JPH04328181A - Electrically conductive polymer composite material and production thereof - Google Patents

Electrically conductive polymer composite material and production thereof

Info

Publication number
JPH04328181A
JPH04328181A JP3125479A JP12547991A JPH04328181A JP H04328181 A JPH04328181 A JP H04328181A JP 3125479 A JP3125479 A JP 3125479A JP 12547991 A JP12547991 A JP 12547991A JP H04328181 A JPH04328181 A JP H04328181A
Authority
JP
Japan
Prior art keywords
conductive polymer
acid
support
water
polymer compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3125479A
Other languages
Japanese (ja)
Other versions
JP3147407B2 (en
Inventor
Yoshiaki Ikenoue
芳章 池ノ上
Hideki Tomosawa
友澤 秀喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP12547991A priority Critical patent/JP3147407B2/en
Publication of JPH04328181A publication Critical patent/JPH04328181A/en
Application granted granted Critical
Publication of JP3147407B2 publication Critical patent/JP3147407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title material having excellent adhesiveness between an electrically conductive layer and a substrate, maintaining high electric conductivity for a long period of time by forming a water-soluble electrically conductive polymer compound film containing a specific amount of specific five kinds of structural units on the surface of a polymer substrate. CONSTITUTION:An aqueous solution of an electrically conductive polymer compound containing >=10mol% structural units shown by formula I to formula V [Ht is NH, S or O; R is R' or OR' (R' is 1-10C bifunctional hydrocarbon or bifunctional hydrocarbon containing ether bond); Z is OR'XM, H, OH or OR'; n is >=5 integer] is applied to the surface of polymer substrate and dried to give the objective material.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、導電性高分子複合材料
とその製造方法に関するもので、更に詳しくは、疎水性
高分子、その表面を親水性処理した疎水性高分子または
親水性高分子支持体上に水溶性の導電性高分子化合物を
コーティングした導電性高分子複合材料に関するもので
ある。
[Field of Industrial Application] The present invention relates to a conductive polymer composite material and a method for producing the same. The present invention relates to a conductive polymer composite material in which a water-soluble conductive polymer compound is coated on a support.

【0002】0002

【従来の技術】従来、電気伝導度の低い高分子材料に導
電性を付与する方法として、導電性物質、例えば、金属
粉末、金属酸化物粉末、カーボンブラック、カーボン繊
維、金属繊維、導電性高分子粉末、導電性高分子繊維等
を高分子支持体中に分散する方法や、真空蒸着法、スパ
ッタリング法、イオンプレーティング法等の高分子支持
体上に導電性物質を物理的に堆積する方法、あるいは化
学反応法、熱分解法、スプレー法、メッキ法、コーティ
ング法、ラミネート法等の化学的堆積法などが知られて
いる。
[Prior Art] Conventionally, as a method of imparting conductivity to polymeric materials with low electrical conductivity, conductive substances such as metal powder, metal oxide powder, carbon black, carbon fiber, metal fiber, highly conductive Methods of dispersing molecular powders, conductive polymer fibers, etc. in a polymer support, and methods of physically depositing conductive substances on a polymer support such as vacuum evaporation, sputtering, and ion plating. Also known are chemical reaction methods, thermal decomposition methods, spray methods, plating methods, coating methods, and chemical deposition methods such as laminating methods.

【0003】また導電性物質として導電性高分子化合物
を用いた導電性高分子複合体としては、非導電性のプラ
スチックフィルム上に金属あるいは金属酸化物を介して
ポリチオフェンまたはその誘導体の薄膜を形成した、ポ
リチオフェン複合体フィルム(特開昭61−8344号
参照)、重合性複素環式単量体を支持体の内部及び/ま
たは表面で化学的に酸化重合させて導電性重合体を形成
させる導電性複合材料の製造方法(特開昭61−197
636号参照)、有機溶媒に重合性複素環式単量体を溶
解した溶液から溶剤を除去することによる導電性製品の
形成方法(特開昭61−278526号参照)などが知
られている。
[0003] Also, as a conductive polymer composite using a conductive polymer compound as a conductive substance, a thin film of polythiophene or its derivatives is formed on a non-conductive plastic film via a metal or metal oxide. , polythiophene composite film (see JP-A-61-8344), conductive film in which a polymerizable heterocyclic monomer is chemically oxidatively polymerized inside and/or on the surface of a support to form a conductive polymer. Method for manufacturing composite materials (Japanese Patent Application Laid-Open No. 61-197
636), and a method of forming a conductive product by removing the solvent from a solution of a polymerizable heterocyclic monomer in an organic solvent (see JP-A-61-278526).

【0004】0004

【発明が解決しようとする課題】上述した導電性高分子
材料の製造方法のうち、導電性物質を高分子支持体中に
分散する方法は、一定量以上の導電性物質を分散させる
必要があるため、高分子支持体の機械的強度、可とう性
、製膜性が損なわれてしまうという欠点がある。また、
支持体表面に導電性物質を物理的化学的に堆積させる方
法は、支持体の種類、特性、形状あるいは導電性物質の
種類などにより制限があるほか導電層の接着性が悪く剥
離しやすい、導電層が不均一で大面積化が困難、設備投
資、ランニングコストが大きいなどの欠点がある。
[Problems to be Solved by the Invention] Among the methods for producing conductive polymer materials described above, the method of dispersing a conductive substance in a polymer support requires dispersing a certain amount or more of the conductive substance. Therefore, there is a drawback that the mechanical strength, flexibility, and film-forming properties of the polymer support are impaired. Also,
Physical and chemical methods for depositing conductive substances on the surface of a support have limitations depending on the type, characteristics, shape, and type of conductive substance of the support. Disadvantages include nonuniform layers, difficulty in increasing the area, and high capital investment and running costs.

【0005】コーティング法は高分子支持体表面に導電
層を形成する溶液を塗工する方法であるが、大面積化、
コストの面で有利であるものの、導電体溶液の粘度、支
持体の形状、表面状態などによる制限を受けるという問
題がある。また導電性物質として導電性高分子化合物を
用いた例では、外部からドーパントを付与することによ
り導電性を付与する必要があり、自発的脱ドープによっ
て導電性が維持できないという問題があった。
[0005] The coating method is a method of applying a solution to form a conductive layer on the surface of a polymer support.
Although it is advantageous in terms of cost, it has the problem of being limited by the viscosity of the conductor solution, the shape of the support, the surface condition, etc. Furthermore, in cases where a conductive polymer compound is used as the conductive material, it is necessary to impart conductivity by externally applying a dopant, and there is a problem that conductivity cannot be maintained due to spontaneous dedoping.

【0006】本発明の目的は、上述した従来技術の問題
点を解決し、支持体の種類、特性、形状に係わらず支持
体上に該支持体より電気伝導度が高く均一でしかも可と
う性の良いしなやかな水溶性導電性高分子化合物の被膜
を付着性よく形成することにより、高分子支持体の導電
化を可能とし、さらに製造コストの低い経時的に安定な
、表面導電性を有する導電性高分子の複合体材料および
その製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a material on a support that has higher electrical conductivity, uniformity, and flexibility than the support, regardless of the type, characteristics, and shape of the support. By forming a flexible film of a water-soluble conductive polymer compound with good adhesion, it is possible to make the polymer support conductive, and it is also a conductive material with low manufacturing cost and stable surface conductivity over time. An object of the present invention is to provide a composite material of a polyamide and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明の導電性高分子複
合体材料とは、高分子支持体の表面に下記一般式(I)
〜(V)
[Means for Solving the Problems] The conductive polymer composite material of the present invention has the following general formula (I) on the surface of a polymer support.
~(V)

【0008】[0008]

【化3】[Chemical formula 3]

【0009】(式中、HtはNH、SまたはO、RはR
’またはOR’、R’は炭素数1〜10の線状または枝
分かれのある二価の炭化水素基またはエ−テル結合を含
む二価の炭化水素基、ZはOR’XM、H、OHまたは
OR’H、nは5以上の整数をそれぞれ表す)で示され
る構造単位を10モル%以上含有する水溶性の導電性高
分子化合物の膜を形成しているものである。また本発明
の導電性高分子複合材料の製造方法とは、前記一般式(
I)〜(V)で示される水溶性の導電性高分子化合物水
溶液を、高分子支持体の表面に塗工した後、乾燥させる
という工程からなる。
(In the formula, Ht is NH, S or O, R is R
'or OR', R' is a linear or branched divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent hydrocarbon group containing an ether bond, Z is OR'XM, H, OH or A film of a water-soluble conductive polymer compound containing 10 mol% or more of the structural unit represented by OR'H, n is an integer of 5 or more is formed. Furthermore, the method for producing a conductive polymer composite material of the present invention is defined by the general formula (
It consists of a step of applying an aqueous solution of a water-soluble conductive polymer compound represented by I) to (V) onto the surface of a polymer support and then drying it.

