JPH04318983A - Josephson junction element and manufacture thereof - Google Patents

Josephson junction element and manufacture thereof

Info

Publication number
JPH04318983A
JPH04318983A JP3110808A JP11080891A JPH04318983A JP H04318983 A JPH04318983 A JP H04318983A JP 3110808 A JP3110808 A JP 3110808A JP 11080891 A JP11080891 A JP 11080891A JP H04318983 A JPH04318983 A JP H04318983A
Authority
JP
Japan
Prior art keywords
substrate surface
ybco
josephson junction
thin film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3110808A
Other languages
Japanese (ja)
Inventor
Hideyuki Kurosawa
黒澤秀行
Toshio Hirai
平井敏雄
Hisanori Yamane
山根久典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Japan Science and Technology Agency
Original Assignee
Riken Corp
Research Development Corp of Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp, Research Development Corp of Japan filed Critical Riken Corp
Priority to JP3110808A priority Critical patent/JPH04318983A/en
Publication of JPH04318983A publication Critical patent/JPH04318983A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To perform a Josephson junction having excellent reproducibility and stability by sequentially providing two or more continuous YBCO regions having different crystal orientations on a surface of a substrate in a perpendicular direction, and connecting crystalline grain boundaries to be formed in a boundary of the regions. CONSTITUTION:A YBa2Cu3O7-y(YBCO) thin film 2 in which a c-axis is oriented perpendicularly to a surface of an SrTiO3 single crystalline substrate 1, is formed on a half of the surface of the substrate 1, and a YBCO thin film 3 in which an a-axis is oriented perpendicularly to the surface of the substrate, is formed at its opposite side. As a result, crystalline grain boundaries 4 are formed by misalignment of orientations of the film 2 and the film 3, a bridge- shaped pattern is formed on the boundaries, thereby forming a Josephson junction. Thus, a Josephson junction element having excellent reproducibility and stability can be obtained by using the boundaries due to artificial misalignment of the orientations of the YBCO on the same flat surface of the substrate 1 as a junction.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【従来の技術】Y系超伝導体(YBa2Cu3O7−y
 :以下YBCOと略す)は、液体窒素温度以上の超伝
導転移温度を有することから、超伝導デバイスの液体窒
素温度での動作が期待されている。
[Prior art] Y-based superconductor (YBa2Cu3O7-y
(hereinafter abbreviated as YBCO) has a superconducting transition temperature higher than the liquid nitrogen temperature, so it is expected that a superconducting device can operate at the liquid nitrogen temperature.

【0002】しかしYBCOは、セラミックス材料であ
るために脆く、従来の超伝導体に比べてコヒーレント長
が短いなどの特性を有している。このような特性により
従来の超伝導体で用いられていたポイントコンタクト型
やブッリジ型、トンネル接合型などのジョセフソン接合
の作製技術をそのままYBCOに適用する事は非常に困
難である。YBCOでは従来の接合作製技術を改良した
様々な構造のジョセフソン接合が考案されている。
However, since YBCO is a ceramic material, it is brittle and has characteristics such as a shorter coherence length than conventional superconductors. Due to these characteristics, it is extremely difficult to apply the fabrication technology of Josephson junctions such as point contact type, bridge type, and tunnel junction type used in conventional superconductors to YBCO as is. In YBCO, Josephson junctions of various structures have been devised by improving conventional junction fabrication techniques.

【0003】すでに報告されているジョセフソン接合の
多くは、YBCOの結晶粒界を用いたものである。当初
報告された結晶粒界による接合は、YBCO合成時に自
然に形成される結晶粒界を用いた接合であった。しかし
、結晶粒界の分布がランダムであるために特定の結晶粒
界にブッリジを形成することが困難であり、特性の再現
性や安定性に問題があった。
Many of the Josephson junctions that have already been reported use YBCO grain boundaries. The bonding based on grain boundaries that was initially reported was a bonding using grain boundaries that are naturally formed during YBCO synthesis. However, since the distribution of grain boundaries is random, it is difficult to form bridges at specific grain boundaries, and there are problems with the reproducibility and stability of characteristics.

