JPH04323552A - Zirconia ferrule evaluating device - Google Patents

Zirconia ferrule evaluating device

Info

Publication number
JPH04323552A
JPH04323552A JP3092464A JP9246491A JPH04323552A JP H04323552 A JPH04323552 A JP H04323552A JP 3092464 A JP3092464 A JP 3092464A JP 9246491 A JP9246491 A JP 9246491A JP H04323552 A JPH04323552 A JP H04323552A
Authority
JP
Japan
Prior art keywords
zirconia ferrule
zirconia
ferrule
stains
piezoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3092464A
Other languages
Japanese (ja)
Inventor
Shunji Watanabe
俊二 渡邊
Setsuo Shoji
節夫 東海林
Masahiko Tsunemi
恒見 雅彦
Teruya Shishido
宍戸 晃哉
Seiji Yahagi
矢作 誠治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP3092464A priority Critical patent/JPH04323552A/en
Publication of JPH04323552A publication Critical patent/JPH04323552A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

PURPOSE:To enable a zirconia ferrule to be readily incorporated into a line by accurately evaluating flaws and stains of the zirconia ferrule, and enabling detection of flaws and stains under the surface of the ferrule which cannot be done by eyes, and equipping a device for attaching and removing a sample. CONSTITUTION:A zirconia ferrule evaluating device intermittently applies laser beams 1 to a zirconia ferrule 6. Elastic waves generated at the surface and the inside of the zirconia ferrule 6 are detected by a piezoelectric element 7 whereby flaws and stains, etc., on the surface and inside of the zirconia ferrule are evaluated.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、光ファイバーコネクタ
用ジルコニアフェルールの評価装置に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an evaluation device for zirconia ferrules for optical fiber connectors.

【0002】0002

【従来の技術】従来、ジルコニアフェルールの傷や汚れ
等の評価は、人間が目で観察することにより行われてい
た。
BACKGROUND OF THE INVENTION Hitherto, evaluation of scratches, stains, etc. on zirconia ferrules has been carried out by human visual observation.

【0003】0003

【発明が解決しようとする課題】ジルコニアフェルール
の傷や汚れ等の評価は、人間が目で観察することにより
行われていため、見落としがあったり、自動化ができな
かったりするという課題があった。また、内部の傷は、
発見することがほとんどできなかった。
[Problems to be Solved by the Invention] Evaluation of scratches, stains, etc. on zirconia ferrules is performed by human observation by human eyes, which causes problems such as oversights and the inability to automate the evaluation. In addition, internal scratches,
I could hardly find anything.

【0004】0004

【課題を解決するための手段】本発明の装置によると、
目で観察する代わりにレーザ光線(断続)を照射し、ジ
ルコニアフェルール内部の光吸収と無放射遷移に伴い発
生する弾性波を圧電素子により検出することにより、ジ
ルコニアフェルール表面および内部の傷および汚れ等を
発見することができる。
[Means for Solving the Problems] According to the device of the present invention,
Instead of observing with the naked eye, a laser beam (intermittent) is irradiated and the elastic waves generated due to light absorption and non-radiative transition inside the zirconia ferrule are detected by a piezoelectric element, thereby detecting scratches and dirt on the surface and inside of the zirconia ferrule. can be discovered.

【0005】[0005]

【作用】物質に断続光線を照射すると、物質に取り込ま
れた光エネルギーの一部は、物質内部に熱を発生させ、
膨張を引き起こす。この膨張により物質内部に歪が生ず
る。断続光線であるため、歪は歪波(弾性波)となり圧
電素子で検出することができる。この現象は一般に光音
響効果と呼ばれ、発生する弾性波は光音響信号と呼ばれ
ている。この光音響効果を応用することにより、ジルコ
ニアフェルール表面及び表面下熱拡散長内の傷やジルコ
ニアと光学的、熱的特性異なる汚れの評価を行うことが
できる。さらに、光音響信号は物質内を通過し圧電素子
に到達するため、途中にジルコニアと異なる物質や傷等
の空洞があれば超音波散乱の影響を受け、弾性波の強度
や位相角に変化が現れ、ジルコニアフェルール内部の非
破壊検査が可能となるまた、光源のビームを絞れば、面
分解能が上がり、ビームの強度を上げれば光音響信号の
強度を上げることができるため、精密測定が可能となる
[Effect] When a material is irradiated with intermittent light, a portion of the light energy absorbed into the material generates heat inside the material.
causes swelling. This expansion causes strain inside the substance. Since it is an intermittent light beam, the distortion becomes a distorted wave (elastic wave) and can be detected by a piezoelectric element. This phenomenon is generally called the photoacoustic effect, and the generated elastic waves are called photoacoustic signals. By applying this photoacoustic effect, it is possible to evaluate scratches on the zirconia ferrule surface and within the subsurface thermal diffusion length, as well as stains that have optical and thermal characteristics different from those of zirconia. Furthermore, since the photoacoustic signal passes through the material and reaches the piezoelectric element, if there is a material other than zirconia or a cavity such as a scratch on the way, it will be affected by ultrasound scattering and the intensity and phase angle of the elastic wave will change. This makes it possible to perform non-destructive inspection of the inside of the zirconia ferrule.In addition, narrowing down the light source's beam increases the surface resolution, and increasing the beam intensity increases the intensity of the photoacoustic signal, making precise measurements possible. Become.

