JPH04326734A - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JPH04326734A
JPH04326734A JP3096857A JP9685791A JPH04326734A JP H04326734 A JPH04326734 A JP H04326734A JP 3096857 A JP3096857 A JP 3096857A JP 9685791 A JP9685791 A JP 9685791A JP H04326734 A JPH04326734 A JP H04326734A
Authority
JP
Japan
Prior art keywords
layer
fet
gaas
graded
inx
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3096857A
Other languages
Japanese (ja)
Inventor
Nobuchika Kuwata
桑田 展周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3096857A priority Critical patent/JPH04326734A/en
Priority to US07/871,706 priority patent/US5331410A/en
Priority to CA002067048A priority patent/CA2067048A1/en
Priority to KR1019920007044A priority patent/KR950003946B1/en
Priority to EP92107120A priority patent/EP0510705A2/en
Publication of JPH04326734A publication Critical patent/JPH04326734A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To provide an FET which realizes a low noise and a high-speed operation and which uses GaInAs as a channel layer. CONSTITUTION:In an FET by this invention, a structure where an n-type Ga1-xInxAs layer is sandwiched between Ga1-xInxAs graded layers 3 and 5 whose In composition has been changed gradualy is formed on a GaAs substrate 1 via a buffer layer 2, and, in addition, a cap layer 6 is formed on it. Thereby, a region where electrons exist is overlapped partly with the undoped GaInAs graded layers 3, 5, and the electrons are provided with a speed overshoot which is higher than that of conventional FET's. As a result, it is possible to obtain a low source resistance and a high transconductance (gn).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は低雑音かつ高速で動作す
る電界効果トランジスタ(FET)に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field effect transistor (FET) that operates at low noise and high speed.

【0002】0002

【従来の技術】n型のGaInAsをチャネルとするF
ETに関する技術として、例えば、特開昭63−908
61号、特開昭63−272080号、特開昭64−2
371号などがある。
[Prior Art] F using n-type GaInAs as a channel
As a technology related to ET, for example, Japanese Patent Application Laid-Open No. 63-908
No. 61, JP-A-63-272080, JP-A-64-2
There are issues such as No. 371.

【0003】0003

【発明が解決しようとする課題】これらの技術では、G
aInAs中に均一にSiをド−ピングしているため、
キャリアである電子はこのSiに散乱され、十分な速度
オーバーシュート効果が得られず、十分な特性が得られ
なかった。また、特開昭63−90861号では、Ga
InAs層中にSiをプラナードープさせる技術が開示
されているが、プラナードープ層だけでは、深いゲート
しきい値電圧Vthを持ったFETを作ることが難しい
。そのため、■高い出力を持ったFETを作製できない
、■回路設計上の余裕度が小さい等の問題があった。 本発明は、GaInAsをチャネルとするFETにおい
て、従来のものよりも高速で動作し、しかも低雑音のF
ETを提供することを目的とする。
[Problem to be solved by the invention] In these technologies, G
Because Si is uniformly doped into aInAs,
Electrons, which are carriers, were scattered by this Si, and a sufficient velocity overshoot effect could not be obtained, so that sufficient characteristics could not be obtained. In addition, in JP-A No. 63-90861, Ga
Although a technique for planar-doping Si into an InAs layer has been disclosed, it is difficult to create a FET with a deep gate threshold voltage Vth using only a planar-doped layer. Therefore, there were problems such as: (1) it was not possible to produce an FET with high output, and (2) there was little margin in circuit design. The present invention provides FETs with GaInAs channels that operate at higher speeds than conventional ones and have low noise.
The purpose is to provide ET.

【0004】0004

【課題を解決するための手段】かかる目的を達成するた
めに本発明のFETは、n型Ga1−X InX As
チャネル層をIn組成、Xを徐々に変化させたGa1−
X InX Asグレーディッド層で挟み込んだ構造を
GaAs基板上にバッファ層を介して形成し、さらにそ
の上にキャップ層を形成したものである。
[Means for Solving the Problems] In order to achieve the above object, the FET of the present invention comprises n-type Ga1-X InX As
The channel layer is made of Ga1- with In composition and X gradually changed.
A structure in which X InX As graded layers are sandwiched is formed on a GaAs substrate with a buffer layer interposed therebetween, and a cap layer is further formed on the buffer layer.

【0005】[0005]

【作用】キャリアである電子の存在する領域がすべてチ
ャネル層にあるのではなく、一部がグレーディッド層に
あるため、電子は高い速度オーバーシュートを有する。 そのため、ソース抵抗が低くなり、トランスコンダクタ
ンス(gm )が高くなる。これにより、低雑音、高速
動作が達成される。
[Operation] Since the region in which electrons, which are carriers, exist is not entirely in the channel layer but partially in the graded layer, the electrons have a high velocity overshoot. Therefore, the source resistance becomes low and the transconductance (gm) becomes high. This achieves low noise and high speed operation.

