JPH0432546A - Method for repairing moving blade of gas turbine - Google Patents

Method for repairing moving blade of gas turbine

Info

Publication number
JPH0432546A
JPH0432546A JP2135249A JP13524990A JPH0432546A JP H0432546 A JPH0432546 A JP H0432546A JP 2135249 A JP2135249 A JP 2135249A JP 13524990 A JP13524990 A JP 13524990A JP H0432546 A JPH0432546 A JP H0432546A
Authority
JP
Japan
Prior art keywords
gas turbine
thermal spraying
thickness
turbine rotor
pressure plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2135249A
Other languages
Japanese (ja)
Inventor
Norihide Hirota
広田 法秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2135249A priority Critical patent/JPH0432546A/en
Publication of JPH0432546A publication Critical patent/JPH0432546A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/007Repairing turbine components, e.g. moving or stationary blades, rotors using only additive methods, e.g. build-up welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

PURPOSE:To form a dense layer and to increase the adhesive strength in the boundary layer of a repaired part by removing the area of a blade reduced in thickness by corrosion, building up MCrAlY thereon by reduced pressure plasma thermal spraying and subjecting this part to a diffusion heat treatment. CONSTITUTION:The area 2 reduced in thickness by corrosion of the moving blade 1 of the gas turbine consisting of a hardly weldable cemented carbide is completely removed by grit blasting, etc., and this part is shaped by machining. The MCrAlY (M: Ni, Co, CoNi, Fe, etc.) is then build-up thermally sprayed 4 by a reduced pressure plasma thermal spraying on this part at the thickness larger by about >=0.1mm than the thickness of the blade surface. The moving blade 1 of the gas turbine formed with such build-up thermal spraying 4 is charged into a vacuum atmosphere and is heated and held; thereafter, the vane is rapidly cooled to generate the counter diffusion between the base metal and the thermal spraying material, by which a diffused layer is formed. Finally, the profile surface is subjected to finishing to complete the repair.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガスタービン動翼の硫化腐食減肉部等の補修
に好適なガスタービン動翼補修方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a gas turbine rotor blade repair method suitable for repairing sulfide corrosion thinning portions of gas turbine rotor blades.

〔従来の技術〕[Conventional technology]

N溶接性超高合金からなるガスタービン動翼が、タービ
ン運転復硫化腐食等にて翼前縁部が減肉した場合には、
従来、溶接することにより、溶接熱影響部近傍の粒界に
γ′相が析出しクラックが発生することから、溶接によ
る補修は行わすに廃却し、新翼と取替えている。
If the leading edge of a gas turbine rotor blade made of an ultra-high N weldability alloy is thinned due to turbine operation resulfide corrosion, etc.
Conventionally, when welding, the γ' phase precipitates at the grain boundaries near the weld heat affected zone and cracks occur, so welding repairs are discarded immediately and replaced with new blades.

しかしながら、通常、ガスタービン動翼に用いられる材
料は耐熱性の高いことが要求されるため、![容接性超
高合金が採用されることが多くその材料費が高いぼかり
てなく、動翼への加工費も含めると1本当たりの単価は
かなりの価格となることから、運転後に廃却新翼取替え
することは非常にコスト高となる。
However, the materials used for gas turbine rotor blades are usually required to have high heat resistance! [Ultra-high-conductivity alloys are often used, and their material costs are high, and the cost per blade is quite high when processing costs are included. Replacing the new wing would be extremely costly.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は、このような事情に鑑みて提案されたもので、
緻密な層が形成されるとともに付着強度か大きい境界層
が得られる補修部をもってガスタービン動翼の補修が可
能となり、新翼取替えと比べてコストが安くなるガスタ
ービン動翼補修方法を提供することを目的とする。
The present invention was proposed in view of these circumstances, and
To provide a gas turbine rotor blade repair method that enables repair of a gas turbine rotor blade with a repair part in which a dense layer is formed and a boundary layer with high adhesion strength is obtained, and the cost is lower than that of replacing a new blade. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