【0004】特許出願平1−161880号では、酸化
物超伝導体の超伝導特性の異方性を利用したジョセフソ
ン接合が考案されている。臨界電流密度の大きい軸方向
が電流方向となるようにバンク部を形成し、バンク部の
間に臨界電流密度の小さい軸方向が電流方向となるよう
に構成して臨界電流密度の小さい軸方向の酸化物超伝導
結晶の構造自体がジョセフソン接合的になっていること
によりジョセフソン接合を構成することが述べられてい
る。しかし、臨界電流密度の小さい軸方向の酸化物超伝
導体の形成は、基板の面方位に関係するため任意の位置
にジョセフソン接合を形成することは難しい。
[0004] Patent application No. 1-161880 devises a Josephson junction that utilizes the anisotropy of superconducting properties of oxide superconductors. The bank portion is formed so that the axial direction where the critical current density is high is the current direction, and the axial direction where the critical current density is low is formed between the bank portions so that the current direction is the axial direction where the critical current density is low. It has been stated that the structure of an oxide superconducting crystal itself is Josephson junction-like, thereby forming a Josephson junction. However, since the formation of an axial oxide superconductor with a small critical current density is related to the plane orientation of the substrate, it is difficult to form a Josephson junction at an arbitrary position.

【0005】再現性や安定性を向上させるためYBCO
に人工的な結晶粒界を形成し、この人工粒界を接合に用
いる方法も考案されている。ベース電極上に絶縁層を介
して反対方向の電極の一部が絶縁層上に重なるように二
つの電極を形成して両電極の接するエッジ部分を接合と
したエッジ型のジョセフソン接合がアプライド  フィ
ジックス  レターズ56巻7号(1990年)686
頁から688頁(AppliedPhysics Le
tters. Vol. 56、No.7(1990)
p686−688) に述べられている。エッジ接合は
、自然粒界を用いたジョセフソン接合と同じ様な特性を
示している。また、その動作温度は77K以下である。
[0005] In order to improve reproducibility and stability, YBCO
A method has also been devised in which artificial grain boundaries are formed in the material and these artificial grain boundaries are used for bonding. Applied Physics uses an edge-type Josephson junction in which two electrodes are formed on the base electrode with an insulating layer in between, with the electrodes facing in opposite directions partially overlapping the insulating layer, and the edge portions where the two electrodes touch are connected. Letters Vol. 56 No. 7 (1990) 686
Pages 688 (Applied Physics Le
tters. Vol. 56, No. 7 (1990)
p686-688). Edge junctions exhibit similar characteristics to Josephson junctions using natural grain boundaries. Moreover, its operating temperature is 77K or less.

【0006】特願平1−241874号では、基板に傾
斜した面をつけてYBCO薄膜を形成し、その部分のY
BCO薄膜の配向を変化させて傾斜した面と平坦な面と
の境界上に人工粒界を形成し、その粒界を用いたジョセ
フソン接合が述べられている。また特願平1−2180
77号では、二個の単結晶を結合したバイクリスタル基
板を用い、基板の接合界面上に形成される人工粒界を用
いたジョセフソン接合が述べられている。そのほか基板
に溝や段差を設けてYBCO薄膜中に人工粒界を形成す
る方法なども提案されている。しかし、これらのジョセ
フソン接合では、いずれも基板を加工する工程が必要と
され、同一基板面上の任意の場所に複数個の接合を形成
する場合の基板加工は非常に難しいことが予測される。
[0006] In Japanese Patent Application No. 1-241874, a YBCO thin film is formed on a substrate with an inclined surface, and the YBCO thin film on that portion is
A Josephson junction is described in which the orientation of a BCO thin film is changed to form an artificial grain boundary on the boundary between an inclined surface and a flat surface, and the grain boundary is used. Also, patent application No. 1-2180
No. 77 describes a Josephson junction using a bicrystal substrate in which two single crystals are bonded together and an artificial grain boundary formed on the bonding interface of the substrates. In addition, a method has been proposed in which grooves or steps are provided in the substrate to form artificial grain boundaries in the YBCO thin film. However, all of these Josephson junctions require a process to process the substrate, and it is predicted that substrate processing will be extremely difficult when forming multiple bonds at arbitrary locations on the same substrate surface. .