【0010】本発明は、水溶性の導電性高分子化合物の
被膜を高分子支持体表面に設けることにより、高い電気
伝導度を有し、それを長期的に維持することが可能な導
電性複合体を提供するものである。また水溶性の導電性
高分子化合物に界面活性剤を加えたり、高分子支持体表
面に親水性処理を行うことにより、従来水溶性の導電性
高分子化合物を水溶液の状態で塗布することが困難であ
った、疎水性高分子支持体上に塗布することによって、
導電性複合体を製造することが可能になった。
The present invention provides a conductive composite that has high electrical conductivity and can maintain it for a long period of time by providing a coating of a water-soluble conductive polymer compound on the surface of a polymer support. It provides the body. In addition, by adding a surfactant to a water-soluble conductive polymer compound or performing hydrophilic treatment on the surface of a polymer support, it has been difficult to apply a water-soluble conductive polymer compound in an aqueous solution state. By coating on a hydrophobic polymeric support,
It became possible to produce conductive composites.

【0011】本発明の導電性複合体において用いられる
水溶性の導電性高分子とは、前記一般式(I)〜(V)
で示される構造単位を10モル%以上含有したホモポリ
マーあるいはコポリマーである。一般式(I)〜(V)
で示される構造単位とは、例えば、ピロール、チオフェ
ン、フラン、セレノフェン、テルルフェンといった複素
5員環式化合物に長鎖又は分岐状のアルキレン基等を介
してスルホン酸基が置換したπ電子共役系高分子誘導体
(一般式(I))、ベンゼン環間にアルキレン基を有す
るπ電子共役系高分子誘導体(一般式(II))あるい
は2級アミン、3級アミン、または4級アミン基等をπ
電子共役系化合物間に含有するポリアニリン誘導体(一
般式(III )〜(V))などをあらわす。一般式(
I)〜(V)で示される構造単位において、HtはNH
、SまたはOを表し、RはR’またはOR’を表し、R
’は炭素数1〜10の線状または枝分かれのある二価の
炭化水素基またはエ−テル結合を含む二価の炭化水素基
を表し、ZはOR’XM、H、OH、OR’Hを表し、
nは5以上の整数を表す。重合度nが5未満の低分子の
化合物であっては、可とう性の良いしなやかな導電性高
分子化合物の被膜を付着性よく形成させることができず
、高分子自体の導電性も小さく不適当である。
The water-soluble conductive polymer used in the conductive composite of the present invention has the above general formulas (I) to (V).
It is a homopolymer or copolymer containing 10 mol% or more of the structural unit represented by. General formulas (I) to (V)
The structural unit represented by is, for example, a π-electron conjugated polymer in which a sulfonic acid group is substituted via a long-chain or branched alkylene group on a five-membered heterocyclic compound such as pyrrole, thiophene, furan, selenophene, or tellulfene. A molecular derivative (general formula (I)), a π-electron conjugated polymer derivative (general formula (II)) having an alkylene group between benzene rings, or a secondary amine, tertiary amine, or quaternary amine group, etc.
It represents polyaniline derivatives (general formulas (III) to (V)) contained between electronically conjugated compounds. General formula (
In the structural units represented by I) to (V), Ht is NH
, S or O, R represents R' or OR', R
' represents a linear or branched divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent hydrocarbon group containing an ether bond, and Z represents OR'XM, H, OH, OR'H. represents,
n represents an integer of 5 or more. A low-molecular compound with a degree of polymerization n of less than 5 will not be able to form a flexible and supple conductive polymer film with good adhesion, and the conductivity of the polymer itself will be low and poor. Appropriate.

【0012】本発明の一般式(I)の構造単位を有する
水溶性の導電性高分子化合物としては、例えばチオフェ
ン−3−(2−エタンスルホン酸)、チオフェン−3−
(3−プロパンスルホン酸)、チオフェン−3−(4−
ブタンスルホン酸)、チオフェン−3−(5−ペンタン
スルホン酸)、チオフェン−3−(6−ヘキサンスルホ
ン酸)、チオフェン−3−(7−ヘプタンスルホン酸)
、チオフェン−3−(2−メチル−3−プロパンスルホ
ン酸)、チオフェン−3−(2−メチル−4−ブタンス
ルホン酸)、3−テニルスルホン酸、チオフェン−3−
(3−プロパンスルホン酸)、2−(3−チエニルオキ
シ)エタンスルホン酸、3−(3−チエニルオキシ)プ
ロパンスルホン酸、4−(3−チエニルオキシ)ブタン
スルホン酸、2−(3−チエニルエチルオキシ)エタン
スルホン酸、3−(3−チエニルエチルオキシ)プロパ
ンスルホン酸、2−[2−(3−チエニルオキシ)エト
キシ]エタンスルホン酸、3−[2−(3−チエニルオ
キシ)エトキシ]プロパンスルホン酸、フラン−3−(
2−エタンスルホン酸)、フラン−3−(3−プロパン
スルホン酸)、フラン−3−(4−ブタンスルホン酸)
、フラン−3−(5−ペンタンスルホン酸)、フラン−
3−(6−ヘキサンスルホン酸)、ピロ−ル−3−(2
−エタンスルホン酸)、ピロール−3−(3−プロパン
スルホン酸)、ピロール−3−(4−ブタンスルホン酸
)、ピロール−3−(5−ペンタンスルホン酸)、ピロ
ール−3−(6−ヘキサンスルホン酸)等をモノマー単
位とする高分子を例示できる。
Examples of the water-soluble conductive polymer compound having the structural unit of general formula (I) of the present invention include thiophene-3-(2-ethanesulfonic acid), thiophene-3-
(3-propanesulfonic acid), thiophene-3-(4-
butanesulfonic acid), thiophene-3-(5-pentanesulfonic acid), thiophene-3-(6-hexanesulfonic acid), thiophene-3-(7-heptanesulfonic acid)
, thiophene-3-(2-methyl-3-propanesulfonic acid), thiophene-3-(2-methyl-4-butanesulfonic acid), 3-thenylsulfonic acid, thiophene-3-
(3-propanesulfonic acid), 2-(3-thienyloxy)ethanesulfonic acid, 3-(3-thienyloxy)propanesulfonic acid, 4-(3-thienyloxy)butanesulfonic acid, 2-(3-thienyloxy) Ethyloxy)ethanesulfonic acid, 3-(3-thienylethyloxy)propanesulfonic acid, 2-[2-(3-thienyloxy)ethoxy]ethanesulfonic acid, 3-[2-(3-thienyloxy)ethoxy] Propanesulfonic acid, furan-3-(
2-ethanesulfonic acid), furan-3-(3-propanesulfonic acid), furan-3-(4-butanesulfonic acid)
, furan-3-(5-pentanesulfonic acid), furan-
3-(6-hexane sulfonic acid), pyrrole-3-(2
-ethanesulfonic acid), pyrrole-3-(3-propanesulfonic acid), pyrrole-3-(4-butanesulfonic acid), pyrrole-3-(5-pentanesulfonic acid), pyrrole-3-(6-hexane) Examples include polymers having monomer units such as sulfonic acid).

【0013】一般式(II)の構造単位を有する水溶性
の導電性高分子化合物としては、2−メトキシ−5−(
プロピルオキシ−3−スルホン酸)−1,4−フェニレ
ンビニレン、2−エトキシ−5−(プロピルオキシ−3
−スルホン酸)−1,4−フェニレンビニレン、2−プ
ロピルオキシ−5−(プロピルオキシ−3−スルホン酸
)−1,4−フェニレンビニレン、2−ブチルオキシ−
5−(プロピルオキシ−3−スルホン酸)−1,4−フ
ェニレンビニレン、2,5−ビス(プロピルオキシ−3
−スルホン酸)−1,4−フェニレンビニレン、2,5
−ビス(エチルオキシ−2−スルホン酸)−1,4−フ
ェニレンビニレン、2,5−ビス(ブチルオキシ−4−
スルホン酸)−1,4−フェニレンビニレン、5−(プ
ロピルオキシ−3−スルホン酸)−1,4−フェニレン
ビニレン、5−(エチルオキシ−2−スルホン酸)−1
,4−フェニレンビニレン、5−(ブチルオキシ−4−
スルホン酸)−1,4−フェニレンビニレン、5−(ペ
ンチルオキシ−4−スルホン酸)−1,4−フェニレン
ビニレン等をモノマー単位とする高分子を例示できる。
As the water-soluble conductive polymer compound having the structural unit of general formula (II), 2-methoxy-5-(
propyloxy-3-sulfonic acid)-1,4-phenylene vinylene, 2-ethoxy-5-(propyloxy-3
-sulfonic acid)-1,4-phenylenevinylene, 2-propyloxy-5-(propyloxy-3-sulfonic acid)-1,4-phenylenevinylene, 2-butyloxy-
5-(propyloxy-3-sulfonic acid)-1,4-phenylene vinylene, 2,5-bis(propyloxy-3
-sulfonic acid)-1,4-phenylene vinylene, 2,5
-bis(ethyloxy-2-sulfonic acid)-1,4-phenylene vinylene, 2,5-bis(butyloxy-4-
Sulfonic acid)-1,4-phenylene vinylene, 5-(propyloxy-3-sulfonic acid)-1,4-phenylene vinylene, 5-(ethyloxy-2-sulfonic acid)-1
, 4-phenylene vinylene, 5-(butyloxy-4-
Examples include polymers having monomer units such as 1,4-phenylenevinylene sulfonic acid and 1,4-phenylenevinylene 5-(pentyloxy-4-sulfonic acid).

