obtain a paste-type nickel electrode with a high utilization rate of nickel hydroxide and a long life, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】水酸化ニッケルのX線回折分析のチャート図で
ある。
FIG. 1 is a chart of X-ray diffraction analysis of nickel hydroxide.

【図2】本発明のニッケル極を使用した電池の充放電サ
イクルとニッケル極の活物質の利用率との関係図である
FIG. 2 is a diagram showing the relationship between the charge/discharge cycle of a battery using the nickel electrode of the present invention and the utilization rate of the active material of the nickel electrode.

【図3】水酸化ニッケルの半価幅と500サイクル後の
γ−NiOOHの生成比率とを示した図である。
FIG. 3 is a diagram showing the half-value width of nickel hydroxide and the production ratio of γ-NiOOH after 500 cycles.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  三次元構造を有する金属多孔体を基板
とし、水酸化ニッケルNi(OH)2を主体とする活物
質を充填してなるペースト式ニッケル極において、該水
酸化ニッケルは、X線回折における(101)面ピーク
の半価幅が0.8°/2θ以上である結晶性の小さいも
のであり、かつ、水酸化ニッケルと共晶しない金属コバ
ルトもしくはコバルト酸化物を含有していることを特徴
とするペースト式ニッケル極。
Claim 1: In a paste-type nickel electrode in which a metal porous body having a three-dimensional structure is used as a substrate and an active material mainly composed of nickel hydroxide (Ni(OH)2) is filled, the nickel hydroxide is It must have low crystallinity with a half width of the (101) plane peak in diffraction of 0.8°/2θ or more, and it must contain metallic cobalt or cobalt oxide that does not eutectic with nickel hydroxide. A paste-type nickel pole featuring:
【請求項2】  該水酸化ニッケルが、カドミウムもし
くは亜鉛金属と共晶していることを特徴とする請求項1
記載のペースト式ニッケル極。
[Claim 2] Claim 1, wherein the nickel hydroxide is eutectic with cadmium or zinc metal.
Paste type nickel electrode as described.
JP03187097A 1991-04-25 1991-04-25 Paste nickel electrode and alkaline storage battery Expired - Lifetime JP3080441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03187097A JP3080441B2 (en) 1991-04-25 1991-04-25 Paste nickel electrode and alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03187097A JP3080441B2 (en) 1991-04-25 1991-04-25 Paste nickel electrode and alkaline storage battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10018738A Division JP3094062B2 (en) 1998-01-30 1998-01-30 Method for producing paste-type nickel electrode and method for producing alkaline storage battery

Publications (2)

Publication Number Publication Date
JPH04328257A true JPH04328257A (en) 1992-11-17
JP3080441B2 JP3080441B2 (en) 2000-08-28