そのために本発明は、難溶接性超高合金からなるガスタ
ービン動翼の腐食減肉部分に対し、腐食減肉域を完全に
除去したうえで減圧プラズマ溶射にてM Cr A n
 Yを肉盛溶射した後、拡散熱処理を施しプロファイル
仕上げを加えて補修することを特徴とする。
For this purpose, the present invention completely removes the corrosion thinning area of a gas turbine rotor blade made of a difficult-to-weld ultra-high alloy, and then applies M Cr An by low pressure plasma spraying.
The feature is that after overlaying with Y, a diffusion heat treatment is performed and a profile finish is added for repair.

〔作用〕[Effect]

本発明ガスタービン動翼補修方法においては、減圧プラ
ズマ溶射を用いることにより、粒子間の結合か機械的結
合であるため、難溶接性超高合金母材を溶融することな
く肉盛でき、かつその後の熱処理にて溶射層と母材間に
粒子の拡散現象が生し、通常の溶射膜に比べて付着強度
が向上する。また減圧プラズマ溶射を用いているため、
非常に緻密な組織が得られる。
In the gas turbine rotor blade repair method of the present invention, by using low-pressure plasma spraying, bonding between particles or mechanical bonding is possible, so that hard-to-weld ultra-high alloy base material can be overlaid without melting, and after During the heat treatment, a particle diffusion phenomenon occurs between the sprayed layer and the base material, resulting in improved adhesion strength compared to normal sprayed coatings. In addition, since low pressure plasma spraying is used,
A very dense tissue is obtained.

〔実施例〕〔Example〕

本発明ガスタービン動翼補修方法の一実施例を図面につ
いて説明すると、第1図は本発明方法を工程順に示し、
同図(1)、  (■)はそれぞれ溶射前のガスタービ
ン動翼の斜視図、同図(I[I)は同図(II)の■−
■に沿った横断面を示しくA)は横断面図、(B)は(
A)のB部拡大図、同図(IV)、  (V)はそれぞ
れ溶射後のガスタービン動翼の斜視図、第2図は溶射材
M Cr A j! Yの成分組成の説明図、第3図は
減圧プラズマ溶射条件の説明図、第4図は溶射層のミク
ロ組織を示しくA)はノーエツチングの組織図、(B)
はエツチング後の組織図、第5図は溶射層の付着強度の
説明図である。
An embodiment of the gas turbine rotor blade repair method of the present invention will be explained with reference to the drawings. Fig. 1 shows the method of the present invention in the order of steps;
Figures (1) and (■) are respectively perspective views of the gas turbine rotor blades before thermal spraying, and figure (I [I) is ■-- of figure (II).
A) is a cross-sectional view, and (B) is a cross-sectional view along ■.
An enlarged view of part B in A), (IV) and (V) are respectively perspective views of the gas turbine rotor blade after thermal spraying, and Figure 2 shows the thermal sprayed material M Cr A j! An explanatory diagram of the component composition of Y, Fig. 3 is an explanatory diagram of the low-pressure plasma spraying conditions, Fig. 4 shows the microstructure of the sprayed layer, A) is a no-etching structure diagram, (B)
is a diagram of the structure after etching, and FIG. 5 is an explanatory diagram of the adhesion strength of the sprayed layer.

まず第1図(1)において、N溶接性超高合金(例えば
lN738LC)からなるガスタービン動翼1は、運転
後に門前縁部が硫化腐食等にて腐食減肉2しており、ま
ずこの腐食減肉2域をグリントブラストにて除去し、腐
食減肉2域が完全に除去できたが否かはサルファープリ
ントにて確認する。
First, in Fig. 1 (1), a gas turbine rotor blade 1 made of an ultra-high N weldable alloy (for example, IN738LC) has thinning 2 of the leading edge of the gate due to sulfide corrosion after operation. The 2nd area of reduced thickness was removed by glint blasting, and the sulfur print was used to confirm whether the 2nd area of reduced thickness due to corrosion was completely removed.