【0014】一般式(III )の構造単位を有する水
溶性の導電性高分子化合物としては、アニリン−3−(
2−エタンスルホン酸)、アニリン−3−(3−プロパ
ンスルホン酸)、アニリン−3−(4−ブタンスルホン
酸)、アニリン−3−(5−ペンタンスルホン酸)、ア
ニリン−3−(6−ヘキサンスルホン酸)、アニリン−
3−(7−ヘプタンスルホン酸)、アニリン−3−(2
−メチル−3−プロパンスルホン酸)、アニリン−3−
(2−メチル−4−ブタンスルホン酸)等をモノマー単
位とする高分子を例示できる。
As the water-soluble conductive polymer compound having the structural unit of the general formula (III), aniline-3-(
2-ethanesulfonic acid), aniline-3-(3-propanesulfonic acid), aniline-3-(4-butanesulfonic acid), aniline-3-(5-pentanesulfonic acid), aniline-3-(6- hexane sulfonic acid), aniline-
3-(7-heptanesulfonic acid), aniline-3-(2
-methyl-3-propanesulfonic acid), aniline-3-
Examples include polymers having monomer units such as (2-methyl-4-butanesulfonic acid).

【0015】一般式(IV)の構造単位を有する水溶性
の導電性高分子化合物としては、例えば、アニリン−3
−スルホン酸をモノマ−単位とする高分子が例示できる
。 一般式(V)の構造単位を有する水溶性の導電性高分子
化合物としては、例えば、アニリン−N−(2−エタン
スルホン酸)、アニリン−N−(3−プロパンスルホン
酸)、アニリン−N−(4−ブタンスルホン酸)、アニ
リン−N−(5−ペンタンスルホン酸)、アニリン−N
−(6−ヘキサンスルホン酸)、アニリン−N−(7−
ヘプタンスルホン酸)、アニリン−N−(2−メチル−
3−プロタンスルホン酸)、アニリン−N−(2−メチ
ル−4−ブタンスルホン酸)等をモノマー単位とする高
分子が例示できる。
Examples of the water-soluble conductive polymer compound having the structural unit of general formula (IV) include aniline-3
An example is a polymer having -sulfonic acid as a monomer unit. Examples of water-soluble conductive polymer compounds having the structural unit of general formula (V) include aniline-N-(2-ethanesulfonic acid), aniline-N-(3-propanesulfonic acid), and aniline-N-(3-propanesulfonic acid). -(4-butanesulfonic acid), aniline-N-(5-pentanesulfonic acid), aniline-N
-(6-hexane sulfonic acid), aniline-N-(7-
heptanesulfonic acid), aniline-N-(2-methyl-
Examples include polymers having monomer units such as 3-protanesulfonic acid) and aniline-N-(2-methyl-4-butanesulfonic acid).

【0016】本発明は、水溶性の導電性高分子化合物と
してして前記一般式(I)〜(V)の構造単位を有する
ポリマーを10モル%以上含有するが、含量が10モル
%未満であると水溶性を示さなくなってしまう。水溶性
の導電性高分子化合物を構成する他のポリマーとしては
、長鎖又は分岐状のアルキレンを介してスルホン酸基又
はカルボン酸基を有しないπ電子共役系化合物、例えば
、アセチレン、フェニレン、ピロール、チオフェン、イ
ソチアナフテン、ジアセチレン、アニリンおよびこれら
の置換誘導体が挙げられ、ホモポリマーあるいは他のポ
リマーとの共重合体でもよい。
[0016] In the present invention, the water-soluble conductive polymer compound contains 10 mol% or more of a polymer having the structural units of the general formulas (I) to (V), but the content is less than 10 mol%. If so, it will no longer exhibit water solubility. Other polymers constituting the water-soluble conductive polymer compound include π-electron conjugated compounds that do not have a sulfonic acid group or a carboxylic acid group via a long chain or branched alkylene, such as acetylene, phenylene, and pyrrole. , thiophene, isothianaphthene, diacetylene, aniline, and substituted derivatives thereof, and may be homopolymers or copolymers with other polymers.

【0017】本発明において用いられる高分子支持体と
は、水溶性の導電性高分子化合物の膜の電気伝導度より
低い電気伝導度を有するもので、表面に塗膜を形成でき
るものならばいかなるものでもよく、親水性高分子支持
体、疎水性高分子支持体の両方を使用することができる
。また高分子以外でも、セラミックス、セメント、硝子
性無機物、木材、ダンボール類または紙類等の表面が親
水性である支持体であれば好適に使用することが出来る
[0017] The polymer support used in the present invention can be any material that has an electrical conductivity lower than that of a film of a water-soluble conductive polymer compound and can form a coating film on its surface. Both hydrophilic polymer supports and hydrophobic polymer supports can be used. In addition to polymers, any support having a hydrophilic surface such as ceramics, cement, vitreous inorganic materials, wood, cardboard, or paper can be suitably used.

【0018】親水性高分子支持体としては、例えば、ポ
リビニルアルコール(PVA)、セルロース系の親水性
高分子、またはナフィンなどのカチオンあるいはアニオ
ンを有するイオン交換膜等が挙げられ、また疎水性高分
子支持体としては、例えばポリオレフィン類(エチレン
、プロピレン、1−ブテンなどの炭素数2〜10のα−
オレフィンの単独もしくは共重合体)、ポリスチレン、
ポリフツ 化ビニリデン、ポリテトラフルオロエチレン
、ポリクロロトリフルオロエチレン、ポリ塩化ビニル、
フェノール樹脂、アクリロニトリルブタジエンスチレン
共重合樹脂(ADC)、ポリパラフェニレンスルフィド
(PPS)、ポリメチルメタクリレート(PMM)、ポ
リエーテルエーテルケトン(PEEK)、ナイロン−6
、ポリビニルカルバゾール、ポリイミド、ポリアミド、
ポリエステル類(ポリエチレンテレフタレート、ポリブ
チレンテレフタレート)等の熱可塑性樹脂が挙げられる
が、この限りではない。支持体の形状としては、フィル
ム、シート、ファイバー、成形体、粉末等を挙げること
ができるがこの限りではない。
Examples of the hydrophilic polymer support include polyvinyl alcohol (PVA), cellulose-based hydrophilic polymers, and ion exchange membranes having cations or anions such as naphine; Examples of the support include polyolefins (α-carbon atoms such as ethylene, propylene, and 1-butene).
olefin homopolymer or copolymer), polystyrene,
Polyvinylidene fluoride, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinyl chloride,
Phenol resin, acrylonitrile butadiene styrene copolymer resin (ADC), polyparaphenylene sulfide (PPS), polymethyl methacrylate (PMM), polyetheretherketone (PEEK), nylon-6
, polyvinylcarbazole, polyimide, polyamide,
Examples include, but are not limited to, thermoplastic resins such as polyesters (polyethylene terephthalate, polybutylene terephthalate). Examples of the shape of the support include, but are not limited to, films, sheets, fibers, molded bodies, and powders.

【0019】本発明の導電性高分子複合材料は、前記一
般式(I)〜(V)で示される水溶性の導電性高分子化
合物水溶液を、前記高分子支持体の表面に塗工した後、
乾燥することによって得られる。塗工とは、表面に膜を
形成する操作であればよいが、本発明においては、ディ
ップ法、キャスト法などのコーティング法、スプレー法
またはバーコードを用いて塗布する方法などを用いて、
簡便に支持体表面に水溶性高分子の膜を形成することが
可能である。従来、水溶性の導電性高分子化合物を水溶
液の状態で支持体の表面に塗布する場合、表面が親水性
の支持体には容易に塗膜を形成することが出来るが、表
面が疎水性の支持体上に、均一に接着性良く塗膜を形成
することは困難であった。
The conductive polymer composite material of the present invention is produced by applying an aqueous solution of a water-soluble conductive polymer compound represented by the general formulas (I) to (V) to the surface of the polymer support. ,
Obtained by drying. Coating may be any operation that forms a film on the surface, but in the present invention, a coating method such as a dipping method or a casting method, a spray method, or a method of applying using a bar code is used.
It is possible to easily form a water-soluble polymer film on the surface of the support. Conventionally, when a water-soluble conductive polymer compound is applied to the surface of a support in the form of an aqueous solution, a coating film can be easily formed on a support with a hydrophilic surface, but a coating film can be easily formed on a support with a hydrophobic surface. It was difficult to form a coating film uniformly and with good adhesion on the support.