【0006】[0006]

【実施例】図1は、本発明の一実施例であるFETの製
造工程を示す工程断面図である。半導体基板としてGa
As基板1を用い、このGaAs基板1の上に、例えば
有機金属気相成長法(OMVPE法)により、ノンドー
プGaAs単結晶であるバッファ層2(バックグラウン
ドp型、p=3×1015cm−3)を5000オング
ストロームの厚さにエピタキシャル成長させる(図1(
a)参照)。次に、GaAsからIn組成、Xを徐々に
上げ、表面ではIn組成、Xが0.15となっているノ
ンドープGa1−X InX Asのグレーディッド層
3を50オングストロームの厚さに成長させる(図1(
b)参照)。ついで、このグレーディッド層3の上に、
Siを均一にドープしたn型Ga1−X InX As
(n=4×1018cm−3)からなるチャネル層4を
50オングストロームの厚さに成長させる(図1(c)
参照)。なお、このチャネル層4のIn組成、Xは、グ
レーディッド層3の上面のIn組成とほぼ一致しており
、X=0.15である。次に、このチャネル層4の上に
、In組成、Xを徐々に下げ最上面ではGaAsとなっ
ているGa1−X InX Asからなるグレーディッ
ド層5を50オングストロームの厚さに形成する(図1
(d)参照)。その後、グレーディッド層5の上にノン
ドープGaAs単結晶からなるキャップ層6を400オ
ングストロームの厚さに成長させる。そして最後に、こ
のグレーディッド層5の上にゲート電極7、ソース電極
8、ドレイン電極9を形成して本実施例のFETが構成
される(図1(e)参照)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a process sectional view showing the manufacturing process of an FET which is an embodiment of the present invention. Ga as a semiconductor substrate
Using an As substrate 1, a buffer layer 2 (background p type, p=3 x 1015 cm-3), which is a non-doped GaAs single crystal, is formed on the GaAs substrate 1 by, for example, organic metal vapor phase epitaxy (OMVPE). is epitaxially grown to a thickness of 5000 angstroms (Fig. 1(
a)). Next, the In composition and X are gradually increased from GaAs, and a graded layer 3 of non-doped Ga1-X InX As with an In composition and X of 0.15 is grown on the surface to a thickness of 50 angstroms (Fig. 1(
b)). Then, on top of this graded layer 3,
n-type Ga1-X InX As uniformly doped with Si
(n=4×1018 cm−3) is grown to a thickness of 50 angstroms (Fig. 1(c)).
reference). Note that the In composition of this channel layer 4, X, is almost the same as the In composition of the upper surface of the graded layer 3, and X=0.15. Next, on this channel layer 4, a graded layer 5 made of Ga1-X InX As is formed to a thickness of 50 angstroms by gradually decreasing the In composition and X, and the top surface becomes GaAs (FIG. 1).
(see (d)). Thereafter, a cap layer 6 made of non-doped GaAs single crystal is grown on the graded layer 5 to a thickness of 400 angstroms. Finally, a gate electrode 7, a source electrode 8, and a drain electrode 9 are formed on this graded layer 5 to construct the FET of this embodiment (see FIG. 1(e)).

【0007】次に、このようにして作製されたFETの
動作を図2のエネルギバンド図と共に説明する。図2(
a)は、従来のSiを均一にドーピングさせたn型のG
aInAsチャネルFETのチャネル部分を拡大したエ
ネルギバンド図である。同図において、符号21はGa
InAsチャネル層、符号22はGaAsバッファ層、
符号23はキャップ層をそれぞれ示しており、符号24
は伝導帯レベル、符号25は価電子帯レベルをそれぞれ
示している。これに対して図2(b)は、本実施例のF
ETのチャネル部分を拡大したエネルギバンド図である
。このバンド図では、図1の各エピタキシャル層2〜6
に対応する部分を同一の符号で示してあり、符号26は
伝導帯レベル、符号27は価電子帯レベルをそれぞれ示
している。なお、図2(a)(b)において、E0 お
よびE1は量子化されたエネルギ準位を示しており、一
点鎖線で示した曲線31、32はそれぞれエネルギ準位
E0 およびE1 における電子の存在確率を示してい
る。
Next, the operation of the FET manufactured in this manner will be explained with reference to the energy band diagram shown in FIG. Figure 2 (
a) is the conventional n-type G uniformly doped with Si.
FIG. 2 is an enlarged energy band diagram of a channel portion of an aInAs channel FET. In the same figure, numeral 21 is Ga
InAs channel layer, reference numeral 22 is a GaAs buffer layer,
Reference numeral 23 indicates a cap layer, and reference numeral 24 indicates a cap layer.
25 indicates the conduction band level, and 25 indicates the valence band level. On the other hand, FIG. 2(b) shows the F of this embodiment.
FIG. 2 is an energy band diagram showing an enlarged channel portion of ET. In this band diagram, each epitaxial layer 2 to 6 in FIG.
The parts corresponding to are indicated by the same reference numerals, and the reference numeral 26 indicates the conduction band level and the reference numeral 27 indicates the valence band level. In FIGS. 2(a) and 2(b), E0 and E1 indicate quantized energy levels, and curves 31 and 32 indicated by dashed-dotted lines indicate the existence probability of electrons at energy levels E0 and E1, respectively. It shows.