その後、第1図(II)において、溶射前準備として減
肉部を機械加工3により成形する。
Thereafter, in FIG. 1 (II), the thinned portion is formed by machining 3 in preparation for thermal spraying.

なおこの際は同図(1)に示すように、加工溝の端部ば
R5以上にし、面取り角度は45゜以上にとる。
In this case, as shown in FIG. 1 (1), the edge of the machined groove should be R5 or more, and the chamfer angle should be 45° or more.

次いで、第1図(IV)において、翼面より0.1mm
以上厚く、MCrA#Y (M:NiCo、0oNi、
NiCo、Fe等)を減圧プラズマ溶射にて肉盛溶射4
する。なお溶射材McrAxyの成分組成及び減圧プラ
ズマ条件を例示すると、第2図及び第3図の通りである
Next, in Figure 1 (IV), 0.1 mm from the wing surface.
thicker than MCrA#Y (M: NiCo, 0oNi,
NiCo, Fe, etc.) using low pressure plasma spraying 4
do. The composition of the thermal spray material McrAxy and the reduced pressure plasma conditions are illustrated in FIGS. 2 and 3.

そして、この肉盛溶射4を形成後に、ガスタービン動翼
1を真空雰囲気炉内に装入し、0.01〜0.02 T
orrまで真空引き後、0.1〜0.2 Torrまで
N2封入し、炉内を加熱する。
After forming this overlay thermal spraying 4, the gas turbine rotor blade 1 is placed in a vacuum atmosphere furnace and heated to 0.01 to 0.02 T.
After evacuation to 0.3 Torr, N2 is filled to 0.1 to 0.2 Torr and the inside of the furnace is heated.

母材の溶体化温度1時間(例えばlN738LCてあれ
ばl 12 Q ’c x 2 h r−f&、843
’c x 24 h r )乙こて保持した後、N2を
1000 Torr程度封入し、急冷する。
Solution temperature of base metal for 1 hour (for example, if lN738LC, l 12 Q 'c x 2 h r-f&, 843
'c x 24 hr) After holding with a trowel, N2 is filled at about 1000 Torr and rapidly cooled.

これにより、母材と溶射材との間に相互拡散が止し拡散
層ができるので、付着強度が向上する。
This prevents mutual diffusion between the base material and the sprayed material and forms a diffusion layer, thereby improving adhesion strength.

最後に第1図(V)に示すように、翼の図面通りにプロ
ファイル面を仕上げ加工し、これにより補修は完了する
Finally, as shown in FIG. 1(V), the profiled surface of the blade is finished according to the drawing, thereby completing the repair.

このようにして形成された肉盛溶射4の溶射層の金属組
織の状態、接合強度の具体例を第4図、第5図について
説明すると、第4図は、N1CoCrAAYを減圧プラ
ズマ溶射した溶射層のミクロ組織で、(A)はノーエツ
チング状s、  (B)はエツチング後の状態を示し、
気孔、空隙の殆んどない緻密な層が形成されている。
Specific examples of the state of the metal structure and bonding strength of the sprayed layer of the overlay thermal spray 4 formed in this manner will be explained with reference to FIGS. 4 and 5. FIG. The microstructure of (A) shows the no-etched state, (B) shows the state after etching,
A dense layer with almost no pores or voids is formed.

また第5図は、大気プラズマ溶射による比較方法と減圧
プラズマ溶射による本発明方法について、JISに基づ
く溶射層の付着力試験結果を示し、比較方法では付着強
度5kg/f12であるのに対し、本発明方法では接着
剤強度を上回っており付着強度が高い。その理由は溶射
層の緻密性と熱処理による拡散層の影響である。
Furthermore, Figure 5 shows the adhesion test results of thermal sprayed layers based on JIS for the comparative method using atmospheric plasma spraying and the present invention method using reduced pressure plasma spraying. The inventive method has a high adhesion strength that exceeds the adhesive strength. The reason for this is the denseness of the sprayed layer and the influence of the diffusion layer caused by heat treatment.

