JPH04325659A - Manufacture of aluminum alloy hard sheet for forming excellent in tearing property - Google Patents

Manufacture of aluminum alloy hard sheet for forming excellent in tearing property

Info

Publication number
JPH04325659A
JPH04325659A JP12290191A JP12290191A JPH04325659A JP H04325659 A JPH04325659 A JP H04325659A JP 12290191 A JP12290191 A JP 12290191A JP 12290191 A JP12290191 A JP 12290191A JP H04325659 A JPH04325659 A JP H04325659A
Authority
JP
Japan
Prior art keywords
cold rolling
plate
alloy
rolling
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12290191A
Other languages
Japanese (ja)
Inventor
Shinji Teruda
照田 伸二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP12290191A priority Critical patent/JPH04325659A/en
Publication of JPH04325659A publication Critical patent/JPH04325659A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To offer a sheet excellent in tearing properties and having a compsn. close to that of a can barrel material as an aluminum allay hard sheet used for a can cover of a stay-on-tub system or the like. CONSTITUTION:An alloy constituted of 1.0 to 3.0% Mg, 0.05 to 0.5% Cu, 0.5 to 2.0% Mn, 0.1 to 1.0% Fe, 0.1 to 0.5% Si and the balance substantial Al is cast by a casting method with a high cooling rate such as a continuous casting and rolling method. After cold rolling, the alloy is subjected to process annealing of rapid heating, rapid cooling and holding to a high temp. for a short time and is furthermore subjected to final cold rolling, by which a sheet in which the number of intermetallic compounds of >=1mum on the sheet surface is regulated to >=3000pieces/0.2mm<2>, their average size is regulated to 1.0 to 2.5mum and the maximum size of the intermetallic compound is regulated to <=10mum can be obtd.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明はアルミニウム缶の缶体
における蓋材等として使用される成形用アルミニウム合
金硬質板の製造方法、、特にステイオンタブ方式のアル
ミニウム缶用の蓋材に適した、引き裂き性に優れかつ高
強度と良好な成形性を有するアルミニウム合金硬質板の
製造方法に関するものである。
[Industrial Field of Application] The present invention relates to a method for manufacturing a hard aluminum alloy plate for forming, which is used as a lid material for the can body of an aluminum can, and is particularly suitable for a lid material for a stay-on tab type aluminum can. The present invention relates to a method for manufacturing an aluminum alloy hard plate having excellent tearability, high strength, and good formability.

【0002】0002

【従来の技術】一般にアルミニウム缶の蓋材としては、
5052合金、5082合金、5182合金などの50
00番系の合金が用いられており、特にビールその他の
炭酸飲料用の缶の蓋材、すなわち内圧が加わる用途の缶
の蓋材としては焼付塗装後の耐力で300N/mm2 
以上の高強度が要求され、そのためこのような用途では
5182合金が主流を占めている。
[Prior Art] Generally, the lid material for aluminum cans is
50 such as 5052 alloy, 5082 alloy, 5182 alloy, etc.
No. 00 series alloys are used, and are particularly suitable for can lids for beer and other carbonated beverages, i.e. for applications where internal pressure is applied, with a yield strength of 300 N/mm2 after baking coating.
The above-mentioned high strength is required, and therefore 5182 alloy is the mainstream for such applications.

【0003】一方、最近ではアルミニウム缶の再利用(
リサイクル)を容易にするため、缶胴と缶蓋を同一成分
組成の合金で構成すること、すなわち所謂ユニアロイ化
することが考えられており、このユニアロイ化のために
蓋材、胴材ともに3004合金をベースとした合金を用
いることが提案されているが、3004合金をベースと
した従来の蓋材では、5182合金と同等のレベルを得
ることが困難であり、5182合金と同等の強度レベル
を得るためには高い冷間加工度を必要としてしまうため
、蓋材としての成形性の問題が生じ、そのため実用化に
は至っていない。
On the other hand, recently, aluminum cans have been reused (
In order to facilitate recycling (recycling), it is being considered to construct the can body and can lid from an alloy with the same composition, that is, to make it a so-called unialloy. It has been proposed to use an alloy based on 3004 alloy, but with conventional lid materials based on 3004 alloy, it is difficult to obtain a strength level equivalent to that of 5182 alloy. Since this requires a high degree of cold working, there are problems with formability as a lid material, and as a result, it has not been put to practical use.

【0004】0004

【発明が解決しようとする課題】従来一般の飲料缶の開
缶方式としては、缶蓋に取付けられたタブを引上げるこ
とによりタブと缶蓋の一部(飲み口部分)が缶から完全
に分離される所謂プルオンタブ方式が多かったが、最近
では環境問題の点から、図1、図2に示すように缶蓋上
面1に取付けられたタブ2および缶蓋の飲み口部分3が
開缶時に缶から完全には分離されない所謂スイテオンタ
ブ方式を採用する傾向が高まっている。また既に述べた
ようにアルミニウム材料のリサイクルのため、使用済み
の缶体を回収して再溶解し、再び缶体に使用する傾向が
強まっており、このようなリサイクルを容易とするため
の実用化可能な方策を開発することが望まれるようにな
っている。
[Problems to be Solved by the Invention] Conventional methods for opening beverage cans include pulling up a tab attached to the can lid to completely remove the tab and a portion of the can lid (drinking spout) from the can. In many cases, the so-called pull-on tab system was used in which the can is separated, but recently, due to environmental concerns, the tab 2 attached to the top surface 1 of the can lid and the drinking spout 3 of the can lid are separated when the can is opened, as shown in Figures 1 and 2. There is an increasing tendency to adopt the so-called sui-eon-tab method, in which the can is not completely separated from the can. Furthermore, as already mentioned, in order to recycle aluminum materials, there is a growing tendency to collect used can bodies, remelt them, and use them again as can bodies. It has become desirable to develop possible strategies.

【0005】ところでプルオンタブ方式の缶では、タブ
を引上げることにより人間の手指の力で直接スコアー(
切取り線となる刻み込み部分)から引きちぎることにな
るが、ステイオンタブ方式ではこれとは異なり、図2、
図3に示すように、手指の力で直接飲み口部分3をスコ
アー4から引きちぎるのではなく、タブ2の把手部2A
を引上げることによりタブ2の取付部(リベット部)5
を支点として梃子の作用によりタブ2の先端部2Bを下
げ、これにより飲み口部分3を押し下げて、その飲み口
部分3を一部を残しスコアー4から引き裂くことになる
By the way, with pull-on tab type cans, by pulling up the tab, the score (
This is different from the stay-on tab method, as shown in Figure 2.
As shown in FIG. 3, instead of tearing the spout part 3 off the score 4 directly with the force of the fingers, the handle part 2A of the tab 2
By pulling up the mounting part (rivet part) 5 of the tab 2
Using this as a fulcrum, the tip 2B of the tab 2 is lowered by the action of a lever, thereby pushing down the spout portion 3, and tearing the spout portion 3 from the score 4, leaving only a portion.

【0006】このようにステイオンタブ方式では、手指
の力を梃子の作用により間接的に利用しているため、開
缶時において飲み口部分がスムーズにスコアーから引き
裂かれるように力の入れ方を微妙に加減することはでき
ず、そのため力の入れ方によっては飲み口部分3がスコ
アー4から均一に引き裂かれず、開缶の失敗が生じるこ
とがある。このような問題は、タブの形状や強度、ある
いはスコアーの刻み込み寸法や形状などによってもある
程度は改善することができるが、素材面からは、開缶時
の引き裂き力が少なくて済む材料、すなわち引き裂き性
の良好な材料を開発することが望まれる。
[0006] In this way, in the stay-on tab method, the force of the fingers is used indirectly through the action of leverage, so the amount of force applied must be adjusted so that the spout part is smoothly torn away from the score when opening the can. It is not possible to adjust the amount delicately, and therefore, depending on how force is applied, the spout portion 3 may not be evenly torn off from the score 4, resulting in a failure in opening the can. These problems can be alleviated to some extent by changing the shape and strength of the tab, or the dimensions and shape of the score indentation, but from a material standpoint, materials that require less tearing force when opening the can, i.e. It is desirable to develop materials with good tearability.