【0020】本発明に係る水溶性導電性高分子化合物は
、化合物自体がポリソープ的な界面活性作用を有するた
め、疎水性の高い高分子支持体表面においても単独で均
一に塗布することが可能である。また、水溶性の導電性
高分子化合物に対してイオン性または非イオン性界面活
性剤を単独、または適当な割合で混合し使用することに
よって、より好適に疎水性支持体表面に水溶性の導電性
高分子化合物の塗膜を作製することが可能になった。 この場合1種類もしくは複数の界面活性剤を前記水溶性
の導電性高分子化合物に対してモル比で0.001〜2
0倍量、好ましくは、0.01〜1倍量含有させること
により、水溶性導電性高分子化合物の塗膜複合化が可能
となった。ここで界面活性剤の含量が0.001倍量未
満であると接着性が悪くなり、20倍量より多いと界面
活性剤の分子会合性が強く出るため導電性が疎外され、
機械的強度も低下する。
[0020] The water-soluble conductive polymer compound according to the present invention has a surface-active effect similar to that of a polysoap, so that it can be uniformly applied alone even to the surface of a highly hydrophobic polymer support. be. In addition, by using an ionic or nonionic surfactant alone or in a mixture at an appropriate ratio to a water-soluble conductive polymer compound, it is possible to more preferably apply water-soluble conductivity to the surface of the hydrophobic support. It has become possible to create a coating film of a polymeric compound. In this case, the molar ratio of one or more surfactants to the water-soluble conductive polymer compound is 0.001 to 2.
By containing 0 times the amount, preferably 0.01 to 1 times the amount, it became possible to form a composite coating of the water-soluble conductive polymer compound. If the surfactant content is less than 0.001 times the amount, the adhesion will be poor, and if it is more than 20 times the amount, the molecular association of the surfactant will be strong and the conductivity will be impaired.
Mechanical strength also decreases.

【0021】界面活性剤としては、アニオン性界面活性
剤、カチオン性界面活性剤、および非イオン性界面活性
剤などが使用できるが、酸型のアニオン性界面活性剤と
非イオン性界面活性剤がより好適に使用できる。酸型の
アニオン性界面活性剤としては、例えばラウリル硫酸、
ジオクチルサクシン硫酸、ベンゼン硫酸、ドデシルベン
ゼン硫酸、ミリスチル硫酸、ケリルベンゼン硫酸、ステ
アリル硫酸等の長鎖アルキル及びアリル基導入型長鎖ア
ルキル硫酸または、ラウリルスルホン酸、ジオクチルサ
クシンスルホン酸、ベンゼンスルホン酸、ドデシルベン
ゼンスルホン酸、ミリスチルスルホン酸、ケリルベンゼ
ンスルホン酸、ステアリルスルホン酸等の長鎖アルキル
及びアリル基導入型長鎖アルキルスルホン酸などが挙げ
られる。また、非イオン性界面活性剤としては、ポリオ
キシエチレンアルキルフェニルエーテル、ポリオキシエ
チレンアルキルエーテル、ポリオキシエチレン脂肪酸エ
ステルなどが挙げられる。特に、スルフォン酸、カルボ
ン酸等の水溶液中でプロトン放出する酸型の界面活性剤
を使用した場合は、本発明の複合材料の自己ドープ型導
電性高分子中、ドーパントの働きをしているスルホン酸
基のプロトンが脱ドープされてしまうのを防ぎ、導電性
を長く維持させる効果が高い。さらにまた、前記界面活
性剤の併用使用以外の方法として、高分子支持体表面を
物理的、および/または化学的に親水性処理をすること
により、本来疎水性の強い支持体表面に水溶性の導電性
高分子化合物の塗膜を容易に作製することができる。
[0021] As the surfactant, anionic surfactants, cationic surfactants, nonionic surfactants, etc. can be used, but acid type anionic surfactants and nonionic surfactants are It can be used more suitably. Examples of acid type anionic surfactants include lauryl sulfate,
Long-chain alkyl and allyl group-introduced long-chain alkyl sulfates such as dioctyl succinic sulfate, benzene sulfuric acid, dodecylbenzene sulfate, myristyl sulfate, chelylbenzene sulfate, stearyl sulfate, or lauryl sulfonic acid, dioctyl succinic sulfonic acid, benzene sulfonic acid, dodecylbenzene Examples include long-chain alkyl and allyl group-introduced long-chain alkyl sulfonic acids such as sulfonic acid, myristyl sulfonic acid, kerylbenzenesulfonic acid, and stearyl sulfonic acid. Further, examples of the nonionic surfactant include polyoxyethylene alkylphenyl ether, polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, and the like. In particular, when an acid type surfactant that releases protons in an aqueous solution such as sulfonic acid or carboxylic acid is used, the sulfone acting as a dopant in the self-doping conductive polymer of the composite material of the present invention is It is highly effective in preventing protons of acid groups from being dedoped and maintaining conductivity for a long time. Furthermore, as a method other than the combined use of surfactants, it is possible to physically and/or chemically treat the surface of the polymer support to make it hydrophilic, thereby making the surface of the support, which is originally strongly hydrophobic, a water-soluble material. A coating film of a conductive polymer compound can be easily produced.

【0022】疎水性支持体の水に対する濡れ性を改善し
、表面を親水性にする方法としては、物理化学的な方法
として、表面のコロナ放電処理、プラズマ酸化、紫外線
照射または電子線照射等による表面酸化方法などがある
。また、化学的な方法としては薬液等による表面の酸化
、還元反応処理方法が行われる。さらには、各種薬剤、
例えばシランカップリング剤、モノアルコキシ・チタネ
ートカップリング剤またはアルミネート系カップリング
剤等を塗布した後、前記物理化学的な表面処理を施して
支持体表面にシランカップリング等を化学反応させるこ
とによって、支持体表面の濡れ性向上を図る方法が知ら
れている。このように、支持体表面の濡れ性を改善する
方法に関しては、例えば、接着(1987年423 頁
)、Macromolecules(1986 年18
04)、特開昭59−85466 号公報、特開昭60
−101124号公報、特開昭61−119768号公
報、特開昭63−236285号公報等にある方法を使
用することが出来る。
Methods for improving the water wettability of the hydrophobic support and making the surface hydrophilic include physicochemical methods such as surface corona discharge treatment, plasma oxidation, ultraviolet irradiation, or electron beam irradiation. There are surface oxidation methods. Further, as a chemical method, a surface oxidation or reduction reaction treatment method using a chemical solution or the like is performed. Furthermore, various drugs,
For example, after applying a silane coupling agent, a monoalkoxy titanate coupling agent, an aluminate coupling agent, etc., the above-mentioned physicochemical surface treatment is performed to cause a chemical reaction of silane coupling, etc. on the surface of the support. , a method for improving the wettability of the surface of a support is known. As described above, regarding methods for improving the wettability of the support surface, for example, Adhesion (1987, p. 423), Macromolecules (1986, p. 18)
04), JP-A-59-85466, JP-A-60
Methods such as those disclosed in Japanese Patent Application Laid-open No. 101124, Japanese Patent Application Laid-open No. 119768-1980, and Japanese Patent Application Laid-open No. 236285-1988 can be used.

【0023】また複合材料の工業的用途における要求性
能から、前記界面活性剤と支持体表面の親水性化との併
用も行われる。本発明に係る水溶性の導電性高分子化合
物は置換基側鎖の末端にスルホン酸基を有するため、外
来の化合物をドーパントとして加え、酸化または還元す
ることなしに高い電気伝導度を示し、脱ドープしにくい
ため電気伝導度を長期的に維持するという特性を有する
。電気伝導度は安定的に10−8〜103 S/cm、
さらに好ましくは10−4〜103 S/cmを示すも
のであり、導電性複合材料の導電層として特に有効であ
る。
[0023] Also, in view of the performance required for industrial use of composite materials, the above-mentioned surfactant is used in combination with hydrophilicization of the surface of the support. Since the water-soluble conductive polymer compound according to the present invention has a sulfonic acid group at the end of the substituent side chain, when a foreign compound is added as a dopant, it exhibits high electrical conductivity without being oxidized or reduced. Since it is difficult to dope, it has the property of maintaining electrical conductivity over a long period of time. Electric conductivity is stably 10-8 to 103 S/cm,
More preferably, it exhibits 10-4 to 103 S/cm, and is particularly effective as a conductive layer of a conductive composite material.

【0024】本発明の導電性複合材料は、単独でも高い
電気伝導度を示すが、外来からドーピング操作を行うこ
とによって更に電気伝導度を上げることも可能である。 この場合、外来からのド−ピング操作は、水溶性の導電
性高分子化合物を所望の支持体に被膜複合した後、化学
的ドーピング、電気化学的ドーピングのいづれの方法を
採用してもよい。また、これらは、導電層を作製した後
、例えば化学的ドーピング操作によって電気伝導度を変
化させることも可能である。
The conductive composite material of the present invention exhibits high electrical conductivity even when it is alone, but it is also possible to further increase the electrical conductivity by performing an external doping operation. In this case, the external doping operation may be carried out by either chemical doping or electrochemical doping after coating the desired support with a water-soluble conductive polymer compound. It is also possible to change the electrical conductivity of these materials by, for example, chemical doping operations after producing the conductive layer.

