JPH04326781A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH04326781A
JPH04326781A JP9679591A JP9679591A JPH04326781A JP H04326781 A JPH04326781 A JP H04326781A JP 9679591 A JP9679591 A JP 9679591A JP 9679591 A JP9679591 A JP 9679591A JP H04326781 A JPH04326781 A JP H04326781A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser device
frequency modulation
modulation sensitivity
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9679591A
Other languages
Japanese (ja)
Inventor
Makoto Okai
誠 岡井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9679591A priority Critical patent/JPH04326781A/en
Publication of JPH04326781A publication Critical patent/JPH04326781A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To get a semiconductor laser device which has the property of frequency modulation sensitivity being flat over wide band. CONSTITUTION:This semiconductor laser device has a diffraction grating 2 of cycles being different in the central region and the right and left regions of a resonator. Moreover, an electrode 6 on P side is divided in plural numbers. Hereby, this changes the rate of the coupling between the light and the diffraction grating of two cycles. A semiconductor device high in frequency modulation sensitivity property can be gotten, and as a result, the effect of heat can be removed, and the property of frequency modulation sensitivity being flat over the wide band of 10kHz-10GHz can be gotten.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、周波数変調感度が高く
、広帯域にわたって平坦な特性を有する半導体レーザ装
置に係り、特に光通信に用いて好適な半導体レーザ装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device having high frequency modulation sensitivity and flat characteristics over a wide band, and particularly to a semiconductor laser device suitable for use in optical communications.

【0002】0002

【従来の技術】広帯域にわたって比較的平坦な周波数変
調特性を有する半導体レーザ装置については、1989
年電子情報通信学会秋季全国大会、C−174に述べら
れている。
2. Description of the Related Art A semiconductor laser device having relatively flat frequency modulation characteristics over a wide band was developed in 1989.
It is stated in the 2011 Autumn National Conference of the Institute of Electronics, Information and Communication Engineers, C-174.

【0003】0003

【発明が解決しようとする課題】ところが、この半導体
レーザ装置では、100MHz以下の低周波領域におい
て、熱の効果によって周波数変調感度が大きくなるため
に、数+KHzから数GHzの広帯域にわたって、平坦
な周波数変調感度特性を得ることが困難であった。これ
は、キャリア注入による周波数変調感度と熱による周波
数変調感度が同程度であるためである。
[Problems to be Solved by the Invention] However, in this semiconductor laser device, the frequency modulation sensitivity increases due to thermal effects in the low frequency region of 100 MHz or less, so it is difficult to maintain a flat frequency over a wide band from several KHz to several GHz. It was difficult to obtain modulation sensitivity characteristics. This is because the frequency modulation sensitivity due to carrier injection and the frequency modulation sensitivity due to heat are approximately the same.

【0004】本発明では、キャリア注入による周波数変
調感度を高めることにより、熱の効果を除外して、平坦
な周波数変調感度特性を得ることを目的とする。
An object of the present invention is to eliminate thermal effects and obtain flat frequency modulation sensitivity characteristics by increasing the frequency modulation sensitivity by carrier injection.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明では分布帰還型半導体レーザの中央領域と左
右の領域で異なる周期の回折格子を設け、それぞれの領
域に独立の電極を設けた。
[Means for Solving the Problems] In order to achieve the above object, in the present invention, diffraction gratings with different periods are provided in the central region and left and right regions of a distributed feedback semiconductor laser, and independent electrodes are provided in each region. Ta.

【0006】[0006]

【作用】電流注入によるキャリア数の増減によって、レ
ーザの発振波長を変化させることができる。しかし、こ
のプラズマ効果による発振波長の変化はごくわずかで、
数百MHz/mA程度である。電流注入による周波数変
調感度を飛躍的に高めるためには、共振器方向の光強度
分布を変化させる方法が有効であると考えられる。これ
は、光強度分布の変化により、プラズマ効果以上に実効
屈折率を変化させることができるからである。
[Operation] The oscillation wavelength of the laser can be changed by increasing or decreasing the number of carriers by current injection. However, the change in the oscillation wavelength due to this plasma effect is very small;
It is approximately several hundred MHz/mA. In order to dramatically increase the frequency modulation sensitivity by current injection, it is thought that a method of changing the light intensity distribution in the resonator direction is effective. This is because the change in the light intensity distribution can change the effective refractive index more than the plasma effect.