【0007】[0007]

【発明が解決しようとする課題】本発明は前記した従来
技術の問題点に着目してなされたもので、特別な基板加
工を行わずに人工的に結晶粒界を形成させ、この結晶粒
界を接合とすることにより再現性や安定性に優れたジョ
セフソン接合を形成してスクイドやミクサー、ジョセフ
ソンFET、電圧標準などに適用可能な特性の揃ったジ
ョセフソン接合素子およびその製造方法を提供すること
を目的としている。
[Problems to be Solved by the Invention] The present invention has been made by focusing on the problems of the prior art described above. By forming a Josephson junction with excellent reproducibility and stability, we provide a Josephson junction element with uniform characteristics that can be applied to SQUIDs, mixers, Josephson FETs, voltage standards, etc., and a method for manufacturing the same. It is intended to.

【0008】[0008]

【課題を解決するための手段および作用】本発明は、前
述した課題を解決するため、平坦な基板の同一基板表面
上に少なくとも基板面の垂直な方向においてYBCOの
結晶配向性が異なる2つ以上の連続したYBCOの領域
を順次設け、YBCOの結晶配向性の不整合によりそれ
ぞれの領域のYBCOの境界に形成される結晶粒界にブ
リッジを形成してジョセフソン接合素子とするものであ
る。
[Means and Effects for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides two or more YBCO crystals having different crystal orientations on the same flat substrate surface at least in the direction perpendicular to the substrate surface. Continuous YBCO regions are sequentially provided, and a bridge is formed at the grain boundary formed at the YBCO boundary in each region due to mismatching of the YBCO crystal orientation, thereby forming a Josephson junction element.

【0009】より具体的な本発明のジョセフソン接合素
子は、平坦な基板の同一基板面上に、基板面に垂直な方
向において一定の結晶配向性を有するYBCOの領域を
形成させる。さらに前記領域のYBCOとは結晶配向性
が異なり、基板面に垂直な方向において一定の結晶配向
性を有し、少なくとも接合を必要と部分が前記領域と連
続しているYBCOの領域を形成する。各領域における
YBCOの結晶配向性は、YBCO形成時の条件により
制御され、エピタキシャル成長可能な基板を用いて制御
してもよい。
More specifically, in the Josephson junction device of the present invention, a YBCO region having a constant crystal orientation in the direction perpendicular to the substrate surface is formed on the same plane of a flat substrate. Further, a YBCO region is formed which has a crystal orientation different from that of the YBCO in the region, has a constant crystal orientation in a direction perpendicular to the substrate surface, and is continuous with the region at least in a portion requiring bonding. The crystal orientation of YBCO in each region is controlled by the conditions during YBCO formation, and may be controlled using a substrate capable of epitaxial growth.

【0010】結晶配向性の異なるYBCOのそれぞれの
領域が基板面に垂直方向に形成させるとき、場合によっ
ては結晶配向性の異なるYBCO領域が基板面に平行な
方向にお互いに重なり合い、その部分において電気的な
短絡がある場合を生じる。かかる場合には、それぞれの
領域の重り合った部分の間に基板面に平行な方向に中間
層を形成して短絡を防ぐことができる。中間層は絶縁層
として作用し、積層時にYBCOと反応してYBCOの
超伝導特性を劣化させないものであればよい。以上のよ
うな基板の同一平面上に形成されたYBCOの結晶配向
性の不整合による結晶粒界が接合となるようにブリッジ
を形成してジョセフソン接合素子とする。
[0010] When YBCO regions with different crystal orientations are formed in a direction perpendicular to the substrate surface, in some cases the YBCO regions with different crystal orientations overlap each other in the direction parallel to the substrate surface, and electricity is generated in that portion. This may occur if there is a short circuit. In such a case, an intermediate layer can be formed between the overlapping portions of the respective regions in a direction parallel to the substrate surface to prevent short circuits. The intermediate layer may act as an insulating layer and may be any layer that does not react with YBCO during stacking and deteriorate the superconducting properties of YBCO. A Josephson junction element is obtained by forming a bridge so that the crystal grain boundaries due to mismatched crystal orientations of YBCO formed on the same plane of the substrate serve as junctions.