【0007】この発明は以上の事情を背景としてなされ
たもので、高強度を有するとともに引き裂き性が良好で
しかもアルミニウム缶の蓋材に用いた場合のリサイクル
も容易な、ステイオンタブ方式のアルミニウム缶の蓋材
に適した成形用アルミニウム合金硬質板の製造方法を提
供することを目的とするものである。
The present invention was made against the background of the above-mentioned circumstances, and provides a stay-on tab type aluminum can that has high strength, good tearability, and is easy to recycle when used as a lid material for aluminum cans. The purpose of this invention is to provide a method for manufacturing a hard aluminum alloy plate for forming suitable for use as a lid material.

【0008】[0008]

【課題を解決するための手段】本発明者等は、上述の課
題を解決するため、種々実験検討を重ねた結果、胴材に
使用されている3004合金に比較的近い成分系でその
成分組成を適切に設定すると同時に、連続鋳造圧延(薄
板連続鋳造)を適用した製造プロセスにおける各条件を
適切に設定することによって最終板における金属間化合
物の分散状態を適切に調整し、これによって、高強度で
かつ引き裂き性が良好であって、しかも胴材に比較的近
い成分系であるところからリサイクルも容易な蓋材が得
られることを見出し、この発明をなすに至った。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the inventors of the present invention, as a result of various experimental studies, have developed a composition system that is relatively similar to the 3004 alloy used for the body material. At the same time, by appropriately setting each condition in the manufacturing process that applies continuous casting and rolling (continuous sheet casting), the state of dispersion of intermetallic compounds in the final sheet is appropriately adjusted, thereby achieving high strength. The present inventors have discovered that a lid material that is easy to recycle can be obtained because it has a composition system that is relatively close to that of the shell material, has good tearability, and has led to the creation of this invention.

【0009】具体的には、請求項1に記載の発明の成形
用アルミニウム合金硬質板の製造方法は、Mg1.0〜
3.0wt%、Cu0.05〜0.5wt%、Mn0.
5〜2.0wt%、Fe0.1〜1.0wt%、Si0
.1〜0.5wt%を含有し、かつFeとMnの合計含
有量が1.0〜3.0wt%の範囲内にあり、残部がA
lおよび不可避的不純物よりなる合金を、50℃/se
c 以上の冷却速度で厚さ15mm以下の薄板に鋳造し
、その後所要の中間板厚まで1次冷間圧延を施した後、
1℃/sec以上の昇温速度で450〜600℃の範囲
内の温度に加熱して直ちにもしくは120sec 以下
の短時間保持後、1℃/sec 以上の冷却速度で冷却
する中間焼鈍を施し、さらに30%以上の圧延率で最終
冷間圧延を施し、これによって表面における1.0μm
以上の金属間化合物の数が0.2mm2 当り3000
個以上でその平均径が1.0〜2.5μmの範囲内にあ
り、しかもかつ表面における金属間化合物の最大径が1
0μm以下である板を得ることを特徴とするものである
Specifically, the method for manufacturing an aluminum alloy hard plate for forming according to the invention described in claim 1 includes Mg1.0 to
3.0wt%, Cu0.05-0.5wt%, Mn0.
5-2.0wt%, Fe0.1-1.0wt%, Si0
.. 1 to 0.5 wt%, and the total content of Fe and Mn is within the range of 1.0 to 3.0 wt%, and the balance is A.
An alloy consisting of l and unavoidable impurities was heated at 50°C/se
After casting into a thin plate with a thickness of 15 mm or less at a cooling rate of c or more, and then performing primary cold rolling to the required intermediate plate thickness,
Intermediate annealing is performed by heating to a temperature in the range of 450 to 600 °C at a temperature increase rate of 1 °C/sec or more, immediately or after holding for a short time of 120 seconds or less, and then cooling at a cooling rate of 1 °C/sec or more, and then Final cold rolling is performed at a rolling rate of 30% or more, thereby reducing the thickness of 1.0 μm on the surface.
The number of intermetallic compounds is 3000 per 0.2 mm2.
or more, and the average diameter is within the range of 1.0 to 2.5 μm, and the maximum diameter of the intermetallic compound on the surface is 1.0 to 2.5 μm.
This method is characterized by obtaining a plate having a thickness of 0 μm or less.

【0010】また請求項2に記載の発明の成形用アルミ
ニウム合金硬質板の製造方法は、請求項1に記載の方法
において、前記鋳造と前記1次冷間圧延との間に、さら
に300〜630℃の範囲内の温度に1時間以上保持す
る均熱処理を行なうことを特徴とするものである。
[0010] Furthermore, in the method for manufacturing a hard aluminum alloy plate for forming according to the second aspect of the present invention, in the method according to the first aspect, a rolling process of 300 to 630 mm is further carried out between the casting and the first cold rolling. It is characterized by carrying out soaking treatment in which the temperature is maintained at a temperature within the range of °C for 1 hour or more.

【0011】さらに請求項3に記載の発明の成形用アル
ミニウム合金硬質板の製造方法は、請求項1または請求
項2に記載の方法において、前記1次冷間圧延の中途で
、1℃/sec 以上の加熱速度で500〜600℃の
範囲内の温度に加熱して直ちにもしくは120sec 
以下の短時間保持後1℃/sec 以上の冷却速度で冷
却する焼鈍を施すことを特徴とするものである。
[0011] Furthermore, the method for manufacturing an aluminum alloy hard plate for forming according to the invention according to claim 3 is the method according to claim 1 or claim 2, in which the heating rate is 1° C./sec in the middle of the first cold rolling. Immediately or for 120 seconds after heating to a temperature within the range of 500 to 600℃ at the above heating rate.
It is characterized by performing annealing by cooling at a cooling rate of 1° C./sec or more after being held for a short time as follows.

【0012】そしてまた請求項4に記載の発明の成形用
アルミニウム合金硬質板の製造方法は、請求項1〜請求
項3のいずれかに記載の方法において、前記最終冷間圧
延の後、さらに10〜100℃/hrの昇温速度で12
0〜200℃の範囲内の温度に加熱して30分以上保持
しさらに10〜100℃/hrの冷却速度で冷却する最
終焼鈍を施すことを特徴とするものである。
[0012] Furthermore, the method for manufacturing a hard aluminum alloy plate for forming according to the invention according to claim 4 is the method according to any one of claims 1 to 3, in which after the final cold rolling, further 10 12 at a heating rate of ~100°C/hr
It is characterized by performing final annealing by heating to a temperature in the range of 0 to 200°C, holding for 30 minutes or more, and then cooling at a cooling rate of 10 to 100°C/hr.

【0013】[0013]

【作用】先ずこの発明における素材アルミニウム合金の
成分組成範囲の限定理由を説明する。
[Operation] First, the reason for limiting the composition range of the raw material aluminum alloy in this invention will be explained.

【0014】Mg:MgはCuやSiとの共存によりM
g2 Si、Al2 CuMgの析出による時効硬化に
寄与するとともに、Mgそのものも固溶強化に寄与する
。Mg量が1.0wt%未満では蓋材として必要な強度
が得られない。一方Mg量が3.0wt%を越えれば、
強度向上は期待できるが、回収したアルミニウム2ピー
ス缶をリサイクルのために再溶解した後の鋳塊(再生塊
)中のMg量が多くなり、その再生塊から3000番系
の胴材を製造する場合にはMg濃度を稀釈するために純
アルミニウム地金を必要とするようになってしまい、こ
の発明の目的の一つであるリサイクルの容易さを達成で
きなくなる。そこでMg量は1.0〜3.0wt%の範
囲内とした。
Mg: Mg coexists with Cu and Si.
In addition to contributing to age hardening due to the precipitation of g2 Si and Al2 CuMg, Mg itself also contributes to solid solution strengthening. If the Mg amount is less than 1.0 wt%, the strength required as a lid material cannot be obtained. On the other hand, if the Mg amount exceeds 3.0wt%,
Although an improvement in strength can be expected, the amount of Mg in the ingot (regenerated ingot) after the recovered two-piece aluminum can is remelted for recycling will increase, and 3000 series body material will be manufactured from the recycled ingot. In this case, a pure aluminum ingot is required to dilute the Mg concentration, making it impossible to achieve ease of recycling, which is one of the objectives of the present invention. Therefore, the Mg amount was set within the range of 1.0 to 3.0 wt%.