Family

ID=16200056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03187097A Expired - Lifetime JP3080441B2 (en) 1991-04-25 1991-04-25 Paste nickel electrode and alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3080441B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757730A (en) * 1993-08-19 1995-03-03 Toshiba Battery Co Ltd Alkaline storage battery
EP0709905A1 (en) 1994-10-28 1996-05-01 Furukawa Denchi Kabushiki Kaisha Nickel electrode for an alkaline secondary battery
EP0730315A1 (en) * 1995-03-03 1996-09-04 Saft Nickelelectrode for alcaline accumulator
WO2012073933A1 (en) * 2010-11-30 2012-06-07 三洋電機株式会社 Alkaline storage battery
KR20190012187A (en) 2016-06-07 2019-02-08 가부시끼가이샤 다나까 가가꾸 겡뀨쇼 Cathode active material for secondary battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152866A (en) * 1986-12-16 1988-06-25 Yuasa Battery Co Ltd Nickel active material for storage battery and its manufacture
JPH01260762A (en) * 1988-04-11 1989-10-18 Yuasa Battery Co Ltd Nickel electrode for alkaline battery and battery using same
JPH0230061A (en) * 1988-07-19 1990-01-31 Yuasa Battery Co Ltd Nickel electrode active material, and nickel electrode and alkaline battery using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63152866A (en) * 1986-12-16 1988-06-25 Yuasa Battery Co Ltd Nickel active material for storage battery and its manufacture
JPH01260762A (en) * 1988-04-11 1989-10-18 Yuasa Battery Co Ltd Nickel electrode for alkaline battery and battery using same
JPH0230061A (en) * 1988-07-19 1990-01-31 Yuasa Battery Co Ltd Nickel electrode active material, and nickel electrode and alkaline battery using same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757730A (en) * 1993-08-19 1995-03-03 Toshiba Battery Co Ltd Alkaline storage battery
EP0709905A1 (en) 1994-10-28 1996-05-01 Furukawa Denchi Kabushiki Kaisha Nickel electrode for an alkaline secondary battery
EP0730315A1 (en) * 1995-03-03 1996-09-04 Saft Nickelelectrode for alcaline accumulator
FR2731297A1 (en) * 1995-03-03 1996-09-06 Accumulateurs Fixes NICKEL ELECTRODE FOR ALKALINE ACCUMULATOR
WO1996027909A1 (en) * 1995-03-03 1996-09-12 Saft Nickel electrode for an alkaline storage battery
WO2012073933A1 (en) * 2010-11-30 2012-06-07 三洋電機株式会社 Alkaline storage battery
JP2012134134A (en) * 2010-11-30 2012-07-12 Sanyo Electric Co Ltd Alkaline storage battery
US9209457B2 (en) 2010-11-30 2015-12-08 Sanyo Electric Co., Ltd. Alkaline storage battery
KR20190012187A (en) 2016-06-07 2019-02-08 가부시끼가이샤 다나까 가가꾸 겡뀨쇼 Cathode active material for secondary battery

Also Published As

Publication number Publication date
JP3080441B2 (en) 2000-08-28

Similar Documents

Publication Publication Date Title
US6156455A (en) Method for producing positive electrodes of alkaline storage batteries
US6013390A (en) Alkaline storage battery
JPH0724218B2 (en) Nickel electrode for alkaline battery and battery using the same
CN101213690B (en) Nickel-hydrogen battery
KR100454542B1 (en) Non-Sintered Nickel Electrode For Alkaline Battery
JPH0559546B2 (en)
JP2000003706A (en) Positive electrode for alkaline storage battery and positive electrode active material
MXPA06007861A (en) Positive electrode active material for a nickel electrode.
JPH11213998A (en) Positive electrode active material for alkaline storage battery
JPH04328257A (en) Paste type nickel pole
JP3324781B2 (en) Alkaline secondary battery
JP3094062B2 (en) Method for producing paste-type nickel electrode and method for producing alkaline storage battery
KR100205136B1 (en) Active material for anode of nickel series cell and method manufacturing it
JP2731050B2 (en) Paste nickel electrode and alkaline storage battery
JP3112660B2 (en) Method for producing paste-type nickel electrode and method for producing alkaline storage battery
JP2835282B2 (en) Nickel hydroxide for nickel electrode, method for producing the same, nickel electrode, and alkaline secondary battery incorporating the same
JPH0950805A (en) Nickel electrode for alkaline storage battery and active material for nickel electrode and its manufacturing method and alkaline storage battery
JP2765028B2 (en) Sealed alkaline battery
JPH0541213A (en) Unsintering type positive nickel electrode for alkaline storage battery
JPH10289714A (en) Nickel-hydrogen storage battery
JPH02234356A (en) Sealed-type alkali battery
JP3518259B2 (en) Nickel-hydrogen storage battery and method for producing positive electrode active material thereof
JPH05254847A (en) Production of nickel hyroxide powder for nickel electrode
JP3498727B2 (en) Method for producing nickel hydroxide positive plate for alkaline battery, nickel hydroxide positive plate for alkaline battery, and alkaline battery
JP3458899B2 (en) Nickel hydroxide positive plate for alkaline battery and alkaline battery thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080623

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090623

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100623

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110623

Year of fee payment: 11

EXPY Cancellation because of completion of term