【0011】本発明のジョセフソン接合素子の製造方法
は、Y、BaおよびCuのβ−ジケトン錯体を原料物質
とした熱化学気相析出法により基板表面上に結晶配向性
を有するYBCO薄膜の領域を基板面上に形成させ、さ
らに同様な原料物質を用いた熱化学気相析出法によりジ
ョセフソン接合を形成する領域に前記領域と連続し、さ
らに前記領域のYBCO薄膜とは結晶配向性の異なるY
BCO薄膜を形成させる。各領域におけるYBCO薄膜
の配向性は、YBCO薄膜形成時のY、BaおよびCu
のβ−ジケトン金属錯体原料蒸気の初期濃度を変化させ
ることにより制御され、またエピタキシャル成長可能な
基板を用い制御してもよい。結晶各領域における薄膜の
結晶配向性は、基板面に対してYBCOのc軸、a軸あ
るいは〔110〕軸が垂直に配向したものである。各領
域における配向軸は、これら配向軸のいずれかの組み合
わせからなるものであればよく、電極部となる領域のY
BCO薄膜は、接合部以外に存在する結晶粒界に補足さ
れる磁束に起因すると考えられる雑音を低減するためエ
ピタキシャル成長させることが好ましい。結晶配向性の
異なるYBCO薄膜のそれぞれの領域が、基板面に平行
な方向に接する部分において電気的な短絡がある場合に
は、それぞれの領域が接するYBCO薄膜の間に絶縁層
として働く中間層を形成する。
The method for manufacturing a Josephson junction device of the present invention is to deposit a region of a YBCO thin film having crystal orientation on a substrate surface by thermochemical vapor deposition using a β-diketone complex of Y, Ba and Cu as raw materials. is formed on the substrate surface, and is continuous with the region in which the Josephson junction is to be formed by thermal chemical vapor deposition using the same raw material, and has a crystal orientation different from that of the YBCO thin film in the region. Y
A BCO thin film is formed. The orientation of the YBCO thin film in each region is determined by Y, Ba and Cu during the formation of the YBCO thin film.
It is controlled by changing the initial concentration of the β-diketone metal complex raw material vapor, and may also be controlled by using a substrate capable of epitaxial growth. The crystal orientation of the thin film in each crystal region is such that the c-axis, a-axis, or [110] axis of YBCO is oriented perpendicularly to the substrate surface. The orientation axis in each region may be any combination of these orientation axes, and the
The BCO thin film is preferably epitaxially grown in order to reduce noise that is considered to be caused by magnetic flux captured by grain boundaries that exist outside the junction. If there is an electrical short circuit in the part where each region of the YBCO thin film with different crystal orientation touches in a direction parallel to the substrate surface, an intermediate layer that acts as an insulating layer is placed between the YBCO thin films where each region contacts. Form.

【0012】以上のような方法により基板上にYBCO
薄膜の結晶配向性の不整合による結晶粒界が形成され、
この結晶粒界が接合となるようにブリッジを形成する。 ブリッジはウエットエッチングあるいはドライエッチン
グ等の通常の方法によって形成すればよく、その形状や
サイズは、必要とされるジョセフソン接合素子に合わせ
任意である。
[0012] By the above method, YBCO is deposited on the substrate.
Grain boundaries are formed due to mismatched crystal orientation in the thin film,
A bridge is formed so that this grain boundary becomes a junction. The bridge may be formed by a conventional method such as wet etching or dry etching, and its shape and size are arbitrary depending on the Josephson junction element required.

【0013】[0013]

【作用】本発明によれば、基板の同一平面上のYBCO
の人工的な結晶配向性の不整合による結晶粒界を接合に
用いることによって再現性や安定性に優れたジョセフソ
ン接合素子を提供することができる。また特別な基板加
工を必要としないことから基板上の任意の位置に複数個
のジョセフソン接合素子を作製することができ、基板上
のYBCO薄膜の配向性の調整によって電極部の電流の
流れ易い方向を、基板面に平行な方向あるいは垂直な方
向いずれの方向も必要に応じて設定することができる。 さらに熱化学気相析出法では、超伝導特性に優れた結晶
配向性の異なる薄膜を同一温度で形成することが可能で
あるため、結晶配向性の不整合による結晶粒界の部分に
おいて薄膜の拡散や再結晶化が起こりにくく、シャープ
な結晶粒界を形成でき、より再現性や安定性に優れたジ
ョセフソン接合素子を製造することができる。
[Operation] According to the present invention, YBCO on the same plane of the substrate
A Josephson junction element with excellent reproducibility and stability can be provided by using crystal grain boundaries due to artificial crystal orientation mismatch in the junction. Additionally, since no special substrate processing is required, multiple Josephson junction elements can be fabricated at any location on the substrate, and by adjusting the orientation of the YBCO thin film on the substrate, current can easily flow through the electrodes. The direction can be set as necessary, either parallel or perpendicular to the substrate surface. Furthermore, with thermochemical vapor deposition, it is possible to form thin films with excellent superconducting properties and different crystal orientations at the same temperature. It is possible to produce a Josephson junction element that is less prone to crystallization and recrystallization, can form sharp grain boundaries, and has better reproducibility and stability.