【0015】Cu:CuはMgと同様にそれ自体で固溶
強化に寄与するとともに、Mgとの共存によるAl2 
CuMgの析出による時効硬化に寄与し、特にこの発明
のように蓋材などの焼付塗装を施して使用する用途では
上述の効果が大きく、焼付塗装後に高強度を有する材料
を得ることができる。Cu量が0.05wt%未満では
その効果が少なく、0.5wt%を越えれば時効硬化は
容易に得られる反面、硬くなり過ぎてその後の成形に不
利となるから、Cu量は0.05〜0.5wt%の範囲
内とした。
Cu: Like Mg, Cu itself contributes to solid solution strengthening, and when it coexists with Mg, it strengthens the Al2
It contributes to age hardening due to the precipitation of CuMg, and the above-mentioned effects are particularly great in applications where baking coating is applied, such as lid materials, as in the present invention, and a material with high strength can be obtained after baking coating. If the amount of Cu is less than 0.05 wt%, the effect will be small, and if it exceeds 0.5 wt%, age hardening can be easily obtained, but it will become too hard and disadvantageous for subsequent molding, so the amount of Cu should be 0.05~ It was set within the range of 0.5 wt%.

【0016】Si:SiはMgとの共存によりMg2 
Siを析出して時効硬化に寄与するが、この発明の場合
にはそれよりもむしろ、FeおよびMnとの共存下で金
属間化合物の適切な分散状態を得るために寄与する。S
i量が0.1wt%未満ではその効果が少なく、一方0
.5wt%を越えればその効果が飽和し、さらにはMg
2 Siによる時効硬化が過度となったりSi自体によ
る固溶硬化が進んで成形性を悪化させる。したがってS
i量は0.1〜0.5wt%の範囲内とした。
Si: Si coexists with Mg, resulting in Mg2
Although Si precipitates and contributes to age hardening, in the case of the present invention, it rather contributes to obtaining an appropriate dispersion state of the intermetallic compound in coexistence with Fe and Mn. S
If the amount of i is less than 0.1 wt%, the effect is small;
.. If it exceeds 5wt%, the effect will be saturated, and even Mg
2 Age hardening due to Si becomes excessive or solid solution hardening due to Si itself progresses, deteriorating formability. Therefore S
The amount of i was within the range of 0.1 to 0.5 wt%.

【0017】Mn:Mnは強度向上に寄与するばかりで
なく、この発明において金属間化合物を生成させるため
に必須の元素であり、適切な金属間化合物分散状態を得
るためにFeとともに重要な役割を果たす。この発明で
適用される連続鋳造圧延法の如く、冷却速度が速い鋳造
法の場合、Mn量が2.0wt%を越えれば、MnAl
6 の初晶巨大金属間化合物を形成して、著しく成形性
を損なう。一方Mn量が0.5wt%未満では、必要な
金属間化合物分散状態を得るだけの金属間化合物量を確
保することが困難となる。したがってMn量は0.5〜
2.0wt%の範囲内とした。
Mn: Mn not only contributes to strength improvement, but is also an essential element for generating intermetallic compounds in this invention, and plays an important role together with Fe to obtain an appropriate intermetallic compound dispersion state. Fulfill. In the case of a casting method with a fast cooling rate, such as the continuous casting and rolling method applied in this invention, if the Mn amount exceeds 2.0 wt%, MnAl
6, forming a primary crystal giant intermetallic compound, which significantly impairs formability. On the other hand, if the amount of Mn is less than 0.5 wt%, it becomes difficult to secure an amount of intermetallic compounds sufficient to obtain the required intermetallic compound dispersion state. Therefore, the amount of Mn is 0.5~
It was set within the range of 2.0 wt%.

【0018】Fe:FeはMnとともに適切な金属間化
合物分散状態を得るために必要な元素であり、しかもS
iと同様にMnの晶出を促進させる元素である。Fe量
が0.1wt%未満ではその効果が少なく、一方1.0
wt%を越えればMn添加と相俟って初晶巨大金属間化
合物を生成して、成形性を損なう。したがってFe量は
0.1〜1.0wt%の範囲内とした。
Fe: Fe, together with Mn, is an element necessary to obtain an appropriate dispersion state of intermetallic compounds.
Like i, it is an element that promotes crystallization of Mn. When the amount of Fe is less than 0.1 wt%, the effect is small;
If it exceeds wt%, a primary crystal giant intermetallic compound is generated together with the addition of Mn, impairing formability. Therefore, the amount of Fe was set within the range of 0.1 to 1.0 wt%.

【0019】Mn+Fe:Mn量、Fe量は個別的には
前述の通りであるが、金属間化合物の生成には両者が並
存することが必要であるから、引き裂き性向上のために
金属間化合物の適切な分散状態を得るためには、両者の
合計含有量も考慮する必要がある。Mn+Feの合計量
が1.0wt%未満では金属間化合物の適切な分散状態
が得られず、一方その合計量が3.0wt%を越えれば
初晶金属間化合物を生成して成形性を劣化させる。そこ
でMn+Feの合計量を1.0〜3.0wt%の範囲内
とした。
Mn+Fe: The amount of Mn and the amount of Fe are individually as described above, but since it is necessary for both to coexist in order to generate an intermetallic compound, it is necessary to increase the amount of Mn and Fe in order to improve tearability. In order to obtain an appropriate dispersion state, it is necessary to consider the total content of both. If the total amount of Mn + Fe is less than 1.0 wt%, an appropriate dispersion state of intermetallic compounds cannot be obtained, while if the total amount exceeds 3.0 wt%, primary crystal intermetallic compounds are generated and formability is deteriorated. . Therefore, the total amount of Mn+Fe was set within the range of 1.0 to 3.0 wt%.

【0020】なお通常のアルミニウム合金においては、
鋳塊結晶粒微細化のため、Ti単独あるいはTiをBと
組合せて微量添加することがあり、この発明でも微量の
Ti、あるいはTiおよびBを添加することは許容され
る。但しTiを添加する場合その添加量が0.01wt
%未満では鋳塊結晶粒微細化の効果が得られず、一方0
.3wt%を越えれば成形性を害するから、Tiは0.
01〜0.3wt%の範囲内とすることが好ましい。ま
たTiとともにBを添加する場合、Bが1ppm 未満
ではその効果がなく、一方500ppmを越えれば成形
性を害するからBは1〜500ppm の範囲内とする
ことが好ましい。
[0020] In ordinary aluminum alloys,
In order to refine the ingot crystal grains, a small amount of Ti alone or in combination with B may be added, and the addition of a small amount of Ti or Ti and B is also allowed in this invention. However, when adding Ti, the amount added is 0.01wt.
%, the effect of refining the ingot crystal grains cannot be obtained;
.. If it exceeds 3 wt%, moldability will be impaired, so Ti should be 0.
It is preferably within the range of 0.01 to 0.3 wt%. Furthermore, when B is added together with Ti, if B is less than 1 ppm, there is no effect, while if it exceeds 500 ppm, the moldability is impaired, so B is preferably within the range of 1 to 500 ppm.

【0021】またこのほか、Cr,Zr,Vはいずれも
それぞれ0.3wt%程度までであれば、この発明の効
果を失わずに強度向上に寄与する。またZnも0.5w
t%程度までであれば、この発明の効果を失わずに強度
向上に寄与する。
[0021] In addition, if each of Cr, Zr, and V is up to about 0.3 wt%, they contribute to improving the strength without losing the effects of the present invention. Also, Zn is 0.5w
If it is up to about t%, it contributes to improving the strength without losing the effect of the present invention.