【0006】[0006]

【実施例】図1にジルコニアフェルール評価装置のブロ
ックダイアグラムを示す。光源には、Arイオンレーザ
1を用いた。レーザ光は、ビームスプリッタ3により試
料であるジルコニアフェルール6に照射される側と参照
信号としてロックインアンプ12に取り込まれる側に分
けられる。試料側のレーザ光は、A/Oモジュレータ2
で100kHzに変調され断続光となり、スキャナー4
でジルコニアフェルール6の長手方向に走査されながら
試料を照射する。このときジルコニアフェルール6は、
スッテピングモータ8で回転させられているため、断続
光はジルコニアフェールール6の側面に隈なく照射され
ることになる。
Embodiment FIG. 1 shows a block diagram of a zirconia ferrule evaluation device. An Ar ion laser 1 was used as a light source. The laser beam is divided by a beam splitter 3 into a side where it is irradiated onto a zirconia ferrule 6, which is a sample, and a side where it is taken into a lock-in amplifier 12 as a reference signal. The laser beam on the sample side is transmitted to the A/O modulator 2.
It is modulated to 100kHz and becomes an intermittent light, and the scanner 4
The sample is irradiated while being scanned in the longitudinal direction of the zirconia ferrule 6. At this time, the zirconia ferrule 6 is
Since it is rotated by the stepping motor 8, the intermittent light is irradiated all over the side surface of the zirconia ferrule 6.

【0007】図2に示すようにジルコニアフェルール6
はカップリング剤5(たとえば真空グリス)で圧電素子
7と密着されており、断続光により発生した弾性波は内
部を通り圧電素子7で検出される。断続光の照射に伴い
試料から発生した弾性波は、圧電素子で検出されプリア
ンプ(図示せず)、ロックインアンプ12で増幅された
後、光音響信号としてCPU9に取り込まれる。結果は
、モニタ(図示せず)およびプロッタ10に出力される
。光源としては、可視光以外のレーザやパルスレーザを
用いることも可能である。また、真空中で行えば電子線
を用いることも可能である。
As shown in FIG. 2, a zirconia ferrule 6
is in close contact with the piezoelectric element 7 using a coupling agent 5 (for example, vacuum grease), and the elastic waves generated by the intermittent light pass through the interior and are detected by the piezoelectric element 7. Elastic waves generated from the sample due to intermittent light irradiation are detected by a piezoelectric element, amplified by a preamplifier (not shown) and a lock-in amplifier 12, and then taken into the CPU 9 as a photoacoustic signal. The results are output to a monitor (not shown) and plotter 10. As the light source, it is also possible to use a laser other than visible light or a pulsed laser. Furthermore, it is also possible to use an electron beam if carried out in a vacuum.

【0008】図3に本発明による出力結果を示した。X
軸は回転角度、Y軸はジルコニアフェルール長手方向の
距離、Z軸は信号強度を表している。130度付近にピ
ークが観察されたが肉眼では外観状の欠陥は認めること
はできなかった。そこでピークの位置をダイヤモンドカ
ッターで切断したところ表面下約1mmの所に亀裂を発
見することが出来た。表面下の評価においては、光音響
信号が物質内を通過し圧電素子に到達するため、途中に
ジルコニアと異なる物質や傷等の空洞があれば超音波散
乱の影響を受け、弾性波の強度や位相角に変化が現れる
ので、位相観察を行った方が高感度な測定を行える場合
がある。
FIG. 3 shows the output results according to the present invention. X
The axis represents the rotation angle, the Y axis represents the distance in the longitudinal direction of the zirconia ferrule, and the Z axis represents the signal intensity. Although a peak was observed around 130 degrees, no defects in appearance could be observed with the naked eye. When the peak position was cut with a diamond cutter, a crack was found approximately 1 mm below the surface. In subsurface evaluation, the photoacoustic signal passes through the material and reaches the piezoelectric element, so if there is a material other than zirconia or a cavity such as a scratch on the way, it will be affected by ultrasound scattering, and the intensity of the elastic wave will be affected. Since changes appear in the phase angle, phase observation may result in more sensitive measurements.