【0014】[0014]

【実施例】以下、本発明の実施例を図を参照して説明す
る。図1及び2は、本発明の一実施例のジョセフソン接
合素子を示す。図1は平面図であり、図2はその断面図
である。SrTiO3(100) 単結晶基板1上の基
板面の半分に基板面に対して垂直にc軸が配向したYB
CO薄膜2が形成され、その反対側の基板面上へ基板面
に対してa軸が垂直に配向したYBCO薄膜3が形成さ
れる。この結果、c軸配向したYBCO薄膜2とa軸配
向したYBCO薄膜との配向性の不整合によって結晶粒
界4が形成され、この結晶粒界4上にブリッジ形状のパ
ターンを形成してジョセフソン接合が形成される。
[Embodiments] Hereinafter, embodiments of the present invention will be explained with reference to the drawings. 1 and 2 illustrate a Josephson junction device according to one embodiment of the invention. FIG. 1 is a plan view, and FIG. 2 is a cross-sectional view thereof. SrTiO3 (100) YB with c-axis oriented perpendicular to the substrate surface on half of the substrate surface on the single crystal substrate 1
A CO thin film 2 is formed, and a YBCO thin film 3 whose a-axis is oriented perpendicular to the substrate surface is formed on the opposite substrate surface. As a result, a crystal grain boundary 4 is formed due to the mismatch in orientation between the c-axis oriented YBCO thin film 2 and the a-axis oriented YBCO thin film, and a bridge-shaped pattern is formed on this crystal grain boundary 4 to form a Josephson A bond is formed.

【0015】具体的には、YBCO薄膜2はY、Ba、
Cuの(thd)錯体を原料物質とした化学気相析出法
により基板面の半分をメタルマスクして基板温度850
℃、炉内圧力10Torrで形成され、YBCO薄膜3
はYBCO薄膜2上をメタルマスクし、YBCO薄膜合
成初期におけるBa原料の濃度を高くして他の条件はY
BCO薄膜2合成時と同様な条件により形成する。図3
にYBCO薄膜2の部分を中心にX線が照射されるよう
にして測定したX線回折図形を示す。図4にはYBCO
薄膜3の部分を中心にX線が照射されるようにして測定
したX線回折図形を示す。基板上のYBCO薄膜2は(
001)ピークの回折強度が強く、YBCO薄膜3は(
h00)ピークの回折強度が強く、YBCO薄膜2はc
軸配向を示しており、YBCO薄膜3はa軸配向を示し
ている。YBCO薄膜2とYBCO薄膜3との境界部分
を挟むように電圧端子を設けて4端子法によって測定し
た薄膜の電気抵抗の温度依存性を図5に示す。薄膜は液
体窒素温度以上で抵抗ゼロを示している。YBCO薄膜
2とYBCO薄膜3との境界部分には、YBCO薄膜の
配向性の不整合によって結晶粒界4が形成され、結晶粒
界4上にドライエッチングによってブリッジを形成する
。このブッリジに存在する結晶粒界4によって超伝導特
性が弱められて接合が形成される。
Specifically, the YBCO thin film 2 contains Y, Ba,
Half of the substrate surface is covered with a metal mask using a chemical vapor deposition method using Cu (thd) complex as a raw material, and the substrate temperature is 850.
The YBCO thin film 3 was formed at ℃ and 10 Torr pressure in the furnace.
The other conditions were YBCO thin film 2 was covered with a metal mask, and the concentration of Ba raw material was increased at the initial stage of YBCO thin film synthesis.
It is formed under the same conditions as when synthesizing the BCO thin film 2. Figure 3
2 shows an X-ray diffraction pattern measured with X-rays being irradiated mainly on the YBCO thin film 2. Figure 4 shows YBCO
An X-ray diffraction pattern measured while irradiating X-rays centered on the thin film 3 is shown. The YBCO thin film 2 on the substrate is (
001) The diffraction intensity of the peak is strong, and the YBCO thin film 3 has (
h00) The diffraction intensity of the peak is strong, and the YBCO thin film 2 is c
The YBCO thin film 3 has an a-axis orientation. FIG. 5 shows the temperature dependence of the electrical resistance of the thin film measured by a four-terminal method with voltage terminals provided across the boundary between the YBCO thin film 2 and the YBCO thin film 3. The thin film exhibits zero resistance above liquid nitrogen temperature. At the boundary between the YBCO thin film 2 and the YBCO thin film 3, a crystal grain boundary 4 is formed due to misalignment of the orientation of the YBCO thin film, and a bridge is formed on the crystal grain boundary 4 by dry etching. The superconducting properties are weakened by the grain boundaries 4 existing in this bridge, and a junction is formed.