【0022】ここで、この発明で規定している合金成分
組成は、2ピースアルミニウム缶の胴材として従来から
広く使用されている3004合金の成分組成(Mg0.
8〜1.3wt%、Mn1.0〜1.5wt%、Si0
.30wt%以下、Fe0.7wt%以下、Cu0.2
5wt%以下、残部Al)に近い。そのため、この発明
の製造方法で得られたアルミニウム合金板を蓋材とし、
かつその蓋材を従来の一般的な3004合金からなる胴
材とを組合せて2ピース缶を作り、その缶をリサイクル
のために回収して再溶解し、その鋳塊(再生塊)から再
び同じ蓋材、胴材を製造する場合には、再溶解時の酸化
によるMgのロス(Mgが約20%減る)を見込んで、
Mgの添加のみを行なえば良く、したがって特に純アル
ミニウムの新地金を添加する必要がないから、リサイク
ルは容易である。ちなみに、蓋材と胴材とを全く同じ合
金で作ってユニアロイ化した場合でも、再溶解時のMg
ロスにより新たなMgの添加を行なわなければならない
のが通常であり、したがってこの発明の成分組成範囲内
の合金を蓋材に用いた場合のリサイクルの容易さは、ユ
ニアロイ化した場合と同等と言える。
The alloy composition defined in this invention is the composition of 3004 alloy (Mg0.
8-1.3wt%, Mn1.0-1.5wt%, Si0
.. 30wt% or less, Fe0.7wt% or less, Cu0.2
5 wt% or less, the balance is close to Al). Therefore, using the aluminum alloy plate obtained by the manufacturing method of this invention as a lid material,
Then, a two-piece can is made by combining the lid material with a body material made of a conventional general 3004 alloy, and the can is collected and remelted for recycling, and the same ingot is reused from the ingot (regenerated ingot). When manufacturing lid and body materials, take into account the loss of Mg (about 20% reduction in Mg) due to oxidation during remelting.
Recycling is easy because only Mg needs to be added, and there is no need to add new pure aluminum metal. By the way, even if the lid material and the body material are made from the same alloy and made into a unialloy, the Mg during remelting
Normally, new Mg must be added due to loss, so when an alloy within the composition range of this invention is used for the lid material, it can be said that the ease of recycling is equivalent to when it is made into a unialloy. .

【0023】この発明の成形用アルミニウム合金硬質板
の製造方法においては、上述のように合金成分組成を規
定するだけではなく、金属間化合物の分散状態を適切に
調整することが極めて重要である。
In the method of manufacturing a hard aluminum alloy plate for forming according to the present invention, it is extremely important not only to specify the alloy component composition as described above, but also to appropriately adjust the dispersion state of the intermetallic compound.

【0024】すなわち一般に引き裂き性は、板表面にお
ける金属間化合物の量が多いほど、また金属間化合物の
径が大きいほど良好となる。但し、この発明の方法のよ
うに冷却速度が速い鋳造法を適用して金属間化合物の径
が小さくなっている場合でも、その数が多くなれば引き
裂き荷重は小さくなり、良好な引き裂き性が得られる。 ここで、1μm以上の径の金属間化合物の平均径が1.
0〜2.5μmの場合、その1μm以上の径の金属間化
合物の数が、板表面において0.2mm2 当り300
0個未満では、この発明で目標とする程度の優れた引き
裂き性が得られず、したがって1μm以上の径の金属間
化合物の平均径が1.0〜2.5μmの場合、その1μ
m以上の径の金属間化合物の数を0.2mm2 当り3
000個以上とする必要がある。一方金属間化合物の最
大径が10μmを越えれば、成形性が低下し、特に蓋材
でディップル部やリベット部に要求される局部的な張り
出し性が低下するから、板表面における金属間化合物最
大径は10μm以下とする必要がある。但しこの発明の
方法では鋳造時の冷却速度が速いため、従来のDC鋳造
法(半連続鋳造法)を適用した場合よりも金属間化合物
径は小さくなり、したがって金属間化合物最大径を容易
に10μm以下とすることができる。なお、冷却速度の
低いDC鋳造法を適用した場合は、金属間化合物の平均
径が3μm程度以上と大きく、この場合は1μm以上の
金属間化合物の数が1000個/0.2mm2 程度で
も引き裂き性はある程度良好となるが、金属間化合物径
が大きいために、局部的な張り出し性に劣ることになる
That is, in general, the tearability becomes better as the amount of intermetallic compounds on the plate surface increases and as the diameter of the intermetallic compounds increases. However, even when the diameter of the intermetallic compounds is reduced by applying a casting method with a fast cooling rate, as in the method of this invention, the tearing load decreases as the number of intermetallic compounds increases, resulting in good tearability. It will be done. Here, the average diameter of the intermetallic compound having a diameter of 1 μm or more is 1.
In the case of 0 to 2.5 μm, the number of intermetallic compounds with a diameter of 1 μm or more is 300 per 0.2 mm2 on the plate surface.
If the number is less than 0, the excellent tearability targeted by this invention cannot be obtained. Therefore, if the average diameter of the intermetallic compound with a diameter of 1 μm or more is 1.0 to 2.5 μm, the 1 μm
The number of intermetallic compounds with a diameter of m or more is 3 per 0.2 mm2.
000 or more. On the other hand, if the maximum diameter of the intermetallic compound exceeds 10 μm, the formability will decrease, especially the local extrusion required for the dip and rivet parts of the lid material, so the maximum diameter of the intermetallic compound on the plate surface will decrease. must be 10 μm or less. However, in the method of this invention, the cooling rate during casting is fast, so the diameter of the intermetallic compound is smaller than when applying the conventional DC casting method (semi-continuous casting method), and therefore the maximum diameter of the intermetallic compound can be easily reduced to 10 μm. It can be as follows. In addition, when the DC casting method with a low cooling rate is applied, the average diameter of the intermetallic compounds is large, about 3 μm or more, and in this case, even if the number of intermetallic compounds of 1 μm or more is about 1000 pieces/0.2 mm2, the tearability will be low. However, since the intermetallic compound diameter is large, local extrusion properties are poor.

【0025】次にこの発明における製造プロセスを説明
する。
Next, the manufacturing process in this invention will be explained.

【0026】先ず前述のような成分組成の合金溶湯を常
法に従って溶製し、50℃/sec 以上の冷却速度で
厚さ15mm以下の薄板に鋳造する。ここで、冷却速度
が最も遅い位置でもその冷却速度が50℃/sec よ
り遅くなれば、金属間化合物が粗大化するために、成形
性、特に局部張り出し性が悪くなる。また、鋳造板厚が
15mmより厚ければ、通常の量産的規模での製造にお
いて50℃/sec 以上の高い冷却速度を得ることが
困難となるから、鋳造板厚は15mm以下と規定した。 なおこのような冷却速度を実操業上で実現するためには
、連続鋳造圧延法(薄板連続鋳造法)等の所謂連続鋳造
法を適用すれば良い。
[0026] First, a molten alloy having the above-mentioned composition is melted according to a conventional method and cast into a thin plate having a thickness of 15 mm or less at a cooling rate of 50° C./sec or more. Here, if the cooling rate is slower than 50° C./sec even at the position where the cooling rate is slowest, the intermetallic compound becomes coarse and the formability, especially local extrusion properties, deteriorates. Furthermore, if the thickness of the cast plate is thicker than 15 mm, it will be difficult to obtain a high cooling rate of 50° C./sec or more in normal mass production, so the thickness of the cast plate is specified to be 15 mm or less. In order to realize such a cooling rate in actual operation, a so-called continuous casting method such as a continuous casting and rolling method (thin plate continuous casting method) may be applied.

【0027】このようにして得られた薄板(連続鋳造板
)に対しては、直ちに1次冷間圧延を施して所要の中間
板厚とする(請求項1の方法)か、または均熱処理を施
してから1次冷間圧延を施して所要の板厚とする(請求
項2の方法)。またここで1次冷間圧延は、中途に焼鈍
を挟む2回以上の圧延に分けて行なっても良い(請求項
3の方法)。
The thus obtained thin plate (continuously cast plate) is immediately subjected to primary cold rolling to obtain the required intermediate plate thickness (method according to claim 1), or subjected to soaking treatment. After that, the plate is subjected to primary cold rolling to obtain a required thickness (method according to claim 2). Moreover, here, the primary cold rolling may be performed in two or more rolling steps with annealing in between (method according to claim 3).