【0009】[0009]

【発明の効果】以上実施例でも述べたように、本発明の
装置は、従来人間の行っていたジルコニアフェルールの
傷や汚れの評価を精度良く行うものである。また、肉眼
では不可能であった、表面下の傷や汚れも発見できるも
のである。さらに、試料の装着、脱着装置を付けること
により容易にラインに組み込むことができる工業的に優
れた装置である。
EFFECTS OF THE INVENTION As described in the embodiments above, the apparatus of the present invention is capable of accurately evaluating zirconia ferrules for scratches and stains, which was conventionally done by humans. It can also detect scratches and dirt beneath the surface that are impossible to see with the naked eye. Furthermore, it is an industrially superior device that can be easily incorporated into a production line by adding a sample loading and unloading device.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のブロック図である。FIG. 1 is a block diagram of the present invention.

【図2】本発明の要部を示す断面図である。FIG. 2 is a sectional view showing essential parts of the present invention.

【図3】本発明による出力結果図である。FIG. 3 is an output result diagram according to the present invention.

【符号の説明】[Explanation of symbols]

1  Arイオンレーザ 6  ジルコニアフェルール 7  圧電素子 1 Ar ion laser 6 Zirconia ferrule 7 Piezoelectric element

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ジルコニアフェルールの評価において
、ジルコニアフェルールに断続的にレーザ光線を照射し
、ジルコニアフェルール内部の光吸収と無放射遷移に伴
い発生する弾性波を圧電素子により検出することにより
、ジルコニアフェルール表面および内部の傷および汚れ
等の評価を行うことを特徴とするジルコニアフェルール
評価装置。
Claim 1: In evaluating the zirconia ferrule, the zirconia ferrule is evaluated by intermittently irradiating the zirconia ferrule with a laser beam and detecting the elastic waves generated due to light absorption and non-radiative transition inside the zirconia ferrule using a piezoelectric element. A zirconia ferrule evaluation device characterized by evaluating scratches, dirt, etc. on the surface and inside.
JP3092464A 1991-04-23 1991-04-23 Zirconia ferrule evaluating device Pending JPH04323552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3092464A JPH04323552A (en) 1991-04-23 1991-04-23 Zirconia ferrule evaluating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3092464A JPH04323552A (en) 1991-04-23 1991-04-23 Zirconia ferrule evaluating device

Publications (1)

Publication Number Publication Date
JPH04323552A true JPH04323552A (en) 1992-11-12

Family

ID=14055071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3092464A Pending JPH04323552A (en) 1991-04-23 1991-04-23 Zirconia ferrule evaluating device

Country Status (1)

Country Link
JP (1) JPH04323552A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115830A (en) * 2009-03-06 2009-05-28 Toshiba Corp Laser-ultrasonic wave inspection device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115830A (en) * 2009-03-06 2009-05-28 Toshiba Corp Laser-ultrasonic wave inspection device
JP4621781B2 (en) * 2009-03-06 2011-01-26 株式会社東芝 Laser ultrasonic inspection equipment

Similar Documents

Publication Publication Date Title
US5748318A (en) Optical stress generator and detector
EP1214588B1 (en) Infrared imaging of (ultra)sonically excited subsurface defects in materials
JPH0271147A (en) Non-destructive inspection method and device
ATE18345T1 (en) METHOD AND DEVICE FOR THE QUANTITATIVE DETERMINATION OF OPTICALLY ACTIVE SUBSTANCES.
WO2016090589A1 (en) Nondestructive measurement method and device for residual stress of laser ultrasonic metal material
KR100822680B1 (en) A laser ultrasonic apparatus and method to detect micro multi-cracks
JP2007057485A (en) System and method of weld zone visualization
JP4439363B2 (en) Online crystal grain size measuring apparatus and measuring method using laser ultrasonic wave
JPH04323552A (en) Zirconia ferrule evaluating device
JPH10260136A (en) Method and device for extracting internal information of pearl
JPH04118540A (en) Defect detection method for optical parts and device therefor
JPS5831872B2 (en) Non-contact ultrasonic flaw detection method
JPH06258238A (en) Crystalline defect inspection method
Caron et al. Gas coupled laser acoustic detection for ultrasound inspection of composite materials
KR970010982B1 (en) Photo-detective apparatus in non-destructive test
Thomas Thermal NDE techniques-from photoacoustics to thermosonics
Anastasi et al. Damage detection in rotorcraft composite structures using thermography and laser-based ultrasound
JPH04331366A (en) Zirconia ferrule evaluator
Alers et al. Visualization of surface elastic waves on structural materials
Caron et al. Ultrasonic NDE of composite panels with gas-coupled laser acoustic detection
JP3271994B2 (en) Dimension measurement method
Imano Detection of Unbonded Defect under Surface of Material Using Phase Information of Rayleigh and A0 Mode Lamb Waves.
JPH0376419B2 (en)
Xianyu Non-Contact Photoacoustic Wave Detection Techniques for Inspection of Metals Structures
Freese et al. Pre-pulse identification of localized laser damage sites in thin films using photoacoustic spectroscopy