【0025】化学的にドーピングを行う方法としては、
ドーパントあるいはドーパントを含有するガスにさらす
方法、あるいはこれらを含有する溶液に浸す方法ことに
よって行われる。化学的にドーピングするドーパントと
しては種々の電子受容性化合物および電子供与性化合物
が使用され、例えば、ヨウ素、臭素の如きハロゲン類、
五弗化ヒ素、五弗化アンチモン、四弗化珪素、五塩化燐
、五弗化燐、塩化アルミニウム、臭化アルミニウムおよ
び弗化アルミニウムの如き金属ハロゲン化物、硫酸、硝
酸、フルオロ硫酸、トリフルオロメタン硫酸およびクロ
ロ硫酸の如きプロトン酸、三酸化硫黄、二酸化窒素、ジ
フルオロスルフォニルパーオキシドの如き酸化剤、過塩
素酸銀、テトラシアノエチレン、テトラシアノキノジメ
タン、クロラニル、2,3−ジクロル−5,6−ジシア
ノベンゾキノン、2,3−ジブロム−5,6−ジシアノ
ベンゾキノン、Li,Na、Kの如きアルカリ金属を含
む還元剤等を用いることができるが、必ずしもこれらに
限定されるものではない。
[0025] As a method of chemically doping,
This is carried out by exposing the dopant to a dopant or a gas containing the dopant, or by immersing it in a solution containing the dopant. Various electron-accepting compounds and electron-donating compounds are used as dopants for chemical doping, such as halogens such as iodine and bromine;
Metal halides such as arsenic pentafluoride, antimony pentafluoride, silicon tetrafluoride, phosphorus pentachloride, phosphorus pentafluoride, aluminum chloride, aluminum bromide and aluminum fluoride, sulfuric acid, nitric acid, fluorosulfuric acid, trifluoromethanesulfuric acid and protic acids such as chlorosulfuric acid, sulfur trioxide, nitrogen dioxide, oxidizing agents such as difluorosulfonyl peroxide, silver perchlorate, tetracyanoethylene, tetracyanoquinodimethane, chloranil, 2,3-dichloro-5,6 A reducing agent containing an alkali metal such as -dicyanobenzoquinone, 2,3-dibromo-5,6-dicyanobenzoquinone, Li, Na, or K can be used, but is not necessarily limited to these.

【0026】一方、電気化学的にドーピングする方法と
しては、導電性複合材料を電気化学的セルを構成する電
極として、任意の電解質中で酸化、あるいは還元を行う
掃引過程からドーピングすることができる。ここで、ド
ーパントとして利用できるものには、PF6−,SbF
6−,AsF6−,SbCl6−の如きVa族の元素の
ハロゲン化物アニオン、Bf4−の如きIII a族の
元素のハロゲン化物アニオン、I− (I3−)、Br
− ,Cl−の如きハロゲンアニオン、ClO4−の如
き過塩素酸アニオン等の陰イオン・ドーパントおよび、
Li+ ,Na+ ,K+ ,Rb+ ,Cs+の如き
アルカリ金属イオン、一般式R4−X MHX+または
R3 M’+ 式中、Rは線状または分岐状の炭素数1
から10のアルキル基、フェニル、ハロフェニル、アル
キルフェニル等のアリ−ル基、Mは、N,P,As,M
’O又はS、xは0又は1を表す。)で示されるテトラ
アルキルアンモニウムイオン、テトラアルキルホスホニ
ウムイオン、テトラアルキルアンモウム、トリアルキル
オキソニウム、トリアルキルオキソニウム、トリアルキ
ルスルホニウムイオン等の陽イオン・ドーパント等を挙
げることができる。
On the other hand, as an electrochemical doping method, doping can be performed by using a conductive composite material as an electrode constituting an electrochemical cell and performing oxidation or reduction in an arbitrary electrolyte in a sweeping process. Here, things that can be used as dopants include PF6-, SbF
Halide anions of elements of group Va such as 6-, AsF6-, SbCl6-, halide anions of elements of group IIIa such as Bf4-, I- (I3-), Br
-, anion dopants such as halogen anions such as Cl-, perchlorate anions such as ClO4-, and
Alkali metal ions such as Li+, Na+, K+, Rb+, Cs+, general formula R4-X MHX+ or R3 M'+ where R is a linear or branched carbon number 1
10 alkyl groups, aryl groups such as phenyl, halophenyl, alkylphenyl, M is N, P, As, M
'O or S, x represents 0 or 1. ) Cation/dopants such as tetraalkylammonium ion, tetraalkylphosphonium ion, tetraalkylammium, trialkyloxonium, trialkyloxonium, trialkylsulfonium ion, etc. can be mentioned.

【0027】[0027]

【実施例】本発明を実施例を挙げてさらに詳細に説明す
るが、以下の実施例は本発明の範囲を制限するものでは
ない。実施例に用いた水溶性導電性高分子化合物は、具
体的には以下の式(Ia)、(Ib)、(Ic)、(I
d)、(Ie)、(IIa)、(III a)、(IV
a)および(Va)で示す化学構造であらわされる。
EXAMPLES The present invention will be explained in more detail with reference to Examples, but the following Examples are not intended to limit the scope of the present invention. Specifically, the water-soluble conductive polymer compounds used in the examples have the following formulas (Ia), (Ib), (Ic), (I
d), (Ie), (IIa), (IIIa), (IV
It is represented by the chemical structures shown by a) and (Va).

【0028】[0028]

【化4】[C4]

【0029】上記水溶性の導電性高分子化合物の製造方
法および分子量を以下に示す。   (Ia)ポリ[チオフェン−3−(3−プロパンス
ルホン酸)]第39回高分子学会予稿集(Polyme
r Preprints Japan )第39巻、5
61頁(1990年)に記載されている方法を用いて製
造した。平均分子量は、Mw=1×105 (プルラン
換算のGPCにより重合度nは約490)であった。
The method for producing the above-mentioned water-soluble conductive polymer compound and its molecular weight are shown below. (Ia) Poly[thiophene-3-(3-propanesulfonic acid)] Proceedings of the 39th Society of Polymer Science and Technology (Polyme
r Preprints Japan) Volume 39, 5
61 (1990). The average molecular weight was Mw=1×10 5 (degree of polymerization n was about 490 by GPC in terms of pullulan).

【0030】   (Ib)ポリ[2−(3−チエニルエチルオキシ)
エタンスルホン酸]市販のチオフェンエタノールからク
ロロエチルトシレート等のアルコ−ルを保護したハライ
ドを反応させ、得られた(3−チエニルエチルオキシ)
エチルトシレ−トのトシル基を脱離して、(3−チエニ
ルエチルオキシ)エタノ−ルを得たのち、シンセチック
メタルズ(Synthetic Metals)、第3
0巻、305頁(1989年)に記載している方法でス
ルホン酸を導入し、得られたモノマーを(Ia)と同様
の方法を用いて重合して合成した。得られた化合物は、
Mw=3×104 (同条件でプルラン換算のGPCに
より重合度nは約130)であった。
(Ib) Poly[2-(3-thienylethyloxy)
Ethanesulfonic acid] (3-thienylethyloxy) obtained by reacting commercially available thiopheneethanol with a halide protected with an alcohol such as chloroethyl tosylate.
After removing the tosyl group from ethyl tosylate to obtain (3-thienylethyloxy)ethanol, synthetic metals, No. 3
Sulfonic acid was introduced by the method described in Vol. 0, p. 305 (1989), and the resulting monomer was polymerized and synthesized using the same method as (Ia). The obtained compound is
Mw=3×10 4 (degree of polymerization n was about 130 by GPC in terms of pullulan under the same conditions).

【0031】   (Ic)ポリ[ピロール−3−(4−ブタンスルホ
ン酸)]ポリマーブリテン、ベルリン(Polymer
 Bulletinn, Berline)第18巻、
277頁(1987年)に記載の方法を用いて、ピロー
ル−3−(4−ブタンスルホン酸)ナトリウムを合成し
、ジャーナル・オブ・アメリカン・ケミカル・ソサイテ
イ (Journal of American Ch
emical Society)第109巻、1858
頁(1987年)記載の方法と同様の方法で重合を行い
、(Ib)と同様の方法を用いてにスルホン酸に変換し
た後、重合して合成した。Mw=5×104 (同条件
でプルラン換算のGPCにより重合度nは約270)で
あった。
(Ic) Poly[pyrrole-3-(4-butanesulfonic acid)] Polymer Bulletin, Berlin (Polymer
Bulletinn, Berlin) Volume 18,
Sodium pyrrole-3-(4-butanesulfonic acid) was synthesized using the method described on page 277 (1987) and published in the Journal of American Chemical Society.
(Emical Society) Volume 109, 1858
(1987), and converted to sulfonic acid using the same method as (Ib), and then polymerized and synthesized. Mw=5×10 4 (degree of polymerization n was about 270 by GPC in terms of pullulan under the same conditions).

【0032】   (Id)ポリ[フラン−3−(3−プロパンスルホ
ン酸)]市販の3−ブロモフランを原料にして、第39
回高分子学会予稿集(PolymerPreprint
s Japan )第39巻、561頁(1990年)
に記載の方法を参考にして同様な方法で合成した。Mw
=2.5×104 (同条件でプルラン換算のGPCに
より重合度nは約130)であった。
(Id) Poly[furan-3-(3-propanesulfonic acid)] Using commercially available 3-bromofuran as a raw material, the 39th
Proceedings of the Polymer Science Society of Japan (PolymerPreprint)
s Japan) Volume 39, page 561 (1990)
It was synthesized in a similar manner with reference to the method described in . Mw
=2.5×104 (degree of polymerization n was about 130 by GPC in terms of pullulan under the same conditions).