【0007】本発明では、電流注入による光強度分布の
変化を大きくするために、共振器の中央付近と、その左
右の領域で異なる周期の回折格子を設けた。そして、注
入電流量の変化により、光と2つの周期の回折格子の結
合の割合を変化させ、その結果として光強度分布を大き
く変えことるができる。電極を3つに分けて、それぞれ
の電極への電流注入量を変化させると、さらに大きく光
強度分布を変化させることができる。また、レーザ内部
に組込んだ回折格子が位相シフトを有する場合、光と2
つの周期の回折格子の結合の割合を変化させることによ
り、軸方向ホールバーニング量を制御して周波数変調感
度を高めることができる。
In the present invention, in order to increase the change in the light intensity distribution due to current injection, diffraction gratings with different periods are provided near the center of the resonator and in the left and right regions thereof. By changing the amount of injected current, the ratio of coupling between light and the two periods of the diffraction grating can be changed, and as a result, the light intensity distribution can be changed significantly. By dividing the electrode into three parts and changing the amount of current injected into each electrode, the light intensity distribution can be changed even more. In addition, if the diffraction grating built into the laser has a phase shift, the light and the
By changing the coupling ratio of the two-period diffraction gratings, it is possible to control the amount of hole burning in the axial direction and increase the frequency modulation sensitivity.

【0008】[0008]

【実施例】本発明の第1の実施例を図1を用いて説明す
る。n型InP基板1の表面に回折格子2を作製した。 回折格子2は、精密機械刻線により作製したマスター回
折格子からホトマスクを作製し、ホトマスクのパターン
をレーザ光を光源とした密着露光法により作製した。中
央領域の回折格子2の周期は241nm、左右領域の回
折格子2の周期は240nmとした。中央領域の回折格
子2には、πラジアンの位相シフト21をもうけた。回
折格子2を作製後、有機金属気相成長法により、InG
aAs光ガイド層3、多重量子井戸活性層4、p型In
Pクラッド層5を順次エピタキシャル成長した。その後
、p側電極6とn側電極7を蒸着によって形成すること
によりレーザ構造とした。左右の電極にそれぞれ20m
A、中央の電極に5mAの電流を流し、さらに中央の電
極を変調することにより、10GHz/mAの高い周波
数変調感度を得ることができた。さらに、10kHzか
ら10GHzの帯域で、平坦な感度特性を有ることがで
きた。
Embodiment A first embodiment of the present invention will be described with reference to FIG. A diffraction grating 2 was fabricated on the surface of an n-type InP substrate 1. For the diffraction grating 2, a photomask was prepared from a master diffraction grating prepared by precision machine marking, and the pattern of the photomask was prepared by a contact exposure method using a laser beam as a light source. The period of the diffraction grating 2 in the central region was 241 nm, and the period of the diffraction grating 2 in the left and right regions was 240 nm. The diffraction grating 2 in the central region was provided with a phase shift 21 of π radians. After producing the diffraction grating 2, InG
aAs optical guide layer 3, multi-quantum well active layer 4, p-type In
The P cladding layer 5 was epitaxially grown in sequence. Thereafter, a laser structure was obtained by forming a p-side electrode 6 and an n-side electrode 7 by vapor deposition. 20m each for left and right electrodes
A, By applying a current of 5 mA to the central electrode and further modulating the central electrode, a high frequency modulation sensitivity of 10 GHz/mA could be obtained. Furthermore, it was possible to have flat sensitivity characteristics in the band from 10 kHz to 10 GHz.

【0009】次に、本発明の第2の実施例を図2を用い
て説明する。図2の実施例では、中央の回折格子と左右
の回折格子の周期の差を利用して左右の回折格子の間で
実効的なπラジアンシフトを得るように回折格子2を設
計した点が第一の実施例と異なる。左右の電極にそれぞ
れ20mA、中央の電極に5mAの電流を流し、さらに
中央の電極を変調することにより、10GHz/mAの
高い周波数変調感度を得ることができた。さらに、10
kHzから10GHzの帯域で、平坦な感度特性を得る
ことができた。
Next, a second embodiment of the present invention will be explained using FIG. 2. In the example shown in FIG. 2, the diffraction grating 2 is designed to obtain an effective π radian shift between the left and right diffraction gratings by utilizing the difference in period between the center diffraction grating and the left and right diffraction gratings. This is different from the first embodiment. By passing currents of 20 mA through the left and right electrodes and 5 mA through the center electrode, and further modulating the center electrode, a high frequency modulation sensitivity of 10 GHz/mA could be obtained. Furthermore, 10
Flat sensitivity characteristics could be obtained in the band from kHz to 10 GHz.

