JPH04318437A - Method and device for measuring thickness deviation - Google Patents

Method and device for measuring thickness deviation

Info

Publication number
JPH04318437A
JPH04318437A JP8507991A JP8507991A JPH04318437A JP H04318437 A JPH04318437 A JP H04318437A JP 8507991 A JP8507991 A JP 8507991A JP 8507991 A JP8507991 A JP 8507991A JP H04318437 A JPH04318437 A JP H04318437A
Authority
JP
Japan
Prior art keywords
coating
thickness
resin
waves
interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8507991A
Other languages
Japanese (ja)
Inventor
Takehito Kobayashi
勇仁 小林
Susumu Inoue
享 井上
Hideji Shinoki
篠木 秀次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8507991A priority Critical patent/JPH04318437A/en
Publication of JPH04318437A publication Critical patent/JPH04318437A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PURPOSE:To accurately measure the thickness deviation of the sheath of a coated optical fiber under an in-line condition by finding the thickness of the sheath from the time lag between the surface-reflected waves and interface-reflected waves of ultrasonic waves and estimating the thickness of the sheath from the time lag. CONSTITUTION:When a coated optical fiber 100 is exposed to ultrasonic waves from an ultrasonic wave oscillating and receiving section 130 through the resin 120 coating the fiber 100, the ultrasonic waves are reflected not only at the surface of the resin section 100b of the fiber 100, but also at the interface between the resin section 100b and the glass section 100a of the fiber 100 after passing through the section 100b. Both reflected waves are received by the receiver 130 with a time lag. Since the time lag is the time required by the waves for making a round trip through the resin section 100b in the thickness direction, the film thickness of the section 100b can be found from a prescribed numerical formula. When the film thickness of the section 100b is found, the thickness deviation can be estimated by comparing the film thickness with, for example, the set value, etc., of a coating condition. In addition, when the film thickness is found at each point by radiating the ultrasonic waves from a plurality of directions, the quantity of and the direction of the thickness deviation can be found accurately.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、円柱体に施された被覆
の偏肉(偏肉度、偏肉方向)を測定する偏肉測定方法及
び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring uneven thickness (degree of uneven thickness, direction of uneven thickness) of a coating applied to a cylindrical body.

【0002】0002

【従来の技術】光ファイバは材質的な問題からそのまま
光伝送用媒体として使用するのは極めて困難であるので
、従来より光ファイバの線引き直後に樹脂被覆を施して
被覆光ファイバとし、光ファイバ製造直後の初期強度の
維持を図ると共に長期使用に耐えうるようにしている。
[Prior Art] Because it is extremely difficult to use optical fiber as it is as an optical transmission medium due to material problems, conventionally, optical fibers are coated with resin immediately after being drawn to produce coated optical fibers. We aim to maintain the initial strength immediately after use, and to ensure that it can withstand long-term use.

【0003】すなわち、図6に示すように、光ファイバ
母材1の先端を加熱炉2により加熱・溶融しつつ線引き
して形成された光ファイバ3は、一般に、第一の加圧ダ
イ4A、第一の硬化炉5A、第二の加圧ダイ4B、第二
の硬化炉5Bに順次挿通されることにより、その外表面
に二層の樹脂被覆が施された被覆光ファイバ6となって
キャプスタン7を介して巻取機8に巻取られるようにな
っている。ここで、かかる被覆光ファイバ6に使用され
ている樹脂被覆材料は、例えば、シリコーン樹脂、ウレ
タン樹脂、エポキシ樹脂などの熱硬化型樹脂や、エポキ
シアクリレート、ウレタンアクリレート、ポリエステル
アクリレートなどの紫外線硬化型樹脂、その他、放射線
硬化型樹脂などの高分子材料である。
That is, as shown in FIG. 6, an optical fiber 3 formed by drawing the tip of an optical fiber preform 1 while heating and melting it in a heating furnace 2 is generally formed by a first pressure die 4A, By being sequentially inserted into the first curing furnace 5A, the second pressure die 4B, and the second curing furnace 5B, it becomes a coated optical fiber 6 whose outer surface is coated with two layers of resin. It is adapted to be wound up by a winding machine 8 via a stun 7. Here, the resin coating material used for the coated optical fiber 6 is, for example, a thermosetting resin such as silicone resin, urethane resin, or epoxy resin, or an ultraviolet curing resin such as epoxy acrylate, urethane acrylate, or polyester acrylate. , and other polymeric materials such as radiation-curable resins.