かくして、この方法によれば次の効果が奏せられる。Thus, this method provides the following effects.

(1)難溶接性超高合金からなるガスタービン動翼の補
修が可能である。
(1) It is possible to repair gas turbine rotor blades made of a difficult-to-weld ultra-high alloy.

(2)斯界取替えと比べてコストがかなり安くなる。(2) The cost is considerably lower than that of field replacement.

(3)減圧プラズマ溶射を用いるため、補修部に気孔、
空隙が殆んど存在しない緻密な層ができる。
(3) Since low-pressure plasma spraying is used, there are no pores in the repaired area.
A dense layer with almost no voids is formed.

(4)溶射後の熱処理により境界層に粒子拡散層ができ
るため、通常の溶射膜に比べて付着強度が上がる。
(4) Since a particle diffusion layer is formed in the boundary layer by heat treatment after thermal spraying, adhesion strength is increased compared to a normal thermal sprayed film.

(5)腐食されやすい領域にMCrAIIYをコーティ
ングするため、耐食性が向上する。
(5) Corrosion resistance is improved because MCrAIIY is coated on areas that are prone to corrosion.

〔発明の効果〕〔Effect of the invention〕

要するに本発明によれば、H溶接性超高合金からなるガ
スタービン動翼の腐食減肉部分に対し、腐食減肉域を完
全に除去したうえて減圧プラズマ溶射にてM Cr A
 E Yを肉盛溶射した後、拡散熱処理を施しプロファ
イル仕上げを加えて補修することにより、緻密な層が形
成されるとともに付着強度が大きい境界層が得られる補
修部をもってガスタービン動翼の補修が可能となり、斯
界取替えと比べてコストが安くなるガスタービン動翼補
修方法を得るから、本発明は産業上極めて有益なもので
ある。
In short, according to the present invention, after completely removing the corrosion thinning area of a gas turbine rotor blade made of a super-high H weldability alloy, M Cr A is applied by low pressure plasma spraying.
After the E The present invention is of great industrial benefit because it provides a gas turbine rotor blade repair method that is possible and less costly than field replacement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明ガスタービン動翼補修方法の一実施例に
おける本発明方法を工程順に示し、同図(I)、  (
II)はそれぞれ溶射前のガスタービン動翼の斜視図、
同図(III)は同図(II)のIII−I[1に沿っ
た横断面を示しくA)は横断面図、(B)は(A)のB
部拡大図、同図(IV)、  (V)はそれぞれ溶射後
のガスタービン動翼の斜視図、第2図は溶射材MCrA
βYの成分組成の説明図、第3図は減圧プラズマ溶射条
件の説明図、第4図は溶射層のミクロ組織を示しくA)
はノーエツチングの組織図、(B)はエツチング後の組
織図、第5図は溶射層の付着強度の説明図である。 1・・・ガスタービン動翼、2・・・腐食減肉、3・・
・機械加工、4・・・肉盛溶射。 (I) 第7図 代理人 弁理士 塚 本 正 文 第 図 第 図 第4図 (A) 第5図 占 搏羞判ぼffr
FIG. 1 shows the method of the present invention in the order of steps in an embodiment of the gas turbine rotor blade repair method of the present invention.
II) is a perspective view of a gas turbine rotor blade before thermal spraying, and
Figure (III) shows a cross section along III-I [1 of Figure (II); A) is a cross section; (B) is B of (A)
(IV) and (V) are respectively perspective views of gas turbine rotor blades after thermal spraying, and Figure 2 is an enlarged view of the thermal sprayed material MCrA.
An explanatory diagram of the component composition of βY, Fig. 3 is an explanatory diagram of the low-pressure plasma spraying conditions, and Fig. 4 shows the microstructure of the sprayed layer.A)
(B) is a structure diagram after etching, and FIG. 5 is an explanatory diagram of adhesion strength of the sprayed layer. 1... Gas turbine rotor blade, 2... Corrosion thinning, 3...
・Machining, 4... Overlay thermal spraying. (I) Figure 7 Agent Patent Attorney Masa Tsukamoto Figure 4 (A) Figure 5