【0010】次に、本発明の第3の実施例を図3により
図3では、P側電極6が1つであることが第1の実施例
と異なる。P側電極6に50mAの電流を流し、さらに
変調信号を印加することにより、5GHz/mAの高い
周波数変調感度を得ることができた。さらに10kHz
から10GHzの帯域で平坦な感度特性を得ることがで
きた。
Next, a third embodiment of the present invention is shown in FIG. 3, which differs from the first embodiment in that there is only one P-side electrode 6. In FIG. By passing a current of 50 mA through the P-side electrode 6 and further applying a modulation signal, a high frequency modulation sensitivity of 5 GHz/mA could be obtained. 10kHz more
We were able to obtain flat sensitivity characteristics in the 10 GHz band.

【0011】以上の実施例では、InP系の材料系につ
いて述べたが、その他の材料系についても適用可能であ
る。また、いかなる横モード制御構造を有する半導体レ
ーザ装置においても適用可能である。
[0011] In the above embodiments, an InP material system has been described, but other material systems are also applicable. Further, the present invention can be applied to any semiconductor laser device having any transverse mode control structure.

【0012】次に、本発明の第4の実施例を図4を用い
て説明する。図4は、波長多重コヒーレント光通信シス
テムのブロック図である。発振波長λ1の半導体レーザ
10、発振波長λ2の半導体レーザ11、……と複数の
波長の異なるレーザ光をそれぞれ独立に2.4Gb/S
の速さで変調し、一本の光ファイバ12を通して、10
0kmの伝送を行なった。この送信側半導体レーザとし
て、本発明の周波数変調感度が高く、広帯域にわたって
平坦な特性を有する半導体レーザを用いた。また、受光
例ではローカル光源14として波長可変レーザを用い、
任意の波長を選択して復調した。
Next, a fourth embodiment of the present invention will be explained using FIG. 4. FIG. 4 is a block diagram of a wavelength division multiplexing coherent optical communication system. A semiconductor laser 10 with an oscillation wavelength λ1, a semiconductor laser 11 with an oscillation wavelength λ2, etc., and a plurality of laser beams with different wavelengths are independently transmitted at 2.4 Gb/S.
modulated at a speed of 10
0km transmission was performed. As this transmission-side semiconductor laser, the semiconductor laser of the present invention having high frequency modulation sensitivity and flat characteristics over a wide band was used. In addition, in the light reception example, a wavelength tunable laser is used as the local light source 14,
An arbitrary wavelength was selected and demodulated.

【0013】[0013]

【発明の効果】本発明により、広帯域(10kHz〜1
0GHz)にわたって、平坦な周波数変調感度特性を得
ることができる。
[Effects of the Invention] The present invention provides broadband (10kHz to 1kHz)
0 GHz), flat frequency modulation sensitivity characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第1の実施例の側面図。FIG. 1 is a side view of a first embodiment of the invention.

【図2】本発明の第2の実施例の側面図。FIG. 2 is a side view of a second embodiment of the invention.

【図3】本発明の第3の実指令の側面図。FIG. 3 is a side view of a third actual command of the present invention.