【0004】ところで、このような被覆光ファイバ6に
おいては、その伝送特性及び機械的特性を向上するため
、光ファイバ1の周囲に施される樹脂被覆が同心円状と
なっていることが重要である。一方、光ファイバの生産
性向上のため線速を大きくすると、光ファイバ1の温度
が上昇して加圧ダイ4A,4B中での樹脂の流れが不均
一となるためか樹脂被覆に偏肉が生じ易いという問題が
ある。また、偏肉は樹脂内にゴミが混入した場合などに
生じる。そこで、光ファイバ線引きラインにおいては、
インラインで被覆光ファイバ6の偏肉を測定し、偏肉の
発生に応じて線速を小さくしたり、線引きを停止したり
する制御を行う必要がある。
By the way, in such a coated optical fiber 6, in order to improve its transmission characteristics and mechanical characteristics, it is important that the resin coating applied around the optical fiber 1 is concentric. . On the other hand, when the linear speed is increased to improve the productivity of optical fibers, the temperature of the optical fiber 1 rises and the flow of resin in the pressure dies 4A and 4B becomes uneven, resulting in uneven thickness of the resin coating. There is a problem in that it is easy to occur. In addition, uneven thickness occurs when dust gets mixed into the resin. Therefore, in the optical fiber drawing line,
It is necessary to measure the thickness deviation of the coated optical fiber 6 in-line, and perform control such as reducing the drawing speed or stopping the drawing depending on the occurrence of the thickness deviation.