Claims (1)

【特許請求の範囲】 難溶接性超高合金からなるガスタービン動 翼の腐食減肉部分に対し、腐食減肉域を完全に除去した
うえで減圧プラズマ溶射にて MCrAlYを肉盛溶射した後、拡散熱処理を施しプロ
ファイル仕上げを加えて補修することを特徴とするガス
タービン動翼補修方法。
[Claims] After completely removing the corrosion thinning area of a gas turbine rotor blade made of a difficult-to-weld ultra-high alloy, and then overlaying MCrAlY by low-pressure plasma spraying, A gas turbine rotor blade repair method characterized by performing diffusion heat treatment and adding profile finishing.
JP2135249A 1990-05-28 1990-05-28 Method for repairing moving blade of gas turbine Pending JPH0432546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2135249A JPH0432546A (en) 1990-05-28 1990-05-28 Method for repairing moving blade of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2135249A JPH0432546A (en) 1990-05-28 1990-05-28 Method for repairing moving blade of gas turbine

Publications (1)

Publication Number Publication Date
JPH0432546A true JPH0432546A (en) 1992-02-04

Family

ID=15147298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2135249A Pending JPH0432546A (en) 1990-05-28 1990-05-28 Method for repairing moving blade of gas turbine

Country Status (1)

Country Link
JP (1) JPH0432546A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001761A (en) * 1994-09-27 1999-12-14 Nippon Shokubai Co., Ltd. Ceramics sheet and production method for same
US6228510B1 (en) 1998-12-22 2001-05-08 General Electric Company Coating and method for minimizing consumption of base material during high temperature service
EP1122329A1 (en) * 2000-02-07 2001-08-08 General Electric Company A method of providing a protective coating on a metal substrate, and related articles
EP1162284A1 (en) * 2000-06-05 2001-12-12 Alstom (Switzerland) Ltd Process of repairing a coated component
WO2002103075A1 (en) * 2001-06-13 2002-12-27 Mitsubishi Heavy Industries, Ltd. Method for repairing ni base alloy component
JP2007040303A (en) * 2005-08-01 2007-02-15 General Electric Co <Ge> Method of restoring part of turbine structural element
EP2366488A1 (en) * 2010-03-19 2011-09-21 Siemens Aktiengesellschaft Method for reconditioning a turbine blade with at least one platform
US20130136948A1 (en) * 2010-06-02 2013-05-30 Friedhelm Schmitz Alloy, protective layer and component
US20140220384A1 (en) * 2011-09-12 2014-08-07 Siemens Aktiengesellschaft Alloy, protective layer and component
US20140220379A1 (en) * 2011-08-09 2014-08-07 Siemens Aktiengesellschaft Alloy, protective layer and component
JP2014189830A (en) * 2013-03-27 2014-10-06 Mitsubishi Heavy Ind Ltd Fatigue life recovery heat-treatment method
US20140342186A1 (en) * 2011-09-12 2014-11-20 Siemens Aktiengesellschaft Layer system with double mcralx metallic layer
JP2014532112A (en) * 2011-08-10 2014-12-04 スネクマ Method for producing a protective reinforcement for the leading edge of a blade