【0033】(Ie)3−(3’−チエニル)プロパン
スルホン酸とチオフェンとの共重合体  ポリマーブリ
テン、ベルリン(Polymer Bulletinn
, Berline)第18巻、277頁(1987年
)に記載の方法を用いてカリウム塩を合成した後、酸型
に変換して得たものである。 Mw=9×103 (同条件でプルラン換算のGPCに
より重合度nは約25)であった。
(Ie) Copolymer of 3-(3'-thienyl)propanesulfonic acid and thiophene Polymer Bulletinn, Berlin
The compound was obtained by synthesizing a potassium salt using the method described in 1987, Vol. 18, p. 277 (1987), and then converting it into an acid form. Mw=9×10 3 (degree of polymerization n was about 25 by GPC in terms of pullulan under the same conditions).

【0034】   (IIa)ポリ[2−メトキシ−5−(プロピルオ
キシ−3−スルホン酸)−1,4−フェニレンビニレン
] プロシーディング・オブ・ザ・エーシーエス・ディビジ
ョン・オブ・ポリメリック・マテリアルズ:サイエンス
・アンド・エンジニアリング、ロスアンゼルス、カリフ
ォルニア州、米国(Proceeding of Th
e ACS Division of Polymer
ic Materials: Science and
 Engineering)第59巻、第1164頁(
1988年、秋季大会)に記載の方法を用いて合成した
。Mw=1.4×105 (同条件でプルラン換算のG
PCにより重合度nは約520)であった。
(IIa) Poly[2-methoxy-5-(propyloxy-3-sulfonic acid)-1,4-phenylenevinylene] Proceedings of the ACCS Division of Polymeric Materials: Science and Engineering, Los Angeles, California, USA (Proceeding of Th.
e ACS Division of Polymer
ic Materials: Science and
Engineering) Volume 59, Page 1164 (
It was synthesized using the method described in the 1988 Autumn Conference). Mw=1.4×105 (G of pullulan equivalent under the same conditions)
The degree of polymerization n was found to be approximately 520) by PC.

【0035】   (III a)ポリ[アニリン−2−(3−プロパ
ンスルホン酸)]特開昭63−39916号を参照にし
て合成した。Mw=8×104 (同条件でプルラン換
算のGPCにより重合度nは約380)であった。(I
Va)ポリ[アニリン−3−プロパンスルホン酸]ジャ
ーナル・オブ・アメリカン・ケミカル・ソサイエテイ(
Jounal of American Chemic
al Society )第112巻、2800頁(1
990年)に記載されている方法を用いて合成した。M
w=2×104 (同条件でプルラン換算のGPCによ
り重合度nは約120)であった。
(IIIa) Poly[aniline-2-(3-propanesulfonic acid)] Synthesized with reference to JP-A-63-39916. Mw=8×10 4 (degree of polymerization n was about 380 by GPC in terms of pullulan under the same conditions). (I
Va) Poly[aniline-3-propanesulfonic acid] Journal of the American Chemical Society (
Journal of American Chemistry
al Society) Volume 112, page 2800 (1
It was synthesized using the method described in (1990). M
w=2×10 4 (degree of polymerization n was about 120 by GPC in terms of pullulan under the same conditions).

【0036】   (Va)ポリ[アニリン−N−(3−プロパンスル
ホン酸)]ジャーナル・オブ・ケミカル・ソサイエテイ
、ケミカル・コミュニケ−ション(Jounal of
 Chemical Society, Chemic
al Communication)180頁(199
0年)に記載されている方法を用いて合成した。Mw=
4×104 (同条件でプルラン換算のGPCにより重
合度nは約190)であった。
(Va) Poly[aniline-N-(3-propanesulfonic acid)] Journal of Chemical Society, Chemical Communication (Journal of
Chemical Society, Chemical
al Communication) page 180 (199
It was synthesized using the method described in 2010). Mw=
4×10 4 (degree of polymerization n was about 190 by GPC in terms of pullulan under the same conditions).

【0037】実施例1 まずポリエチレンテレフタレート(PET)(厚さ75
μm、面積100cm2 )の表面にバーコーダー#4
で有機シラン化合物(アリルトリエトキシシラン;TE
AS)の5重量%オクタン溶液を2.0μmの(有機シ
ランとして0.1μm)膜厚で塗布し、5分間風乾した
後、Ar等の不活性ガス中で254nmの紫外線(0.
4mW/cm2 )を20分間その表面に照射し親水性
化処理を行った。この支持体高分子表面上に、0.1重
量%のラウリル硫酸を含んだ前記水溶性導電性高分子化
合物(Ia)の1重量%水溶液をスピンコーター(室温
下、回転数2000rpm )を用いて製膜し、平均約
0.05μmの導電層を設けた。得られた複合材料にお
いて、導電層と支持体であるPETとの密着性は良好で
、表面抵抗値(抵抗測定装置はシシド静電気製MODE
L HT−301)は約2×106 Ω/□であった。 さらに化合物(Ia)と同様に、(Ib)、(Ic)、
(IIa)についても同様の方法で複合化を行い、得ら
れた複合材料の皮膜平均厚さ、表面抵抗を測定した。測
定結果を表1に示す。
Example 1 First, polyethylene terephthalate (PET) (thickness 75
Barcode #4 on the surface of μm, area 100cm2)
Organic silane compound (allyltriethoxysilane; TE
A 5% by weight octane solution of AS) was applied to a film thickness of 2.0 μm (0.1 μm as organic silane), air-dried for 5 minutes, and then exposed to 254 nm ultraviolet light (0.5% by weight) in an inert gas such as Ar.
The surface was irradiated with 4 mW/cm2 for 20 minutes to make it hydrophilic. A 1% by weight aqueous solution of the water-soluble conductive polymer compound (Ia) containing 0.1% by weight of lauryl sulfate was applied onto the surface of this support polymer using a spin coater (at room temperature, rotation speed: 2000 rpm). A conductive layer having an average thickness of about 0.05 μm was formed. In the obtained composite material, the adhesion between the conductive layer and the PET support was good, and the surface resistance value (the resistance measuring device was a MODE manufactured by Shishido Electrostatics) was obtained.
LHT-301) was approximately 2×10 6 Ω/□. Furthermore, similarly to compound (Ia), (Ib), (Ic),
(IIa) was also composited in the same manner, and the average film thickness and surface resistance of the resulting composite material were measured. The measurement results are shown in Table 1.

【0038】[0038]

【表1】[Table 1]

【0039】実施例2 ポリメチルメタクリルレート(PMMA)(厚さ50μ
m、面積100cm2)を支持体として、その表面に0
.1重量%のドデシルベンゼンスルホン酸を含んだ前記
水溶性導電性高分子化合物(Ib)の1重量%水溶液を
スピンコーター(室温下、回転数2000rpm )を
用いて製膜し、約0.03μmの導電層を設けた。この
導電層と支持体であるPMMAとの密着性は良好で、表
面抵抗値は約3×106 Ω/□であった。さらに化合
物(Ib)と同様に、(III a)、(IVa)、(
Va)についても同様の方法で複合化を行い、得られた
複合化材料の皮膜平均厚さ、表面抵抗を測定した。測定
結果を表2に示す。
Example 2 Polymethyl methacrylate (PMMA) (thickness 50 μm)
m, area 100 cm2) as a support, and 0 on the surface.
.. A 1% by weight aqueous solution of the above-mentioned water-soluble conductive polymer compound (Ib) containing 1% by weight of dodecylbenzenesulfonic acid was formed into a film using a spin coater (at room temperature, rotation speed: 2000 rpm) to form a film of about 0.03 μm. A conductive layer was provided. The adhesion between this conductive layer and the PMMA support was good, and the surface resistance value was about 3×10 6 Ω/□. Furthermore, similarly to compound (Ib), (IIIa), (IVa), (
Va) was also composited in the same manner, and the average film thickness and surface resistance of the resulting composite material were measured. The measurement results are shown in Table 2.

【0040】[0040]

【表2】[Table 2]

【0041】実施例3 高密度ポリエチレン(HDPE)(厚さ20μm、面積
225cm2 )にバーコーダー#4を用い、有機シラ
ン化合物としてアリルトリエトキシシラン(TEAS)
の5重量%オクタン溶液を2.0μmの(有機シランと
して0.1μm)膜厚で塗布し、5分間風乾した後、電
子線を5.0Mrad照射して親水化処理を行った。得
られた高分子支持体表面に、前記水溶性導電性高分子化
合物(Ib)の2重量%水溶液をスピンコーター(室温
下、回転数1500rpm )を用いて製膜し、平均約
0.15μmの導電層を設けた。この導電層と支持体で
あるHDPEとの密着性は良好で、表面抵抗値は約7×
106 Ω/□であった。
Example 3 Barcoder #4 was used on high-density polyethylene (HDPE) (thickness 20 μm, area 225 cm2), and allyltriethoxysilane (TEAS) was used as the organic silane compound.
A 5% by weight octane solution of was applied to a film thickness of 2.0 μm (0.1 μm as organic silane), air-dried for 5 minutes, and then irradiated with an electron beam at 5.0 Mrad to perform a hydrophilic treatment. A 2% by weight aqueous solution of the water-soluble conductive polymer compound (Ib) was formed on the surface of the obtained polymer support using a spin coater (at room temperature, rotation speed: 1500 rpm) to form a film with an average thickness of about 0.15 μm. A conductive layer was provided. The adhesion between this conductive layer and the HDPE support is good, and the surface resistance value is approximately 7×
It was 106 Ω/□.