【0005】ここで、従来の偏肉測定方法の一例を図7
を参照しながら説明する。同図に示すように、従来にお
いては、線引きされる被覆光ファイバ10の側面にレー
ザ光源11からのレーザビーム12を照射し、その前方
散乱光パターン13を検出することにより偏肉を測定し
ている(特開昭60−238737号公報参照)。かか
る方法の原理を図9に示す。同図に示すように、被覆光
ファイバ10を簡単のためにガラス部10aと樹脂部1
0bとからなるとすると、両者の屈折率の違い(通常、
ガラス部10aの屈折率ng =1.46、樹脂部10
bの屈折率nr =1.48〜1.51程度である)か
ら、前方散乱光パターン13には、樹脂部10b−ガラ
ス部10a−樹脂部10bと通過した中央部分の光束1
3aと、樹脂部10bのみを通過した周辺部の光束13
bとが存在する。したがって、前方散乱光パターン13
の左右の対称性及び左右の受光パワーの比により偏肉を
検出することができる。
[0005] Here, an example of the conventional thickness unevenness measurement method is shown in FIG.
This will be explained with reference to. As shown in the figure, conventionally, thickness unevenness is measured by irradiating the side surface of a coated optical fiber 10 to be drawn with a laser beam 12 from a laser light source 11 and detecting the forward scattered light pattern 13. (Refer to Japanese Patent Application Laid-Open No. 60-238737). The principle of such a method is shown in FIG. As shown in the figure, for simplicity, the coated optical fiber 10 has a glass portion 10a and a resin portion 1.
0b, the difference in refractive index between the two (usually,
Refractive index ng of glass portion 10a = 1.46, resin portion 10
(refractive index nr of b is approximately 1.48 to 1.51), the forward scattered light pattern 13 includes a central portion of the light beam 1 that has passed through the resin portion 10b-glass portion 10a-resin portion 10b.
3a and the peripheral light beam 13 that has passed only through the resin portion 10b.
b exists. Therefore, the forward scattered light pattern 13
Unbalanced thickness can be detected based on the symmetry of the left and right sides and the ratio of the left and right received light powers.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前述し
た方法では、前方散乱光パターン13の左右側において
、樹脂部10b及びガラス部10aの両方を通過した光
と、樹脂部10bのみを通過した光とが明確に区別され
なければ偏肉を検出できないので、例えば図10に示す
ように被覆径が小さくて樹脂部10bの肉厚が小さい場
合(図9(A))、又は偏肉が大きすぎる場合(図9(
B))には偏肉が良好には検出できない。すなわち、図
9(A)の場合には、樹脂部10bの肉厚が小さすぎる
ので、樹脂部10bのみを通過する光が存在せず、全て
樹脂部10b及びガラス部10aの両方を通過してしま
い、偏肉が検出できない。また、図9(B)の場合には
、図中下側において樹脂部10bが薄肉となるので、や
はり図中下側の樹脂部10bのみを通過する光が存在し
ないので、偏肉が生じていることは判断できるが、どの
程度の偏肉なのかが検出できない。
However, in the method described above, on the left and right sides of the forward scattered light pattern 13, the light that has passed through both the resin portion 10b and the glass portion 10a and the light that has passed only the resin portion 10b are separated. For example, if the coating diameter is small and the thickness of the resin part 10b is small as shown in FIG. 10 (FIG. 9(A)), or if the thickness deviation is too large, as shown in FIG. (Figure 9(
In B)), uneven thickness cannot be detected well. That is, in the case of FIG. 9(A), the thickness of the resin portion 10b is too small, so there is no light that passes only through the resin portion 10b, and all of the light passes through both the resin portion 10b and the glass portion 10a. Because of this, uneven thickness cannot be detected. In addition, in the case of FIG. 9(B), since the resin part 10b is thinner at the lower side in the figure, there is no light that passes only through the resin part 10b at the lower side in the figure, so uneven thickness occurs. Although it can be determined that there is a difference in thickness, it is not possible to detect the degree of unevenness.

【0007】したがって、光ファイバ生産分野において
、高性能な光ファイバを生産性よく製造するために、被
覆光ファイバの偏肉をインラインで正確に測定しうる技
術の出現が望まれている。また、かかる技術は種々の分
野に適用可能である。
[0007] Therefore, in the field of optical fiber production, in order to manufacture high-performance optical fibers with high productivity, there is a desire for a technology that can accurately measure the uneven thickness of coated optical fibers in-line. Moreover, such technology is applicable to various fields.

【0008】[0008]

【課題を解決するための手段】前記課題を解決する本発
明に係る偏肉測定方法は、少なくとも一層からなる被覆
が施された円柱体に被覆ダイスを用いてさらに一層の被
覆を施す際に、上記被覆ダイス中の被覆用樹脂を介して
上記円柱体の側面に超音波を照射し、上記被覆表面での
表面反射波と、該被覆と円柱体本体との境界面若しくは
被覆の各層の境界面での境界面反射波とを検出して被覆
層の肉厚を求め、偏肉を推定することを特徴とする。ま
た、本発明に係る偏肉測定装置は、少なくとも一層から
なる被覆が施された円柱体にさらに一層の被覆を施す被
覆ダイスに設けられて上記円柱体の側面に超音波を照射
する超音波発振器と、この超音波発振器からの超音波の
上記円柱体の被覆表面での表面反射波と、該被覆と円柱
体本体との境界面若しくは被覆の各層の境界面での境界
面反射波を検出する受信器と、この受信器が受けた表面
反射波と境界面反射波の時間差から被覆の肉厚を求め、
偏肉を推定する処理部、とを具えたことを特徴とする。
[Means for Solving the Problems] A thickness unevenness measuring method according to the present invention that solves the above-mentioned problems includes: when applying a further layer of coating using a coating die to a cylindrical body that has been coated with at least one layer; Ultrasonic waves are irradiated to the side surface of the cylindrical body through the coating resin in the coating die, and the surface reflected waves on the coating surface and the interface between the coating and the cylindrical body or the interface between each layer of the coating are generated. The method is characterized in that the wall thickness of the coating layer is determined by detecting the boundary surface reflected waves at , and the thickness deviation is estimated. Further, the thickness unevenness measuring device according to the present invention includes an ultrasonic oscillator that is installed in a coating die that applies an additional layer of coating to a cylindrical body that has been coated with at least one layer, and that irradiates ultrasonic waves to the side surface of the cylindrical body. Then, a surface reflected wave of the ultrasonic wave from the ultrasonic oscillator on the coating surface of the cylindrical body, and an interface reflected wave at the interface between the coating and the cylindrical body or at the boundary between each layer of the coating are detected. The thickness of the coating is determined from the time difference between the receiver, the surface reflected waves received by this receiver, and the boundary surface reflected waves.
A processing unit for estimating thickness deviation.