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001761A (en) * 1994-09-27 1999-12-14 Nippon Shokubai Co., Ltd. Ceramics sheet and production method for same
US6228510B1 (en) 1998-12-22 2001-05-08 General Electric Company Coating and method for minimizing consumption of base material during high temperature service
EP1122329A1 (en) * 2000-02-07 2001-08-08 General Electric Company A method of providing a protective coating on a metal substrate, and related articles
EP1162284A1 (en) * 2000-06-05 2001-12-12 Alstom (Switzerland) Ltd Process of repairing a coated component
US6569492B2 (en) 2000-06-05 2003-05-27 Alstom Ltd Process for repairing a coated component
WO2002103075A1 (en) * 2001-06-13 2002-12-27 Mitsubishi Heavy Industries, Ltd. Method for repairing ni base alloy component
US7172787B2 (en) 2001-06-13 2007-02-06 Mitsubishi Heavy Industries, Ltd. Method of repairing a Ni-base alloy part
JP2007040303A (en) * 2005-08-01 2007-02-15 General Electric Co <Ge> Method of restoring part of turbine structural element
EP2366488A1 (en) * 2010-03-19 2011-09-21 Siemens Aktiengesellschaft Method for reconditioning a turbine blade with at least one platform
WO2011113833A1 (en) * 2010-03-19 2011-09-22 Siemens Aktiengesellschaft Method for reprocessing a turbine blade having at least one platform
US20130136948A1 (en) * 2010-06-02 2013-05-30 Friedhelm Schmitz Alloy, protective layer and component
US20140220379A1 (en) * 2011-08-09 2014-08-07 Siemens Aktiengesellschaft Alloy, protective layer and component
US11092034B2 (en) * 2011-08-09 2021-08-17 Siemens Energy Global Gmbh & Co, Kg Alloy, protective layer and component
JP2014532112A (en) * 2011-08-10 2014-12-04 スネクマ Method for producing a protective reinforcement for the leading edge of a blade
US9664201B2 (en) 2011-08-10 2017-05-30 Snecma Method of making protective reinforcement for the leading edge of a blade
US20140220384A1 (en) * 2011-09-12 2014-08-07 Siemens Aktiengesellschaft Alloy, protective layer and component
US20140342186A1 (en) * 2011-09-12 2014-11-20 Siemens Aktiengesellschaft Layer system with double mcralx metallic layer
US9556748B2 (en) * 2011-09-12 2017-01-31 Siemens Aktiengesellschaft Layer system with double MCrAlX metallic layer
US11092035B2 (en) * 2011-09-12 2021-08-17 Siemens Energy Global GmbH & Co. KG Alloy, protective layer and component
JP2014189830A (en) * 2013-03-27 2014-10-06 Mitsubishi Heavy Ind Ltd Fatigue life recovery heat-treatment method

Similar Documents

Publication Publication Date Title
EP0968316B1 (en) Method of treating metal components
EP2578720B1 (en) Repair methods for cooled components
US6914210B2 (en) Method of repairing a stationary shroud of a gas turbine engine using plasma transferred arc welding
US7343676B2 (en) Method of restoring dimensions of an airfoil and preform for performing same
EP1629929B1 (en) Method of repairing worn portions of a turbine component restoration using cathodic arc or Low Pressure Plasma Spraying (LPPS) and High Isostatic Pressing (HIP)
US20040086635A1 (en) Method of repairing a stationary shroud of a gas turbine engine using laser cladding
US5890274A (en) Method of producing a coating layer on a localized area of a superalloy component
US7259350B2 (en) Turbine component crack repair using cathodic arc and/or low pressure plasma spraying and HIP
JPH0432546A (en) Method for repairing moving blade of gas turbine
US4023249A (en) Method of manufacture of cooled turbine or compressor buckets
JP6348270B2 (en) Component with microcooled coating layer and manufacturing method
US20160032766A1 (en) Components with micro cooled laser deposited material layer and methods of manufacture
EP1932928B1 (en) Densification of coating using laser peening
CN103056604A (en) Components with laser cladding and methods of manufacture
US11077512B2 (en) Manufactured article and method
JP2001192862A (en) A coating system for providing environmental protection to a metal substrate and its related method
JP2003500536A (en) Joint coating of turbine component and method of forming coating
EP1408134A1 (en) Method for repairing ni base alloy component
RU2763527C1 (en) Pre-sintered billet for repair of gas turbine service starting components
US20160053618A1 (en) Components with cooling channels and methods of manufacture
JPH03264705A (en) Repairing method for gas turbine moving blade
EP3277930B1 (en) Vane segment for a gas turbine
JP2007131948A (en) Coating method and apparatus
JP3181157B2 (en) Repair method of gas turbine blade
Nava et al. Selection of overlays for single crystal shrouded turbine blades