【0008】この2つの図からわかるように、従来のF
ET(図2(a)参照)では、電子の存在する領域が、
ほとんどチャネル層21によるn型GaInAsの量子
井戸内であり、電子はGaInAs中のSiにより散乱
され十分な速度オーバーシュートが得られない。そのた
め、ソース抵抗の増大、およびトランスコンダクタンス
(gm)の低下を招く。これに対して、本実施例のFE
Tでは、電子の存在する領域がノンドープのGaInA
sグレーディッド層3、5に一部重なっているため、従
来のFETよりも電子は高い速度オーバーシュートを有
する。そのため、低いソース抵抗、高いトランスコンダ
クタンス(gm )を得ることができる。
As can be seen from these two figures, the conventional F
In ET (see Figure 2(a)), the region where electrons exist is
Most of the electrons are within the n-type GaInAs quantum well formed by the channel layer 21, and electrons are scattered by Si in the GaInAs, making it impossible to obtain a sufficient velocity overshoot. This results in an increase in source resistance and a decrease in transconductance (gm). On the other hand, the FE of this example
In T, the region where electrons exist is undoped GaInA.
Because it partially overlaps the s-graded layers 3 and 5, electrons have a higher velocity overshoot than in conventional FETs. Therefore, low source resistance and high transconductance (gm) can be obtained.

【0009】また、GaAsに対して格子整合しないn
型GaInAsチャネル層4をGaAsグレーディッド
層3、5で挟んでいるので、格子不整合による歪みを緩
和する効果があり、電子の輸送特性が改善される効果も
期待できる。
Furthermore, n, which is not lattice matched to GaAs,
Since the GaInAs type channel layer 4 is sandwiched between the GaAs graded layers 3 and 5, there is an effect of alleviating distortion due to lattice mismatch, and the effect of improving electron transport characteristics can also be expected.

【0010】0010

【発明の効果】以上説明したように、本発明のFETに
よれば、従来のGaInAsをチャネル層とするFET
に比較して、低いソース抵抗、高いトランスコンダクタ
ンス(gm )を得ることができる。したがって、低雑
音、高速動作を達成することができる。
As explained above, according to the FET of the present invention, the conventional FET having a channel layer of GaInAs can be improved.
It is possible to obtain low source resistance and high transconductance (gm) compared to the above. Therefore, low noise and high speed operation can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例であるFETの製造方法を示
す工程断面図。
FIG. 1 is a process cross-sectional view showing a method for manufacturing an FET, which is an embodiment of the present invention.

【図2】本実施例の動作を説明するためのエネルギバン
ド図。
FIG. 2 is an energy band diagram for explaining the operation of this embodiment.

【符号の説明】[Explanation of symbols]