【0028】ここで、1次冷間圧延に均熱処理を施して
おけば、金属間化合物が丸味を帯びるとともに、Alマ
トリックス中の合金元素の濃度が均一となり、これによ
って成形性向上に寄与する。この均熱化処理は、300
〜630℃の範囲内の温度に加熱して1時間以上保持す
る条件とする。均熱温度が300℃未満では上述の効果
が得られず、一方630℃を越える高温では部分的な融
解が開始されてしまう。また均熱時間が1時間未満でも
均熱効果が得られない。
[0028] Here, if a soaking treatment is performed during the primary cold rolling, the intermetallic compound becomes rounded and the concentration of alloying elements in the Al matrix becomes uniform, thereby contributing to improved formability. This soaking treatment is performed at a temperature of 300
The conditions are to heat to a temperature within the range of ~630°C and hold for 1 hour or more. If the soaking temperature is less than 300°C, the above-mentioned effect cannot be obtained, while if the soaking temperature is higher than 630°C, partial melting will start. Further, even if the soaking time is less than 1 hour, the soaking effect cannot be obtained.

【0029】また1次冷間圧延を、中途に焼鈍を挟む2
回以上の圧延に分けて行なう場合、その焼鈍は、1次冷
間圧延後の中間焼鈍と同様な急速加熱、急速冷却の高温
短時間保持とする。具体的には、1℃/sec 以上の
昇温速度で500〜600℃の範囲内の温度に加熱し、
その範囲内の温度に到達後、直ちに、または120秒以
下の保持後1℃/sec 以上の冷却速度で冷却する。 この発明で対象としている材料の場合、Mn固溶量が多
いが、上述のような1次冷間圧延中途での焼鈍はMnの
析出を防止して、最終板の強度向上に寄与する。一方こ
の焼鈍では、Fe固溶量は減るが、これは耳率の点から
は不利となる。この焼鈍が前述のような条件を外れれば
、上述のような効果が得られない。なおこのような急速
加熱・急速冷却、高温短時間保持の焼鈍条件は、コイル
を連続的に巻戻しながら行なう所謂連続焼鈍によって達
成できる。なおまた、上述のように中途で焼鈍を挟んで
1次冷間圧延を行なう場合、その1次冷間圧延における
最終の圧延は、圧延率を25%以上とすることが望まし
い。
[0029] In addition, the first cold rolling is performed by inserting annealing in the middle.
When rolling is carried out in multiple rounds or more, the annealing is carried out at a high temperature for a short period of time with rapid heating and rapid cooling, similar to the intermediate annealing after the primary cold rolling. Specifically, heating to a temperature within the range of 500 to 600 °C at a temperature increase rate of 1 °C/sec or more,
After reaching the temperature within this range, it is cooled immediately or at a cooling rate of 1° C./sec or more after being maintained for 120 seconds or less. In the case of the material targeted by this invention, the amount of solid solution of Mn is large, but the above-mentioned annealing in the middle of the primary cold rolling prevents precipitation of Mn and contributes to improving the strength of the final plate. On the other hand, in this annealing, the amount of Fe solid solution decreases, but this is disadvantageous in terms of the selvage ratio. If this annealing does not meet the above-mentioned conditions, the above-mentioned effects cannot be obtained. Note that such annealing conditions such as rapid heating, rapid cooling, and holding at high temperature for a short time can be achieved by so-called continuous annealing in which the coil is continuously unwound. Furthermore, when primary cold rolling is performed with intermediate annealing as described above, it is desirable that the final rolling in the primary cold rolling has a rolling rate of 25% or more.

【0030】以上のようにして1次冷間圧延を施して所
要の中間板厚とした板に対しては、急速加熱・急速冷却
、高温短時間保持の中間焼鈍を行なう。具体的には、1
℃/sec 以上の昇温速度で加熱して450〜600
℃の範囲内の温度に到達させ、その範囲内の温度に到達
後、直ちにもしくは120秒以内の保持後、1℃/se
c 以上の冷却速度で冷却する。この中間焼鈍は、Cu
,Mg,Si等の固溶を繰返して、溶体化効果により焼
付塗装後の強度を維持するために必要な工程である。こ
こで、1次中間焼鈍の昇温速度、冷却速度が1℃/se
c 未満では、固溶したMn,Cu,Mg,Si等が逆
に析出してしまうから、昇温速度、冷却速度はともに1
℃/sec 以上とする必要がある。また加熱到達温度
が450℃未満ではCu,Mg,Si等の元素を充分に
固溶させることができず、一方600℃を越えるような
高温は通常の量産的規模でのラインでは得難い。さらに
、保持時間が120秒を越えれば表面酸化が進行して外
観不良が発生するおそれがある。したがって中間焼鈍の
各条件は前述のように定めた。なおこのような中間焼鈍
条件は、前記同様に所謂連続焼鈍によって達成できる。
[0030] The plate subjected to primary cold rolling as described above to obtain a required intermediate plate thickness is subjected to rapid heating, rapid cooling, and intermediate annealing by holding at high temperature for a short time. Specifically, 1
Heating at a temperature increase rate of ℃/sec or more to 450-600
After reaching the temperature within the range of ℃, immediately or after holding within 120 seconds, 1℃/se
Cool at a cooling rate of c or more. This intermediate annealing is performed using Cu
, Mg, Si, etc., and is necessary to maintain the strength after baking coating due to the solution treatment effect. Here, the heating rate and cooling rate of the primary intermediate annealing are 1°C/sec.
If the temperature is less than c, solid solution Mn, Cu, Mg, Si, etc. will precipitate, so the heating rate and cooling rate will both be 1.
It is necessary to set it to ℃/sec or more. Further, if the heating temperature reached is less than 450°C, elements such as Cu, Mg, Si, etc. cannot be sufficiently solid-dissolved, and on the other hand, high temperatures exceeding 600°C are difficult to obtain on a normal mass production scale line. Furthermore, if the holding time exceeds 120 seconds, surface oxidation may progress and poor appearance may occur. Therefore, the conditions for intermediate annealing were determined as described above. Note that such intermediate annealing conditions can be achieved by so-called continuous annealing as described above.

【0031】以上のようにして中間焼鈍を施した後には
、製品板厚まで最終冷間圧延を施す。このときの冷間圧
延率は30%以上であれば、成分組成や他のプロセス条
件を適切に選定することにより所要の高強度が得られる
After performing the intermediate annealing as described above, final cold rolling is performed to the thickness of the product plate. If the cold rolling rate at this time is 30% or more, the required high strength can be obtained by appropriately selecting the component composition and other process conditions.

【0032】最終冷間圧延によって得られた最終板厚の
圧延板は、これをそのまま蓋材として缶蓋に供しても良
いが、100〜200℃の範囲内の温度で30分から1
0時間程度の最終焼鈍を施せば、時効析出を促進させて
、焼付塗装における強度低下を少なくすることができ、
同じ成分組成、同じ製造プロセス条件でもより高強度の
蓋材を得ることが可能となる。またこのように最終焼鈍
により強度向上が図られるため、最終的な強度が同じで
も最終冷間圧延率を下げることができ、そのため成形性
や耳率は良好となる。
[0032] The rolled plate having the final thickness obtained by the final cold rolling may be used as a lid material for can lids.
If final annealing is performed for about 0 hours, aging precipitation can be promoted and strength loss during baking coating can be reduced.
Even with the same component composition and the same manufacturing process conditions, it is possible to obtain a lid material with higher strength. Further, since the final annealing improves the strength in this way, the final cold rolling rate can be lowered even if the final strength is the same, and therefore the formability and edge ratio are improved.