【0042】実施例4 実施例3と同様な方法で親水性化処理した高密度ポリエ
チレン(HDPE)(厚さ20μm、面積225cm2
 )を支持体として、その表面に0.2重量%のドデシ
ルベンゼンスルホン酸を含んだ前記水溶性の導電性高分
子化合物(Id)の10重量%水溶液をスピンコーター
(室温下、回転数2000rpm )を用いて製膜し、
約0.5μmの導電層を設けた。支持体であるHDPE
と導電層との密着性は良好で、その表面抵抗値は、約2
×1012Ω/□であった。さらに、これを気相中ヨウ
素を作用させて化学的ドーピングした結果、この導電層
の表面抵抗値は、約2×104 Ω/□を示した。
Example 4 High-density polyethylene (HDPE) (thickness 20 μm, area 225 cm2) treated to be hydrophilic in the same manner as in Example 3
) as a support, and a 10% by weight aqueous solution of the water-soluble conductive polymer compound (Id) containing 0.2% by weight of dodecylbenzenesulfonic acid was applied to the surface of the support using a spin coater (at room temperature, rotation speed: 2000 rpm). Form a film using
A conductive layer of approximately 0.5 μm was provided. Support HDPE
The adhesion between the conductive layer and the conductive layer is good, and the surface resistance value is approximately 2.
×1012Ω/□. Further, as a result of chemical doping of this conductive layer by the action of iodine in the gas phase, the surface resistance value of this conductive layer was approximately 2×10 4 Ω/□.

【0043】実施例5 実施例4と同様な方法を用いて水溶性導電性高分子化合
物(Ie)とHDPEの複合材料を作成した。HDPE
と導電層との密着性は良好で、その表面抵抗値は、約2
×1014Ω/□であった。さらに、気相中でヨウ素を
作用させて化学的ドーピングした結果、導電層の表面抵
抗値は、約2×107Ω/□を示した。
Example 5 A composite material of a water-soluble conductive polymer compound (Ie) and HDPE was prepared using the same method as in Example 4. HDPE
The adhesion between the conductive layer and the conductive layer is good, and the surface resistance value is approximately 2.
×1014Ω/□. Further, as a result of chemical doping with iodine in the gas phase, the surface resistance value of the conductive layer was approximately 2×10 7 Ω/□.

【0044】実施例6 親水性処理を行なっていない高密度ポリエチレン(HD
PE)(厚さ20μm、面積225cm2 )を支持体
として、この表面に30重量%の前記水溶性導電性高分
子化合物(Ia)を含んだ含水ポリビニルアルコール(
PVA)をバーコダーで約20μmの塗膜として形成し
た。支持体であるHDPEと導電複合層との密着性は良
好で、その表面抵抗値は、約1×104 Ω/□であっ
た。さらに、同じく気相中でヨウ素を作用させて化学的
ドーピングした結果、この導電層の表面抵抗値は、約5
×104 Ω/□を示した。
Example 6 High-density polyethylene (HD
PE) (thickness 20 μm, area 225 cm2) was used as a support, and on the surface of the support was a hydrated polyvinyl alcohol (PE) containing 30% by weight of the water-soluble conductive polymer compound (Ia).
PVA) was formed as a coating film of about 20 μm using a Barcoder. The adhesion between the HDPE support and the conductive composite layer was good, and the surface resistance value was about 1×10 4 Ω/□. Furthermore, as a result of chemical doping with iodine in the same gas phase, the surface resistance value of this conductive layer was approximately 5.
×104 Ω/□.

【0045】実施例7 1重量%の水溶性の導電性高分子化合物(Ia)をナフ
ィオン117(厚さ100μm、面積225cm2 )
上にスピンコーター(室温下、回転数2000rpm 
)を用いて製膜し、平均約0.05μmの導電層を作成
した。 この導電層と支持体との密着性、製膜性は良好で、表面
抵抗値は約2×106 Ω/□を示した。実施例1〜7
において得られた導電性複合材料は、導電層と支持体と
の密着性が良好で、高い表面抵抗値を示した。この表面
抵抗値は空気中で約6か月以上にわたって極めて安定で
、その変動値は20%以下であった。
Example 7 1% by weight of water-soluble conductive polymer compound (Ia) was added to Nafion 117 (thickness 100 μm, area 225 cm2).
Spin coater (at room temperature, rotation speed 2000 rpm)
) to form a conductive layer with an average thickness of about 0.05 μm. The adhesion between the conductive layer and the support and the film formability were good, and the surface resistance value was approximately 2×10 6 Ω/□. Examples 1-7
The conductive composite material obtained in 1 had good adhesion between the conductive layer and the support and exhibited a high surface resistance value. This surface resistance value was extremely stable in the air for about 6 months or more, and its fluctuation value was 20% or less.

【0046】[0046]

【発明の効果】本発明の導電性高分子複合材料は、従来
の導電性高分子複合材料と比べて以下のような利点を有
している。■  有機物である水溶性の導電性高分子化
合物を導電性被膜として用いており、その導電性高分子
化合物が互いにに絡み合った3次元構造をしているので
可とう性がよくしなやかである。従って、水溶性導電性
被膜を積層した後の複合材料においても加工性がよく、
また加工操作によって支持体から導電性被膜が剥離する
ことがない。
Effects of the Invention The conductive polymer composite material of the present invention has the following advantages over conventional conductive polymer composite materials. ■ An organic water-soluble conductive polymer compound is used as the conductive film, and the conductive polymer compounds have a three-dimensional structure in which they are intertwined with each other, making it highly flexible and pliable. Therefore, even after laminating a water-soluble conductive film, the composite material has good workability.
Furthermore, the conductive coating does not peel off from the support during processing operations.

【0047】■  本発明の水溶性の導電性高分子化合
物は側鎖末端のスルホン酸基の働きで、自己ドーピング
能を有するため高い電気伝導度を示し、また脱ドープが
起こりにくいため、電気伝導度が長期的安定に維持でき
る。また外部から化学的もしくは電気化学的手段によっ
てドーピング、脱ドーピング操作ができ、任意に表面抵
抗を変化させることもできる。■  低導電性支持体を
デイ ップ法やキャスト法などの塗膜法により簡単に導
電化することができ、また連続処理が可能で大面積の支
持体が導電化でき、しかも設備コスト、ランニングコス
トが低い。
■ The water-soluble conductive polymer compound of the present invention has a self-doping ability due to the function of the sulfonic acid group at the end of the side chain, so it exhibits high electrical conductivity. temperature can be maintained stably over the long term. Further, doping and dedoping operations can be performed externally by chemical or electrochemical means, and the surface resistance can be changed as desired. ■ Low-conductivity supports can be easily made conductive by coating methods such as dipping or casting, and continuous processing is possible, allowing large-area supports to be made conductive, while reducing equipment costs and running costs. Cost is low.