【0016】図6及び図7は、他の実施例のジョセフソ
ン接合素子を示す。図6は平面図であり、図7はその断
面図である。SrTiO3(100) 単結晶基板1上
の両側に基板面に対して垂直にc軸が配向したYBCO
薄膜2が形成され、その間の基板面上へ基板面に対して
a軸が垂直に配向したYBCO薄膜3が形成される。c
軸配向およびa軸配向したYBCO薄膜の形成は第一の
実施例と同様な方法によって形成される。本実施例は、
YBCO薄膜の配向性の不整合による結晶粒界4が基板
上に2ヶ所形成される。図6の平面図では一方の結晶粒
界4上をパターンニングしてブッリジを形成したがいず
れの結晶粒界を用いてもよく、両方の結晶粒界を用いて
複数個のジョセフソン接合素子を形成することもできる
FIGS. 6 and 7 show other embodiments of Josephson junction devices. FIG. 6 is a plan view, and FIG. 7 is a cross-sectional view thereof. SrTiO3 (100) YBCO with the c-axis oriented perpendicular to the substrate surface on both sides of the single crystal substrate 1
A thin film 2 is formed, and a YBCO thin film 3 whose a-axis is oriented perpendicularly to the substrate surface is formed on the substrate surface between them. c.
The axially oriented and a-axis oriented YBCO thin films are formed by the same method as in the first embodiment. In this example,
Two grain boundaries 4 are formed on the substrate due to misalignment of the orientation of the YBCO thin film. In the plan view of FIG. 6, a bridge is formed by patterning on one grain boundary 4, but either grain boundary may be used, and both grain boundaries may be used to form a plurality of Josephson junction elements. It can also be formed.

【0017】本実施例では、c軸配向した薄膜をメタル
マスクを用いて薄膜合成時に基板面の半分に形成したが
、基板の全面にc軸配向したYBCO薄膜を合成後にウ
ェットエッチングあるいはドライエッチング等の方法に
よって形成してもよく、またその形状やサイズ、基板上
の位置も必要とされるジョセフソン接合素子に合わせ任
意に形成される。さらに基板上に形成されるYBCO薄
膜の配向性は、本実施例に限定されるものではなく、Y
BCO薄膜の配向性の不整合によって結晶粒界が形成さ
れればよく、化学気相析出法によって形成されるc軸配
向、a軸配向、〔110 〕軸配向の薄膜の組み合わせ
であればよい。
In this example, a c-axis oriented thin film was formed on half of the substrate surface using a metal mask during thin film synthesis, but a c-axis oriented YBCO thin film was formed on the entire surface of the substrate by wet etching, dry etching, etc. after synthesis. The shape, size, and position on the substrate can be arbitrarily formed according to the required Josephson junction element. Furthermore, the orientation of the YBCO thin film formed on the substrate is not limited to this example;
It is sufficient that the grain boundaries are formed due to misalignment of the orientation of the BCO thin film, and any combination of thin films with c-axis orientation, a-axis orientation, and [110]-axis orientation formed by chemical vapor deposition may be used.