1…GaAs基板 2…バッファ層 3…グレーディッド層 4…チャネル層 5…グレーディッド層 6…キャップ層 7…ゲート電極 8…ソース電極 9…ドレイン電極 1...GaAs substrate 2...Buffer layer 3...Graded layer 4...Channel layer 5...Graded layer 6...Cap layer 7...Gate electrode 8...Source electrode 9...Drain electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】半絶縁性GaAs基板1と、この半絶縁性
GaAs基板上に形成されGaAsに格子整合する高抵
抗の半導体からなるバッファ層と、このバッファ層上に
、GaAsからIn組成、Xを徐々に上げて形成された
第1のノンドープGa1−X InX Asグレーディ
ッド層、グレーディッド層の上に、グレーディッド層の
上面とIn組成、Xがほぼ一致しており不純物がドープ
されたn型Ga1−X InX Asチャネル層と、こ
のチャネル層の上に、In組成、Xがチャネル層の上面
とほぼ一致した状態から徐々に下がって上面ではGaA
sとなっている第2のGa1−x InX Asグレー
ディッド層と、このグレーディッド層5の上に形成され
たGaAsまたはAlGaAsからなるキャップ層と、
このキャップ層の上に形成されたソース、ドレイン、お
よびゲートの各電極とを有することを特徴とする電界効
果トランジスタ。
1. A semi-insulating GaAs substrate 1, a buffer layer made of a high-resistance semiconductor formed on the semi-insulating GaAs substrate and lattice-matched to GaAs, and a semiconductor having an In composition ranging from GaAs to A first non-doped Ga1-X InX As graded layer is formed by gradually increasing the InX As graded layer. A type Ga1-X InX As channel layer is formed, and on top of this channel layer, the In composition and
a second Ga1-x InX As graded layer 5, and a cap layer made of GaAs or AlGaAs formed on the graded layer 5;
A field effect transistor characterized by having source, drain, and gate electrodes formed on the cap layer.
JP3096857A 1991-04-26 1991-04-26 Field-effect transistor Pending JPH04326734A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3096857A JPH04326734A (en) 1991-04-26 1991-04-26 Field-effect transistor
US07/871,706 US5331410A (en) 1991-04-26 1992-04-21 Field effect transistor having a sandwiched channel layer
CA002067048A CA2067048A1 (en) 1991-04-26 1992-04-24 Field effect transistor
KR1019920007044A KR950003946B1 (en) 1991-04-26 1992-04-25 Field effect transistor
EP92107120A EP0510705A2 (en) 1991-04-26 1992-04-26 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3096857A JPH04326734A (en) 1991-04-26 1991-04-26 Field-effect transistor

Publications (1)

Publication Number Publication Date
JPH04326734A true JPH04326734A (en) 1992-11-16

Family

ID=14176145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3096857A Pending JPH04326734A (en) 1991-04-26 1991-04-26 Field-effect transistor

Country Status (1)

Country Link
JP (1) JPH04326734A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780879A (en) * 1996-05-30 1998-07-14 Nec Corporation Field-effect transistor and method of manufacturing the same
US6555850B1 (en) * 1999-02-19 2003-04-29 Sumitomo Electric Industries, Ltd. Field-effect transistor
US6787821B2 (en) 2000-07-19 2004-09-07 Fujitsu Quantum Devices Limited Compound semiconductor device having a mesfet that raises the maximum mutual conductance and changes the mutual conductance
JP2013513975A (en) * 2009-12-30 2013-04-22 インテル コーポレイション Germanium-based quantum well devices

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5780879A (en) * 1996-05-30 1998-07-14 Nec Corporation Field-effect transistor and method of manufacturing the same
US6555850B1 (en) * 1999-02-19 2003-04-29 Sumitomo Electric Industries, Ltd. Field-effect transistor
US6787821B2 (en) 2000-07-19 2004-09-07 Fujitsu Quantum Devices Limited Compound semiconductor device having a mesfet that raises the maximum mutual conductance and changes the mutual conductance
JP2013513975A (en) * 2009-12-30 2013-04-22 インテル コーポレイション Germanium-based quantum well devices
US9219135B2 (en) 2009-12-30 2015-12-22 Intel Corporation Germanium-based quantum well devices
US9478635B2 (en) 2009-12-30 2016-10-25 Intel Corporation Germanium-based quantum well devices
US9876014B2 (en) 2009-12-30 2018-01-23 Intel Corporation Germanium-based quantum well devices

Similar Documents

Publication Publication Date Title
JP2676442B2 (en) Heterojunction field effect transistor and manufacturing method thereof
JPH07335867A (en) Field-effect transistor
KR960000385B1 (en) Field effect transistor
JPH07183494A (en) Heterojunction fet
US5331410A (en) Field effect transistor having a sandwiched channel layer
JP2804041B2 (en) Field-effect transistor
JPH04326734A (en) Field-effect transistor
JPH04326735A (en) Field-effect transistor
JPH09237889A (en) Semiconductor crystal laminate and semiconductor device using the laminate
JP2921835B2 (en) Heterojunction field effect transistor
JPH08264760A (en) Hetero junction field-effect transistor and its manufacture
JP3122471B2 (en) Field effect transistor
GB2239557A (en) High electron mobility transistors
JPH0666334B2 (en) Field effect transistor
JPH06124965A (en) Field effect transistor
JPS609174A (en) Semiconductor device
JP2655594B2 (en) Integrated semiconductor device
JP2503594B2 (en) Semiconductor integrated device and manufacturing method thereof
JPH04225239A (en) Heterojunction field-effect transistor
JP3122473B2 (en) Field effect transistor
JPH0574815A (en) Field-effect transistor
JPH0763094B2 (en) Semiconductor device and manufacturing method thereof
JPH06252175A (en) Transistor having high electron mobility
JPH04214636A (en) Semiconductor device
JPH0797633B2 (en) Field effect transistor