【0033】以上のように、合金成分組成条件、各プロ
セス条件(特に鋳造条件と中間焼鈍条件)、および最終
板での金属間化合物分散条件を適切に定めることによっ
て、従来2ピース缶胴材に用いられていた3004合金
よりも格段に高い強度を有し、かつ従来2ピース缶蓋材
として用いられていた5182合金と同程度の高強度を
有するばかりでなく、従来の5182合金と比較して格
段に引き裂き性に優れ、そのほか成形性(特に局部張り
出し性)にも優れたアルミニウム合金硬質板を得ること
が可能となったのである。したがってこの発明の方法に
より得られるアルミニウム合金硬質板は、2ピース缶の
蓋材、特に引き裂き性が良好であることが要求されるス
テイオンタブ方式の蓋材に最適であるが、この発明の方
法によるアルミニウム合金硬質板の成分組成は従来から
胴材として使用されている3004合金の成分組成に近
いため、2ピース缶蓋材に使用すれば、缶胴材に近い成
分組成となり、その結果アルミニウム2ピース缶のリサ
イクルを容易化することができる。また缶胴材に同じ成
分組成の合金板を用いて2ピース缶のユニアロイ化を図
り、より一層のリサイクル容易化を図ることも可能であ
る。なおこの発明の方法により得られた硬質板は、ステ
イオンタブ方式の缶蓋に限らず、プルタブ方式の缶蓋に
も使用し得ることはもちろんである。
As described above, by appropriately determining the alloy composition conditions, each process condition (especially casting conditions and intermediate annealing conditions), and the intermetallic compound dispersion conditions in the final plate, it is possible to improve the conventional two-piece can body material. It not only has much higher strength than the 3004 alloy that was used, and has the same high strength as the 5182 alloy that was conventionally used as a two-piece can lid material, but also has a higher strength than the conventional 5182 alloy. It has now become possible to obtain an aluminum alloy hard plate that has extremely good tearability and also has excellent formability (particularly local stretchability). Therefore, the aluminum alloy hard plate obtained by the method of the present invention is most suitable for two-piece can lids, especially for stay-on tab type lids that require good tearability. The composition of the aluminum alloy hard plate is close to that of 3004 alloy, which has traditionally been used as a body material, so if it is used for a two-piece can lid material, the composition will be close to that of the can body material, and as a result, aluminum 2 Recycling of peace cans can be facilitated. It is also possible to make a two-piece can into a unialloy by using an alloy plate with the same composition as the can body material, thereby making it even easier to recycle. It goes without saying that the hard plate obtained by the method of the present invention can be used not only for stay-on tab type can lids but also for pull tab type can lids.

【0034】[0034]

【実施例】表1の合金符号Aで示すこの発明の成分組成
範囲内の合金について、表2の製造番号1〜5に示すよ
うな工程・条件を適用した。また従来の蓋材として用い
られている5182合金に相当する表1の合金符号Bで
示す合金について、表2の製造番号6に示す工程・条件
を適用した。すなわち、合金Aについて、製造番号1〜
4の場合は、連続鋳造圧延法を適用して冷却速度100
℃/sec で連続鋳造し、板厚6mmの鋳造板とし、
その後製造番号1の場合は[均熱処理]→[1次冷間圧
延]→[中間焼鈍]→[最終冷間圧延]→[最終焼鈍]
の順で処理し、製造番号2の場合は均熱処理なしで[1
次冷間圧延]→[中間焼鈍]→[最終冷間圧延](最終
焼鈍なし)の順で処理し、製造番号3の場合は均熱処理
なしで[中途に焼鈍を挟んだ1次冷間圧延]→[中間焼
鈍]→[最終冷間圧延]→[最終焼鈍]の順で処理し、
さらに製造番号4の場合は均熱処理なしで[1次冷間圧
延]→[中間焼鈍]→[最終冷間圧延]→[最終焼鈍]
の順で処理した。一方合金符号Aについての製造番号5
の場合、および合金符号Bについての製造番号6の場合
は、DC鋳造法(半連続鋳造法)により冷却速度10℃
/sec で鋳造し、その鋳塊に対し[均熱処理]→[
熱間圧延]→[1次冷間圧延]→[中間焼鈍]→[最終
冷間圧延]を施し、さらに製造番号5の場合は最終焼鈍
を施し、製造番号6の場合は最終焼鈍なしで仕上げた。 なお、中間焼鈍は連続焼鈍もしくはバッチ式の箱型焼鈍
によって行なったが、連続焼鈍の場合の昇温速度、冷却
速度はいずれも30℃/sec であり、また箱型焼鈍
の場合の昇温速度、冷却速度はいずれも35℃/hrで
ある。
[Example] The processes and conditions shown in production numbers 1 to 5 in Table 2 were applied to an alloy within the composition range of the present invention shown by alloy code A in Table 1. Further, the process and conditions shown in manufacturing number 6 in Table 2 were applied to the alloy shown by alloy code B in Table 1, which corresponds to the 5182 alloy used as a conventional lid material. That is, for alloy A, manufacturing numbers 1-
In the case of No. 4, the continuous casting and rolling method is applied and the cooling rate is 100.
Continuously cast at ℃/sec to form a cast plate with a thickness of 6 mm,
After that, in the case of production number 1, [Soaking treatment] → [Primary cold rolling] → [Intermediate annealing] → [Final cold rolling] → [Final annealing]
In the case of production number 2, process [1] without soaking treatment.
Next cold rolling]→[Intermediate annealing]→[Final cold rolling] (no final annealing) ]→[Intermediate annealing]→[Final cold rolling]→[Final annealing]
Furthermore, in the case of production number 4, there is no soaking treatment, [first cold rolling] → [intermediate annealing] → [final cold rolling] → [final annealing]
Processed in this order. On the other hand, serial number 5 for alloy code A
, and in the case of manufacturing number 6 for alloy code B, the cooling rate is 10°C by DC casting method (semi-continuous casting method).
/sec, and the ingot is subjected to [soaking treatment] → [
Hot rolling] → [Primary cold rolling] → [Intermediate annealing] → [Final cold rolling], and in the case of serial number 5, final annealing is applied, and in the case of serial number 6, finishing is done without final annealing. Ta. Note that intermediate annealing was performed by continuous annealing or batch type box-type annealing, but the heating rate and cooling rate in the case of continuous annealing were both 30°C/sec, and the heating rate in the case of box-type annealing was 30°C/sec. , the cooling rate was 35°C/hr.

【0035】以上のようにして得られた各板について、
その表面における1μm以上の径の金属間化合物の0.
2mm2 当りの個数と平均径、および表面の金属間化
合物の最大径を調べたので、その結果を表3に示す。な
おここで1μm以上の金属間化合物の個数および平均径
は、画像解析装置により表面の画像を2値化して0.2
mm2 当りの個数分布を求めた。
Regarding each plate obtained as above,
of intermetallic compounds with a diameter of 1 μm or more on its surface.
The number of particles per 2 mm2, average diameter, and maximum diameter of intermetallic compounds on the surface were investigated, and the results are shown in Table 3. Note that the number and average diameter of intermetallic compounds of 1 μm or more are determined by binarizing the surface image using an image analysis device and calculating 0.2
The number distribution per mm2 was determined.

【0036】さらに各板について、連続焼付塗装に相当
する熱処理として、オイルバスによる270℃×20s
ec の熱処理を施し、この連続焼付塗装相当熱処理後
の板について、圧延方向に対し45°の方向の耐力(す
なわち一般的に面内各方向のうち耐力値が最低となる方
向の耐力)を調べるとともに、成形性評価として局部張
り出し性を調べ、さらに製缶後の開蓋力を調べたので、
その結果を表3中に示す。
Furthermore, each board was subjected to heat treatment equivalent to continuous baking painting at 270°C for 20 seconds in an oil bath.
ec heat treatment, and examine the yield strength in the direction of 45° to the rolling direction (that is, the yield strength in the direction where the yield strength value is generally the lowest among all directions in the plane) for the plate after this heat treatment equivalent to continuous baking painting. At the same time, we investigated local extrusion properties as a formability evaluation, and also investigated the opening force after can manufacturing.
The results are shown in Table 3.

【0037】なおここで局部張り出し性試験は、直径2
mm、先端曲率半径1mmの球頭ポンチを用い、ダイス
板上に試験材料板を載置してプレス成形を行ない、かつ
ポンチ長さを1.0mm〜1.9mmまで0.1mmご
とに10段階に変化(この10段階をポンチ長さの短い
方から順にランク1、ランク2、……ランク10とする
)させ、割れが発生した段階の1段階手前のランクを表
2中に記載した。したがってランクの数値が大きくなる
ほど局部張り出し性は良好となる。さらに製蓋後の開蓋
力については、各板を用いて実際にプルタブ方式の2ピ
ース缶の蓋に成形し、各蓋について開蓋に要する力(荷
重)を「ポップ」、「ティア」、「デタッチ」の3段階
で調べた。 ここで「ポップ」はプルタブ方式のタブを最初に引上げ
てスコアーに亀裂を発生させる際の荷重、また「ティア
」はスコアーに亀裂発生後、スコアーが引き裂かれて行
く過程での最大荷重、「デタッチ」は最後にタブがスコ
アーの開蓋部分とともに蓋から切離される際の荷重をあ
らわす。
[0037] Here, the local overhang property test was performed using a diameter of 2
Using a ball-head punch with a tip radius of curvature of 1 mm, press-form the test material plate by placing it on a die plate, and change the punch length from 1.0 mm to 1.9 mm in 10 steps in 0.1 mm increments. (These 10 levels are ranked in order from the shortest punch length to rank 1, rank 2, ... rank 10), and the rank one level before the stage where cracking occurred is listed in Table 2. Therefore, the larger the rank value, the better the local protrusion property becomes. Furthermore, regarding the opening force after making the lid, we actually formed the lid of a two-piece pull-tab can using each plate, and calculated the force (load) required to open each lid by "pop", "tear", We investigated the three stages of ``detach''. Here, "Pop" is the load when the tab of the pull tab method is first pulled up to generate a crack in the score, and "Tear" is the maximum load in the process of tearing the score after a crack occurs in the score, and "Detached"'' represents the load when the tab is finally separated from the lid along with the opening part of the score.