【0009】[0009]

【作用】前記構成においては、円柱体に対して、その最
外層と屈折率が近似する被覆用樹脂を介して超音波が照
射されるので、該超音波は被覆表面で反射すると同時に
被覆内に透過する。そして、透過した超音波は被覆と円
柱体本体との境界面若しくは被覆の各層の境界面で反射
する。したがって、表面反射光と境界面反射光との受信
時間の差からその間の肉厚を求めることができる。一箇
所の肉厚が求まれば設定した被覆厚との差により偏肉が
推定でき、また、少なくとも3方向の肉厚を測定すると
正確な偏肉量及び偏肉方向を推定することができる。
[Operation] In the above structure, the ultrasonic wave is irradiated to the cylindrical body through the coating resin whose refractive index is similar to that of its outermost layer, so that the ultrasonic wave is reflected from the coating surface and simultaneously penetrates into the coating. To Penetrate. The transmitted ultrasonic waves are reflected at the interface between the coating and the cylindrical body or at the interface between each layer of the coating. Therefore, the wall thickness between the surface reflected light and the boundary surface reflected light can be determined from the difference in reception time between the surface reflected light and the boundary surface reflected light. If the thickness at one location is determined, the thickness deviation can be estimated based on the difference from the set coating thickness, and if the thicknesses are measured in at least three directions, the accurate amount and direction of thickness deviation can be estimated.

【0010】0010

【実施例】以下、本発明を実施例に基づいて説明する。EXAMPLES The present invention will be explained below based on examples.

【0011】図1には本発明方法を実施するための偏肉
測定装置の一例を概念的に示す。同図に示すように、被
検体である円柱体の一例としての被覆光ファイバ100
は、ガラス部100a及び樹脂部100bからなるもの
としてあり、該被覆光ファイバ100はさらに被覆を施
すための被覆ダイス110を通過中である。この被覆ダ
イス110内には被覆用樹脂120が充填されており、
被覆ダイス110の外側には超音波発振・受信器130
が取り付けられている。この超音波発振・受信器130
は、被覆ダイス110の壁面及び被覆用樹脂120を介
して被覆光ファイバ100の側面に超音波を照射し、且
つその反射波を受信するものである。また、この超音波
発振・受信器130には、超音波発振の制御をすると共
に、受信のデータを処理するコントローラ140が接続
されている。
FIG. 1 conceptually shows an example of a thickness unevenness measuring device for carrying out the method of the present invention. As shown in the figure, a coated optical fiber 100 is an example of a cylindrical object to be examined.
The coated optical fiber 100 is made up of a glass portion 100a and a resin portion 100b, and the coated optical fiber 100 is passing through a coating die 110 for further coating. This coating die 110 is filled with coating resin 120,
An ultrasonic oscillator/receiver 130 is installed on the outside of the coated die 110.
is installed. This ultrasonic oscillator/receiver 130
The apparatus irradiates the side surface of the coated optical fiber 100 with ultrasonic waves through the wall surface of the coating die 110 and the coating resin 120, and receives the reflected waves. Further, a controller 140 that controls ultrasonic oscillation and processes received data is connected to the ultrasonic oscillator/receiver 130.