【図4】本発明の第4の実施例のブロック図。FIG. 4 is a block diagram of a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…n型InP基板、2…回折格子、6…p側電極、1
0…発振波長λ1の半導体レーザ、11…発振波長λ2
の半導体レーザ。
1...n-type InP substrate, 2...diffraction grating, 6...p-side electrode, 1
0...Semiconductor laser with oscillation wavelength λ1, 11...Oscillation wavelength λ2
semiconductor laser.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】発光層もしくは該発光層に隣接する層に、
光の進行方向に沿って周期的な凹凸を有する半導体レー
ザ装置において、中央領域とその他の領域で凹凸の周期
が異なり、発光層に近い側の電極が、3つ以上に分割さ
れていることを特徴とする半導体レーザ装置。
Claim 1: A light-emitting layer or a layer adjacent to the light-emitting layer,
In a semiconductor laser device that has periodic irregularities along the direction of light propagation, the periodicity of the irregularities is different between the central region and other regions, and the electrode near the light emitting layer is divided into three or more parts. Features of the semiconductor laser device.
【請求項2】請求項1に記載した半導体レーザ装置にお
いて、中央領域の凹凸の位相が、ある特定の部分でほぼ
πラジアン変化していることを特徴とする半導体レーザ
装置。
2. The semiconductor laser device according to claim 1, wherein the phase of the unevenness in the central region changes by approximately π radians at a certain portion.
【請求項3】請求項1に記載した半導体レーザ装置にお
いて、中央領域の凹凸の周期とその他の領域の周期の差
により、左領域と右領域の凹凸の位相がほぼπラジアン
変化していることを特徴とする半導体レーザ装置。
3. In the semiconductor laser device according to claim 1, the phase of the asperities in the left region and the right region changes by approximately π radians due to the difference between the period of the asperities in the central region and the period of the other regions. A semiconductor laser device characterized by:
【請求項4】請求項1に記載した半導体レーザ装置にお
いて、中央の電極に信号電流を注入することを特徴とす
る半導体レーザ装置。
4. The semiconductor laser device according to claim 1, wherein a signal current is injected into the central electrode.
【請求項5】請求項1から4のいずれかに記載した半導
体レーザ装置を使用したコヒーレント光通信ステム。
5. A coherent optical communication system using the semiconductor laser device according to claim 1.
JP9679591A 1991-04-26 1991-04-26 Semiconductor laser device Pending JPH04326781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9679591A JPH04326781A (en) 1991-04-26 1991-04-26 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9679591A JPH04326781A (en) 1991-04-26 1991-04-26 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPH04326781A true JPH04326781A (en) 1992-11-16

Family

ID=14174566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9679591A Pending JPH04326781A (en) 1991-04-26 1991-04-26 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH04326781A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019516A (en) * 2004-07-01 2006-01-19 Fujitsu Ltd Tunable laser and its control method
JP2014150145A (en) * 2013-01-31 2014-08-21 Japan Oclaro Inc Semiconductor laser element and optical semiconductor device
JP2017152724A (en) * 2017-04-24 2017-08-31 日本オクラロ株式会社 Semiconductor laser element, and optical semiconductor device
JPWO2018070432A1 (en) * 2016-10-12 2019-08-08 古河電気工業株式会社 Semiconductor laser element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019516A (en) * 2004-07-01 2006-01-19 Fujitsu Ltd Tunable laser and its control method
JP2014150145A (en) * 2013-01-31 2014-08-21 Japan Oclaro Inc Semiconductor laser element and optical semiconductor device
JPWO2018070432A1 (en) * 2016-10-12 2019-08-08 古河電気工業株式会社 Semiconductor laser element
JP2017152724A (en) * 2017-04-24 2017-08-31 日本オクラロ株式会社 Semiconductor laser element, and optical semiconductor device

Similar Documents

Publication Publication Date Title
JP2825508B2 (en) Semiconductor laser device and optical communication system
JP3611593B2 (en) Method for fabricating semiconductor optical device
JP3323725B2 (en) Polarization modulation laser, driving method thereof, and optical communication system using the same
JPS6154690A (en) Semiconductor laser device
JPS6155981A (en) Semiconductor light-emitting element
JPH0348481A (en) Semiconductor laser
US20120027041A1 (en) Wavelength variable laser and a manufacturing method thereof
JP3141854B2 (en) Method for manufacturing optical semiconductor device
US5606573A (en) Method and apparatus for control of lasing wavelength in distributed feedback lasers
JPH04326781A (en) Semiconductor laser device
KR100378596B1 (en) Structure of Semiconductor Optical Modulator
JP2010123643A (en) Semiconductor array element, laser module, optical transmitting module, and optical transmitting apparatus
JPH08153928A (en) Manufacture of semiconductor laser array
Zhang et al. Ten-channel InP-based large-scale photonic integrated transmitter fabricated by SAG technology
Guo et al. 1.3-μm multi-wavelength DFB laser array fabricated by MOCVD selective area growth
JPH03150890A (en) Semiconductor laser for coherent communication
JPS6373585A (en) Frequency tunable distributed bragg reflection-type semiconductor laser
JP2690840B2 (en) Distributed light reflector and wavelength tunable semiconductor laser using the same
KR100377193B1 (en) Multi-wavelength semiconductor laser array and method for fabricating the same
JPS60178685A (en) Single-axial mode semiconductor laser device
JP2911856B2 (en) Semiconductor laser device
JPS63263788A (en) Semiconductor laser
JPH07131104A (en) Semiconductor laser device
JP2658547B2 (en) Semiconductor laser
JPH09307179A (en) Phase shift type distributed feedback semiconductor laser