【0018】[0018]

【効果】以上述べたように本発明によれば、結晶配向性
の不整合による人工的な結晶粒界を接合としたことによ
り、目的とする基板面上の任意の位置に安定性や再現性
に優れたジョセフソン接合素子を提供することができる
。また複雑な工程を必要とせずに容易に複数個のジョセ
フソン接合を形成することができ、電圧標準などの多く
のジョセフソン接合を必要とする素子の作製が可能とな
る。
[Effects] As described above, according to the present invention, by using artificial grain boundaries due to mismatched crystal orientation as a bond, it is possible to achieve stability and reproducibility at any position on the target substrate surface. It is possible to provide an excellent Josephson junction element. Furthermore, a plurality of Josephson junctions can be easily formed without the need for complicated processes, making it possible to manufacture devices that require many Josephson junctions, such as voltage standards.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例のジョセフソン接合素子を示
す平面図である。
FIG. 1 is a plan view showing a Josephson junction device according to an embodiment of the present invention.

【図2】図1に示されたジョセフソン接合素子のA−A
′部の断面図である。
FIG. 2: A-A of the Josephson junction device shown in FIG. 1.
FIG.

【図3】図1に示されたYBCO薄膜2のX線回折図で
ある。
3 is an X-ray diffraction diagram of the YBCO thin film 2 shown in FIG. 1. FIG.

【図4】図1に示されたYBCO薄膜3のX線回折図で
ある。
4 is an X-ray diffraction diagram of the YBCO thin film 3 shown in FIG. 1. FIG.

【図5】図1に示されたジョセフソン接合素子に適用さ
れるYBCO薄膜の電気抵抗の温度依存性を示す図であ
る。
FIG. 5 is a diagram showing the temperature dependence of the electrical resistance of the YBCO thin film applied to the Josephson junction device shown in FIG. 1;

【図6】本発明の別の実施例のジョセフソン接合素子を
示す平面図である。
FIG. 6 is a plan view of a Josephson junction device according to another embodiment of the present invention.

【図7】図6に示されたジョセフソン接合素子のB−B
′部の断面図である。
FIG. 7: B-B of the Josephson junction device shown in FIG.
FIG.

【符号の説明】[Explanation of symbols]

1  SrTiO3基板 2  YBCO薄膜 3  YBCO薄膜 4  結晶粒界 1 SrTiO3 substrate 2 YBCO thin film 3 YBCO thin film 4 Grain boundaries

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  YBa2Cu3O7−y 酸化物超伝
導体の結晶粒界を接合とするジョセフソン接合素子にお
いて、平坦な基板面上に少なくとも基板面に垂直な方向
に対して結晶配向性の異なる2つ以上の連続したYBa
2Cu3O7−y の領域を順次設け、それぞれの領域
の境界に形成される結晶粒界を接合としたことを特徴と
するジョセフソン接合素子。
[Claim 1] In a Josephson junction element in which the junction is a crystal grain boundary of a YBa2Cu3O7-y oxide superconductor, two junctions having different crystal orientations at least in a direction perpendicular to the substrate surface are formed on a flat substrate surface. Consecutive YBa of
1. A Josephson junction element characterized in that regions of 2Cu3O7-y are sequentially provided and the grain boundaries formed at the boundaries of each region serve as junctions.
【請求項2】  平坦な基板面上のそれぞれの領域にお
けるYBa2Cu3O7−y の基板面に垂直な方向で
の結晶配向性が、c軸、a軸あるいは〔110〕軸のい
ずれかの組み合わせからなることを特徴とする請求項1
記載のジョセフソン接合素子。
2. The crystal orientation of YBa2Cu3O7-y in each region on a flat substrate surface in a direction perpendicular to the substrate surface is a combination of c-axis, a-axis, or [110] axis. Claim 1 characterized by
Josephson junction device as described.
【請求項3】  平坦な基板面上のそれぞれの領域のY
Ba2Cu3O7−y において、基板面に垂直な方向
に接するYBa2Cu3O7−y 上に、基板面に平行
な方向に領域の境界より絶縁層となる中間層を有するこ
とを特徴とする請求項1記載のジョセフソン接合素子。
[Claim 3] Y of each region on a flat substrate surface
2. The Josephson according to claim 1, wherein the Ba2Cu3O7-y has an intermediate layer serving as an insulating layer extending from the region boundary in a direction parallel to the substrate surface on the YBa2Cu3O7-y in contact with the substrate surface in a direction perpendicular to the substrate surface. Junction element.
【請求項4】  YBa2Cu3O7−y がY、Ba
およびCuのβ−ジケトン金属錯体を原料とした熱化学
気相析出法により形成される薄膜であることを特徴とす
る請求項1記載のジョセフソン接合素子。
[Claim 4] YBa2Cu3O7-y is Y, Ba
2. The Josephson junction device according to claim 1, wherein the thin film is formed by a thermochemical vapor deposition method using a β-diketone metal complex of Cu and Cu as raw materials.
【請求項5】  平坦な基板面上の一部の領域に、Y、
BaおよびCuのβ−ジケトン金属錯体を含有する金属
錯体原料を用いて化学気相析出法により垂直方向に結晶
配向したYBa2Cu3O7−y を形成させ、更に該
金属錯体原料の初期濃度を変化させ、化学気相析出法に
より該領域とは異なる結晶配合性のYBa2Cu3O7
−y を基板に垂直方向に該領域に形成させることを特
徴とする請求項1記載のジョセフソン接合素子の製造方
法。
5. In some areas on the flat substrate surface, Y,
Using a metal complex raw material containing a β-diketone metal complex of Ba and Cu, vertically oriented YBa2Cu3O7-y is formed by chemical vapor deposition, and the initial concentration of the metal complex raw material is changed, and chemical YBa2Cu3O7 with a crystal composition different from that in the region by vapor phase precipitation method
2. The method of manufacturing a Josephson junction device according to claim 1, wherein -y is formed in the region in a direction perpendicular to the substrate.
JP3110808A 1991-04-17 1991-04-17 Josephson junction element and manufacture thereof Pending JPH04318983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3110808A JPH04318983A (en) 1991-04-17 1991-04-17 Josephson junction element and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3110808A JPH04318983A (en) 1991-04-17 1991-04-17 Josephson junction element and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04318983A true JPH04318983A (en) 1992-11-10