【0012】次に、本発明方法の測定原理について説明
する。図1に示すような装置を用いて、被覆用樹脂12
0を通して超音波発振・受信器130からの超音波を被
覆光ファイバに照射すると、図2に示すように、樹脂部
100bの表面で反射する(表面反射波A)と同時に樹
脂部100b内に透過し、ガラス部100aと樹脂部1
00bとの境界面でも反射する(境界面反射波B)。こ
れは、樹脂部100bの周囲が、屈折率が近似する被覆
用樹脂120で囲まれているからである。ここで、表面
反射波Aと境界面反射波Bとは超音波発振・受信器13
0により受信されるが、受信時間に差が生じる。この受
信時間の間隔(Δt)が超音波が樹脂部100bの厚さ
dを往復する時間であるから、厚さdは時間間隔(Δt
)を音速(v)で除することによって求めることができ
る。なお、樹脂部100bが複数の層に分かれており、
材質が異なれば、各境界面で反射波が生じ、同様に各層
の厚さを求めることができる。
Next, the measurement principle of the method of the present invention will be explained. Using the apparatus shown in FIG. 1, the coating resin 12
When the coated optical fiber is irradiated with ultrasonic waves from the ultrasonic oscillator/receiver 130 through 0, as shown in FIG. Then, the glass part 100a and the resin part 1
It is also reflected at the interface with 00b (interface reflected wave B). This is because the resin portion 100b is surrounded by the coating resin 120 having a similar refractive index. Here, the surface reflected wave A and the boundary surface reflected wave B are the ultrasonic oscillator/receiver 13
0, but there is a difference in reception time. Since the reception time interval (Δt) is the time for the ultrasonic wave to travel back and forth across the thickness d of the resin portion 100b, the thickness d is the time interval (Δt).
) by the speed of sound (v). Note that the resin part 100b is divided into multiple layers,
If the materials are different, reflected waves will occur at each interface, and the thickness of each layer can be determined in the same way.

【0013】上述したように、樹脂部100bの肉厚が
求められると、例えば樹脂部100bの被覆条件の設定
値等との比較から偏肉を推定することができる。また、
複数方向、例えば少なくとも3方向から超音波を照射し
て各箇所の肉厚を求めると、正確な偏肉量、偏肉方向を
求めることができる。すなわち、例えば図3に示すよう
に、被覆ダイス110の直交する4方向に超音波発振・
受信器130を設けるようにすればよい。
As described above, once the thickness of the resin portion 100b is determined, the thickness deviation can be estimated by comparing it with, for example, the set value of the coating condition of the resin portion 100b. Also,
By irradiating ultrasonic waves from a plurality of directions, for example from at least three directions, and determining the wall thickness at each location, an accurate amount and direction of thickness deviation can be determined. That is, as shown in FIG. 3, for example, ultrasonic oscillations and
A receiver 130 may be provided.

【0014】以上説明した実施例では、超音波発振・受
信器130を被覆ダイス110の外側に取り付けている
が、被覆光ファイバ100に超音波を照射できるもので
あれば特に限定されない。例えば、図4に示すように、
超音波発振・受信器130を被覆ダイス110の壁面に
埋め込んで、その先端が直接、被覆用樹脂120と接す
るような構成とすると、被覆ダイス110の内面と被覆
用樹脂120との境界面での超音波の反射波が発生しな
いので、より好ましい。
In the embodiment described above, the ultrasonic oscillator/receiver 130 is attached to the outside of the coating die 110, but it is not particularly limited as long as it can irradiate the coated optical fiber 100 with ultrasonic waves. For example, as shown in Figure 4,
If the ultrasonic oscillator/receiver 130 is embedded in the wall surface of the coating die 110 and its tip is in direct contact with the coating resin 120, then the This is more preferable because no reflected ultrasonic wave is generated.