【0038】[0038]

【表1】[Table 1]

【0039】[0039]

【表2】[Table 2]

【0040】[0040]

【表3】[Table 3]

【0041】表3に示すように、合金成分組成および金
属間化合物分散条件がこの発明で規定する範囲を満たし
かつ製造プロセスもこの発明の範囲を満たしている製造
番号1〜3により得られた板は、いずれも従来の518
2合金(製造番号6)と同等以上の耐力を有し、かつ局
部張り出し性が優れるとともに、製蓋後の開蓋力が51
82合金の場合よりも格段に少なくて済み、引き裂き性
に優れていることが明らかである。なおここで実施例で
は製蓋後の開蓋力として、プルタブ方式の場合について
調べたが、プルタブ方式での開蓋力、特に「ティア」の
荷重が小さいことは、ステイオンタブ方式でも開蓋力が
小さくて済むことを意味している。
As shown in Table 3, the plates obtained by production numbers 1 to 3 whose alloy component composition and intermetallic compound dispersion conditions meet the ranges specified in the present invention, and whose manufacturing processes also meet the scope of the present invention. are all conventional 518
It has a yield strength equal to or higher than that of 2 alloy (manufacturing number 6), has excellent local protrusion properties, and has a lid opening force of 51
It is clear that the amount required is significantly less than that of 82 alloy, and that the tear resistance is excellent. In this example, we investigated the case of the pull-tab method as the opening force after making the lid, but the fact that the opening force of the pull-tab method, especially the load on the "tear" is small, means that even the stay-on tab method can be used to open the lid. This means that less force is required.

【0042】一方製造番号4は、中間焼鈍として徐加熱
・徐冷却の比較的低温長時間の箱型焼鈍を適用した比較
例であるが、この場合には強度が若干低目であるばかり
でなく、局部張り出し性が劣っていた。
On the other hand, production number 4 is a comparative example in which box-type annealing at a relatively low temperature and for a long period of time with slow heating and slow cooling was applied as intermediate annealing, but in this case, not only the strength was slightly lower, but also the strength was lower. , local extrusion properties were poor.

【0043】さらに製造番号5は、凝固速度が遅いDC
鋳造法を適用したものであり、この場合は金属間化合物
の数が1000個/0.2mm2 と少ないが、その平
均径が3μm、最大径が12μmと大きいため、局部張
り出し性が劣っていた。
Furthermore, production number 5 is a DC with a slow solidification rate.
A casting method was applied, and in this case, the number of intermetallic compounds was small at 1000 pieces/0.2 mm2, but the average diameter was large, 3 μm, and the maximum diameter was 12 μm, resulting in poor local extrusion properties.

【0044】さらに製造番号6の場合は、合金として従
来の蓋材に用いられている5182合金相当のものを用
い、かつ製造プロセスとしても、従来の一般的なDC鋳
造法を適用したものであり、この場合、金属間化合物の
径は大きいが、その数が著しく少なく、そのため引き裂
き性に劣り、製蓋後の開蓋力として大きな荷重を必要と
した。
Furthermore, in the case of serial number 6, an alloy equivalent to 5182 alloy, which is used in conventional lid materials, is used, and the manufacturing process is a conventional general DC casting method. In this case, although the diameter of the intermetallic compound is large, the number of intermetallic compounds is extremely small, so the tearability is poor, and a large load is required as the opening force after the lid is manufactured.

【0045】[0045]

【発明の効果】前述の実施例からも明らかなように、こ
の発明の製造方法によれば、引き裂き性が優れ、かつ焼
付塗装後の耐力として高い強度を有するとともに成形性
、特に局部張り出し性に優れたアルミニウム合金硬質板
を得ることができる。したがってこの発明の製造方法に
より得られたアルミニウム合金硬質板は、特にアルミニ
ウム缶の蓋材に好適であり、ステイオンタブ方式の缶蓋
材として用いれば、引き裂き性が優れるため飲み口部分
をスコアーから均一かつ容易に引き裂くことができ、開
缶の失敗を招くおそれが少なく、また焼付塗装後に高強
度を有するため、缶体の薄肉化に充分に対応することが
できる。またこの発明の製造方法により得られたアルミ
ニウム合金硬質板は、その成分組成が従来からアルミニ
ウム缶の胴材として使用されている3004合金に近い
ため、これを蓋材として3004合金胴材と組合せるこ
とにより、アルミニウム缶のリサイクルの容易化を図る
ことができる。
[Effects of the Invention] As is clear from the above-mentioned examples, the manufacturing method of the present invention has excellent tearability and high strength as a proof stress after baking coating, as well as good formability, especially local bulgeability. An excellent aluminum alloy hard plate can be obtained. Therefore, the aluminum alloy hard plate obtained by the manufacturing method of the present invention is particularly suitable for the lid material of aluminum cans, and when used as the can lid material of the stay-on tab method, it has excellent tearability and can be easily removed from the drinking spout from the score. It can be torn uniformly and easily, there is little risk of failure in opening the can, and it has high strength after baking, so it can fully cope with thinning of the can body. Furthermore, since the aluminum alloy hard plate obtained by the manufacturing method of the present invention has a composition similar to that of 3004 alloy, which has been conventionally used as the body material of aluminum cans, this can be combined with the 3004 alloy body material as a lid material. By doing so, recycling of aluminum cans can be facilitated.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】ステイオンタブ方式の缶における缶蓋上面を示
す平面図である。
FIG. 1 is a plan view showing the top surface of a can lid of a stay-on tab type can.

【図2】ステイオンタブ方式の缶における缶蓋上面の縦
断面図、すなわち図1のA−A線における縦断面図であ
る。
FIG. 2 is a vertical cross-sectional view of the top surface of the can lid of a stay-on tab type can, that is, a vertical cross-sectional view taken along line A-A in FIG. 1;