Family

ID=14545186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3110808A Pending JPH04318983A (en) 1991-04-17 1991-04-17 Josephson junction element and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04318983A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756335A1 (en) * 1995-07-24 1997-01-29 International Superconductivity Technology Center Josephson device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156608U (en) * 1982-04-13 1983-10-19 冨士シ−ル工業株式会社 Shrink label attachment device
JPS58180105U (en) * 1982-05-25 1983-12-01 イ−・デ−・エム・株式会社 Heat-sensitive adhesive label pasting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156608U (en) * 1982-04-13 1983-10-19 冨士シ−ル工業株式会社 Shrink label attachment device
JPS58180105U (en) * 1982-05-25 1983-12-01 イ−・デ−・エム・株式会社 Heat-sensitive adhesive label pasting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0756335A1 (en) * 1995-07-24 1997-01-29 International Superconductivity Technology Center Josephson device

Similar Documents

Publication Publication Date Title
KR910002311B1 (en) A superconductor device
JPH08501416A (en) Improved barrier layer for oxide superconductor devices and circuits
JP3278638B2 (en) High-temperature superconducting Josephson junction and method of manufacturing the same
JPH08502629A (en) High temperature Josephson junction and method
EP0410373B1 (en) Method for forming a superconducting circuit
US5229360A (en) Method for forming a multilayer superconducting circuit
JPH0577347B2 (en)
JPH05335638A (en) Josephson junction structure body and manufacture thereof
US5624885A (en) Josephson junction device of oxide superconductor and process for preparing the same
JPH04318983A (en) Josephson junction element and manufacture thereof
US6160266A (en) Superconducting device and a method of manufacturing the same
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JPH04318984A (en) Josephson junction element and manufacture thereof
JP2907831B2 (en) Josephson element
JP2663856B2 (en) Superconducting circuit using edge-type Josephson junction and method of manufacturing the same
US6147360A (en) Superconducting device and a method of manufacturing the same
JP2691065B2 (en) Superconducting element and fabrication method
JP2899287B2 (en) Josephson element
JPH04268774A (en) Josephson junction
JPH02194667A (en) Superconducting transistor and manufacture thereof
JPH04332180A (en) Josephson element
JPH1174573A (en) Superconductinc element circuit, its manufacture and superconducting device
JPH02186681A (en) Superconductive junction device
JPH05291632A (en) Superconductive junction structure
JPH05190924A (en) Multilayered thin film for field effect element and field effect transistor using the same