【0048】■  本発明の水溶性の導電性高分子化合
物は、分子内に界面活性作用を与えるスルホン酸基を有
するため、これまで水溶性化合物が塗布できなかった疎
水性の強い支持体表面にも容易に塗布できる。また、水
溶性の導電性高分子化合物に界面活性剤、特に酸型の界
面活性剤を加えたり、支持体表面の親水性処理を行った
りすることによって、より好適に塗布することが可能に
なった。本発明の導電性複合材料は以上のような特長を
有し、広範な支持体に関して表面の導電化が可能である
ので、帯電防止材料、電極、電磁波遮蔽材など幅広い用
途に使用できる。
[0048] The water-soluble conductive polymer compound of the present invention has a sulfonic acid group in the molecule that gives a surface-active effect, so it can be applied to the surface of a strongly hydrophobic support, which previously could not be coated with water-soluble compounds. can also be easily applied. In addition, by adding a surfactant, especially an acid-type surfactant, to a water-soluble conductive polymer compound, or by treating the support surface to make it hydrophilic, it has become possible to apply it more appropriately. Ta. The conductive composite material of the present invention has the above-mentioned features and can be made conductive on the surface of a wide variety of supports, so it can be used in a wide range of applications such as antistatic materials, electrodes, and electromagnetic shielding materials.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  高分子支持体の表面に、下記一般式(
I)〜(V) 【化1】 (式中、HtはNH、SまたはO、RはR’またはOR
’、R’は炭素数1〜10の線状または枝分かれのある
二価の炭化水素基またはエ−テル結合を含む二価の炭化
水素基、ZはOR’XM、H、OHまたはOR’H、n
は5以上の整数をそれぞれ表す)で示される構造単位を
10モル%以上含有する水溶性の導電性高分子化合物の
膜を形成していることを特徴とする導電性複合材料。
Claim 1: A compound of the following general formula (
I) to (V) [Formula 1] (wherein, Ht is NH, S or O, R is R' or OR
', R' is a linear or branched divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent hydrocarbon group containing an ether bond, Z is OR'XM, H, OH or OR'H ,n
each represents an integer of 5 or more) A conductive composite material comprising a film of a water-soluble conductive polymer compound containing 10 mol% or more of the structural unit represented by:
【請求項2】  下記一般式(I)〜(V)【化2】 (式中、HtはNH、SまたはO、RはR’またはOR
’、R’は炭素数1〜10の線状または枝分かれのある
二価の炭化水素基またはエ−テル結合を含む二価の炭化
水素基、ZはOR’XM、H、OHまたはOR’H、n
は5以上の整数をそれぞれ表す)で示される構造単位を
含有する水溶性の導電性高分子化合物水溶液を、高分子
支持体の表面に塗工した後、乾燥させることを特徴とす
る請求項1記載の導電性複合材料の製造方法。
[Claim 2] The following general formulas (I) to (V) [Claim 2] (wherein, Ht is NH, S or O, and R is R' or OR
', R' is a linear or branched divalent hydrocarbon group having 1 to 10 carbon atoms or a divalent hydrocarbon group containing an ether bond, Z is OR'XM, H, OH or OR'H , n
Claim 1, wherein an aqueous solution of a water-soluble conductive polymer compound containing a structural unit represented by (representing an integer of 5 or more) is applied to the surface of a polymer support and then dried. A method for manufacturing the conductive composite material described.
JP12547991A 1991-04-26 1991-04-26 Conductive polymer composite material and method for producing the same Expired - Lifetime JP3147407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12547991A JP3147407B2 (en) 1991-04-26 1991-04-26 Conductive polymer composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12547991A JP3147407B2 (en) 1991-04-26 1991-04-26 Conductive polymer composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04328181A true JPH04328181A (en) 1992-11-17
JP3147407B2 JP3147407B2 (en) 2001-03-19

Family

ID=14911111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12547991A Expired - Lifetime JP3147407B2 (en) 1991-04-26 1991-04-26 Conductive polymer composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3147407B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138382A (en) * 1993-11-14 1995-05-30 Yoshiro Nakamatsu Highly conductive article
JPH07136207A (en) * 1993-11-14 1995-05-30 Yoshiro Nakamatsu Condom for improving sensitivity
US5700399A (en) * 1993-12-29 1997-12-23 Nitto Chemical Industry Co., Ltd. Soluble alkoxy-group substituted aminobenzenesulfonic acid aniline conducting polymers
US6024895A (en) * 1995-08-11 2000-02-15 Mitsubishi Rayon Co., Ltd. Cross-linkable, electrically conductive composition, electric conductor and process for forming the same
JP2003246874A (en) * 2002-02-26 2003-09-05 Hs Planning:Kk Electroconductive treated polymer film
US7645400B2 (en) 2002-11-01 2010-01-12 Mitsubishi Rayon Co., Ltd. Composition containing carbon nanotubes having a coating
JP2010024457A (en) * 2009-10-15 2010-02-04 Nitto Denko Corp Protective film for polarizing plate, its production method, polarizing plate
US9627144B2 (en) 2011-08-17 2017-04-18 Mitsubishi Rayon Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
WO2018147318A1 (en) 2017-02-10 2018-08-16 三菱ケミカル株式会社 Conductive composition, method for producing conductive composition, and method for producing conductor
US10096395B2 (en) 2012-07-24 2018-10-09 Mitsubishi Chemical Corporation Conductor, conductive composition and laminate
WO2019146715A1 (en) 2018-01-26 2019-08-01 三菱ケミカル株式会社 Electroconductive composition and production method therefor, and water-soluble polymer and production method therefor
WO2019177096A1 (en) 2018-03-15 2019-09-19 三菱ケミカル株式会社 Conductive film, method for producing same, conductor, resist pattern formation method, and laminate
WO2019198749A1 (en) 2018-04-10 2019-10-17 三菱ケミカル株式会社 Electrically conductive composition, electrically conductive film, and laminate
WO2020100791A1 (en) 2018-11-15 2020-05-22 三菱ケミカル株式会社 Conductive composition and method for manufacturing same, and conductor and method for manufacturing same
WO2021153678A1 (en) 2020-01-29 2021-08-05 三菱ケミカル株式会社 Conductive composite, resist coating material, resist, and resist pattern formation method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07138382A (en) * 1993-11-14 1995-05-30 Yoshiro Nakamatsu Highly conductive article
JPH07136207A (en) * 1993-11-14 1995-05-30 Yoshiro Nakamatsu Condom for improving sensitivity
US5700399A (en) * 1993-12-29 1997-12-23 Nitto Chemical Industry Co., Ltd. Soluble alkoxy-group substituted aminobenzenesulfonic acid aniline conducting polymers
US5932144A (en) * 1993-12-29 1999-08-03 Mitsubishi Rayon Co., Ltd. Soluble aniline conducting polymers
US6024895A (en) * 1995-08-11 2000-02-15 Mitsubishi Rayon Co., Ltd. Cross-linkable, electrically conductive composition, electric conductor and process for forming the same
JP4514392B2 (en) * 2002-02-26 2010-07-28 日東電工株式会社 Method for producing protective film for polarizing plate
JP2003246874A (en) * 2002-02-26 2003-09-05 Hs Planning:Kk Electroconductive treated polymer film
US7645400B2 (en) 2002-11-01 2010-01-12 Mitsubishi Rayon Co., Ltd. Composition containing carbon nanotubes having a coating
JP2010024457A (en) * 2009-10-15 2010-02-04 Nitto Denko Corp Protective film for polarizing plate, its production method, polarizing plate
US9627144B2 (en) 2011-08-17 2017-04-18 Mitsubishi Rayon Co., Ltd. Solid electrolytic capacitor and method for manufacturing same
US10096395B2 (en) 2012-07-24 2018-10-09 Mitsubishi Chemical Corporation Conductor, conductive composition and laminate
US11145432B2 (en) 2012-07-24 2021-10-12 Mitsubishi Chemical Corporation Conductor, conductive composition and laminate
WO2018147318A1 (en) 2017-02-10 2018-08-16 三菱ケミカル株式会社 Conductive composition, method for producing conductive composition, and method for producing conductor
WO2019146715A1 (en) 2018-01-26 2019-08-01 三菱ケミカル株式会社 Electroconductive composition and production method therefor, and water-soluble polymer and production method therefor
WO2019177096A1 (en) 2018-03-15 2019-09-19 三菱ケミカル株式会社 Conductive film, method for producing same, conductor, resist pattern formation method, and laminate
WO2019198749A1 (en) 2018-04-10 2019-10-17 三菱ケミカル株式会社 Electrically conductive composition, electrically conductive film, and laminate
WO2020100791A1 (en) 2018-11-15 2020-05-22 三菱ケミカル株式会社 Conductive composition and method for manufacturing same, and conductor and method for manufacturing same
WO2021153678A1 (en) 2020-01-29 2021-08-05 三菱ケミカル株式会社 Conductive composite, resist coating material, resist, and resist pattern formation method

Also Published As

Publication number Publication date
JP3147407B2 (en) 2001-03-19

Similar Documents

Publication Publication Date Title
US5536573A (en) Molecular self-assembly of electrically conductive polymers
JP3184642B2 (en) Conductive composite material and method for producing the same
JPH04328181A (en) Electrically conductive polymer composite material and production thereof
Cheng et al. Molecular self-assembly of conducting polymers
Schopf et al. Polythiophenes-electrically conductive polymers
Bhattacharya et al. Conducting composites of polypyrrole and polyaniline a review
Anand et al. Conducting polyaniline blends and composites
JP2578881B2 (en) Radical polymerizable composition
US4696835A (en) Process for applying an electrically conducting polymer to a substrate
Blumstein et al. Highly Conjugated Ionic Polyacetylenes: Thin‐Film Processing and Potential Applications
EP3153553B1 (en) Conductive polymer composition, coated article, and patterning process
US7273918B2 (en) Thermally stable self-doped functionalized polyanilines
JPH10168328A (en) Electroconductive polymer composite material
JPH01158067A (en) Conductive polymer composition and production thereof
Chen et al. Surface functionalization of poly (tetrafluoroethylene) films via consecutive graft copolymerization with glycidyl methacrylate and aniline
JPH0252737A (en) Laminate composed of base body and conductive polymer film
JP4049839B2 (en) Method for producing antistatic treatment material
EP0292905A2 (en) Electrically conductive coating composition, method for its manufacture and its use
JP3798484B2 (en) Crosslinked conductive polymer and its precursor
US5676814A (en) Method of producing conductive polymer composites
JP7136197B2 (en) Conductive composition, conductive film and laminate
KR100445287B1 (en) Novel process of polyaniline
Pistillo et al. PRAP-CVD: A Novel Technique to Deposit Intrinsically Conductive Polymers
JPH04179956A (en) Resist composition for forming pattern and fine pattern forming method
Cong et al. Tunable control of the performance of aqueous-based electrochemical devices by post-polymerization functionalization

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100112

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110112

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120112

Year of fee payment: 11