【図3】ステイオンタブ方式の缶における開缶時の缶蓋
上面の状態を図2に対応して示す縦断面図である。
FIG. 3 is a longitudinal cross-sectional view corresponding to FIG. 2, showing the state of the top surface of the can lid of a stay-on tab type can when the can is opened.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  Mg1.0〜3.0wt%、Cu0.
05〜0.5wt%、Mn0.5〜2.0wt%、Fe
0.1〜1.0wt%、Si0.1〜0.5wt%を含
有し、かつFeとMnの合計含有量が1.0〜3.0w
t%の範囲内にあり、残部がAlおよび不可避的不純物
よりなる合金を、50℃/sec 以上の冷却速度で厚
さ15mm以下の薄板に鋳造し、その後所要の中間板厚
まで1次冷間圧延を施した後、1℃/sec 以上の昇
温速度で450〜600℃の範囲内の温度に加熱して直
ちにもしくは120sec 以下の短時間保持後、1℃
/sec 以上の冷却速度で冷却する中間焼鈍を施し、
さらに30%以上の圧延率で最終冷間圧延を施し、これ
によって表面における1.0μm以上の金属間化合物の
数が0.2mm2 当り3000個以上でかつその平均
径が1.0〜2.5μmの範囲内にあり、しかも表面に
おける金属間化合物の最大径が10μm以下である板を
得ることを特徴とする、引き裂き性に優れた成形用アル
ミニウム合金硬質板の製造方法。
Claim 1: Mg1.0-3.0wt%, Cu0.
05-0.5wt%, Mn0.5-2.0wt%, Fe
0.1 to 1.0 wt%, Si 0.1 to 0.5 wt%, and the total content of Fe and Mn is 1.0 to 3.0 w.
t%, with the remainder consisting of Al and unavoidable impurities, is cast into a thin plate with a thickness of 15 mm or less at a cooling rate of 50°C/sec or more, and then subjected to primary cold rolling to the required intermediate plate thickness. After rolling, heat to a temperature within the range of 450 to 600°C at a temperature increase rate of 1°C/sec or more and immediately or after holding for a short time of 120 seconds or less, 1°C
Perform intermediate annealing by cooling at a cooling rate of /sec or more,
Furthermore, final cold rolling is performed at a rolling rate of 30% or more, so that the number of intermetallic compounds of 1.0 μm or more on the surface is 3000 or more per 0.2 mm2 and the average diameter is 1.0 to 2.5 μm. A method for producing an aluminum alloy hard plate for forming with excellent tearability, characterized by obtaining a plate in which the maximum diameter of intermetallic compounds on the surface is within the range of 10 μm or less.
【請求項2】  請求項1に記載の方法において、前記
鋳造と前記1次冷間圧延との間に、さらに300〜63
0℃の範囲内の温度に1時間以上保持する均熱処理を行
なう、引き裂き性に優れた成形用アルミニウム合金硬質
板の製造方法。
2. The method according to claim 1, wherein between the casting and the primary cold rolling, a rolling stock of 300 to 63
A method for producing a hard aluminum alloy plate for forming with excellent tearability, which comprises performing soaking treatment at a temperature within the range of 0°C for 1 hour or more.
【請求項3】  請求項1または請求項2に記載の方法
において、前記1次冷間圧延の中途で、1℃/sec 
以上の加熱速度で500〜600℃の範囲内の温度に加
熱して直ちにもしくは120sec 以下の短時間保持
後1℃/sec 以上の冷却速度で冷却する焼鈍を施す
、引き裂き性に優れた成形用アルミニウム合金硬質板の
製造方法。
3. In the method according to claim 1 or 2, in the middle of the first cold rolling, the rolling process is performed at a rate of 1°C/sec.
Forming aluminum with excellent tearability, which is annealed by heating to a temperature in the range of 500 to 600°C at a heating rate of 500 to 600°C, or holding it for a short time of 120 seconds or less, and then cooling at a cooling rate of 1°C/sec or more. Method for manufacturing hard alloy plates.
【請求項4】  請求項1〜請求項3のいずれかに記載
の方法において、前記最終冷間圧延の後、さらに10〜
100℃/hrの昇温速度で120〜200℃の範囲内
の温度に加熱して30分以上保持しさらに10〜100
℃/hrの冷却速度で冷却する最終焼鈍を施す、引き裂
き性に優れた成形用アルミニウム合金硬質板の製造方法
4. The method according to claim 1, wherein after the final cold rolling, further 10 to
Heat to a temperature within the range of 120 to 200 °C at a heating rate of 100 °C/hr, hold for 30 minutes or more, and then heat to a temperature of 10 to 100 °C.
A method for manufacturing an aluminum alloy hard plate for forming with excellent tearability, which performs final annealing by cooling at a cooling rate of °C/hr.
JP12290191A 1991-04-26 1991-04-26 Manufacture of aluminum alloy hard sheet for forming excellent in tearing property Withdrawn JPH04325659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12290191A JPH04325659A (en) 1991-04-26 1991-04-26 Manufacture of aluminum alloy hard sheet for forming excellent in tearing property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12290191A JPH04325659A (en) 1991-04-26 1991-04-26 Manufacture of aluminum alloy hard sheet for forming excellent in tearing property

Publications (1)

Publication Number Publication Date
JPH04325659A true JPH04325659A (en) 1992-11-16

Family

ID=14847425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12290191A Withdrawn JPH04325659A (en) 1991-04-26 1991-04-26 Manufacture of aluminum alloy hard sheet for forming excellent in tearing property

Country Status (1)

Country Link
JP (1) JPH04325659A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316739A (en) * 1993-04-28 1994-11-15 Kobe Steel Ltd Al alloy sheet for negative pressure can stay on tab type end, excellent in can openability, and its production
WO1999013118A1 (en) * 1997-09-11 1999-03-18 Nippon Light Metal Company Ltd. Aluminum alloy sheet for spot welding
JP2005307300A (en) * 2004-04-23 2005-11-04 Nippon Light Metal Co Ltd Al-Mg ALLOY SHEET HAVING EXCELLENT HIGH TEMPERATURE HIGH SPEED FORMABILITY AND ITS PRODUCTION METHOD
JP2017008388A (en) * 2015-06-24 2017-01-12 株式会社神戸製鋼所 Aluminum alloy sheet for can top

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06316739A (en) * 1993-04-28 1994-11-15 Kobe Steel Ltd Al alloy sheet for negative pressure can stay on tab type end, excellent in can openability, and its production
WO1999013118A1 (en) * 1997-09-11 1999-03-18 Nippon Light Metal Company Ltd. Aluminum alloy sheet for spot welding
US6369347B1 (en) 1997-09-11 2002-04-09 Nippon Light Metal Company, Ltd. Aluminum alloy sheet for spot welding
CN1097096C (en) * 1997-09-11 2002-12-25 日本轻金属株式会社 Aluminum alloy sheet for spot welding
KR100564077B1 (en) * 1997-09-11 2006-03-27 니폰 라이트 메탈 컴퍼니 리미티드 Aluminum Alloy Sheet For Spot Welding
JP2005307300A (en) * 2004-04-23 2005-11-04 Nippon Light Metal Co Ltd Al-Mg ALLOY SHEET HAVING EXCELLENT HIGH TEMPERATURE HIGH SPEED FORMABILITY AND ITS PRODUCTION METHOD
JP4534573B2 (en) * 2004-04-23 2010-09-01 日本軽金属株式会社 Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof
JP2017008388A (en) * 2015-06-24 2017-01-12 株式会社神戸製鋼所 Aluminum alloy sheet for can top

Similar Documents

Publication Publication Date Title
US5192378A (en) Aluminum alloy sheet for food and beverage containers
JPH06256917A (en) Production of aluminum alloy sheet having delayed aging characteristic at ordinary temperature
JPH01301831A (en) Al alloy plate for stay-on tab and its manufacture
JPH04221036A (en) Aluminum two piece can body and its manufacture
JPH04325659A (en) Manufacture of aluminum alloy hard sheet for forming excellent in tearing property
JP2001214248A (en) Method for producing aluminum alloy hard sheet for can lid
JP2745340B2 (en) Method for manufacturing aluminum two-piece can
JP2953592B2 (en) Lid for aluminum can with stay-on tub method and method for producing the same
JPH09268341A (en) Baking-coated al alloy sheet for can lid material, excellent in stress corrosion cracking resistance in score part, and its production
JPH01127642A (en) Heat treatment type high strength aluminum alloy plate for drawing and its manufacture
JP2783311B2 (en) Al alloy plate for negative pressure can stay tab type end with excellent openability and method of manufacturing the same
JPH055149A (en) Hard aluminum alloy sheet for forming and its production
JPH04276047A (en) Production of hard aluminum alloy sheet for forming
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same
JPH09256129A (en) Production of high strength heat treated type aluminum alloy sheet for drawing
JP2745254B2 (en) Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same
JPH11256291A (en) Manufacture of aluminum alloy sheet for can body
JPH0565587A (en) Aluminum alloy rolled sheet for forming and its production
JPH0565586A (en) Aluminum alloy rooled sheet for forming and its production
JP4077997B2 (en) Manufacturing method of aluminum alloy hard plate for can lid
JPH09279281A (en) Aluminum alloy baking finished sheet for can top material excellent in corrosion resistance and its production
JP3713614B2 (en) Method for producing aluminum alloy plate for can body
JPH1112676A (en) Hard aluminum alloy sheet for forming, can lid using the hard sheet, and production of the hard sheet
JPH09256097A (en) Baking-finished aluminium alloy sheet for can end and its production
JPH0723160B2 (en) DI can body made of aluminum alloy with excellent necking and flange formability

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711