【0015】次に、図1の装置を用いての具体的測定例
を示す。図1に示す装置により、超音波発振・受信器1
30から超音波を発振したところ図5に示す結果が得ら
れた。ここで、PO は超音波の送波信号出力であり、
Rは被覆ダイス110(超硬ダイス)と被覆用樹脂12
0との境界面での反射波によるピーク、A,Bは上述し
た表面反射波A及び境界面反射波Bのピークを示す。ピ
ークAとピークBとの時間差は0.06μsec であ
り、樹脂部100b(比重1.2g/cm3 )での音
速vが2500m/sec であるから、樹脂部100
bの肉厚は75μmとすることができる。
Next, a specific example of measurement using the apparatus shown in FIG. 1 will be shown. Ultrasonic oscillator/receiver 1
When ultrasonic waves were oscillated from 30, the results shown in FIG. 5 were obtained. Here, PO is the ultrasound transmission signal output,
R is a coating die 110 (carbide die) and a coating resin 12
The peaks A and B due to the reflected waves at the interface with 0 indicate the peaks of the surface reflected wave A and the interface reflected wave B described above. The time difference between peak A and peak B is 0.06 μsec, and the sound velocity v in resin portion 100b (specific gravity 1.2 g/cm3) is 2500 m/sec.
The wall thickness of b can be 75 μm.

【0016】[0016]

【発明の効果】以上説明したように、本発明によると、
超音波照射により被覆表面での反射波と被覆と円柱体本
体との境界面での反射波とを測定し、これにより偏肉を
連続的に正確に測定できるので、例えば光ファイバ製造
ラインにおいて光ファイバ被覆の偏肉をインラインで測
定することができる。
[Effects of the Invention] As explained above, according to the present invention,
By using ultrasonic irradiation, the reflected waves on the coating surface and the reflected waves on the interface between the coating and the cylindrical body are measured, and uneven thickness can be measured continuously and accurately. Uneven thickness of fiber coating can be measured in-line.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明方法を実施する装置の一例を示す概念図
である。
FIG. 1 is a conceptual diagram showing an example of an apparatus for implementing the method of the present invention.

【図2】本発明の原理を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining the principle of the present invention.

【図3】本発明方法を実施する装置の一例を示す概念図
である。
FIG. 3 is a conceptual diagram showing an example of an apparatus for carrying out the method of the present invention.

【図4】本発明方法を実施する装置の一例を示す概念図
である。
FIG. 4 is a conceptual diagram showing an example of an apparatus for carrying out the method of the present invention.

【図5】測定例の出力ピークを示す説明図である。FIG. 5 is an explanatory diagram showing output peaks of measurement examples.

【図6】光ファイバの製造ラインの一例を示す概念図で
ある。
FIG. 6 is a conceptual diagram showing an example of an optical fiber manufacturing line.

【図7】従来技術に係る偏肉測定を説明するための原理
図である。
FIG. 7 is a principle diagram for explaining thickness unevenness measurement according to the prior art.

【図8】従来技術に係る偏肉測定の原理を説明するため
の説明図である。
FIG. 8 is an explanatory diagram for explaining the principle of thickness unevenness measurement according to the prior art.

【図9】従来技術に係る偏肉測定の問題点を示す説明図
である。
FIG. 9 is an explanatory diagram illustrating problems in thickness unevenness measurement according to the prior art.

【符号の説明】[Explanation of symbols]

100  被覆光ファイバ 100a  ガラス部 100b  樹脂部 110  被覆ダイス 120  被覆用樹脂 130  超音波発振・受信器 140  コントローラ 100 Coated optical fiber 100a Glass part 100b Resin part 110 Coated die 120 Coating resin 130 Ultrasonic oscillator/receiver 140 Controller

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  少なくとも一層からなる被覆が施され
た円柱体に被覆ダイスを用いてさらに一層の被覆を施す
際に、上記被覆ダイス中の被覆用樹脂を介して上記円柱
体の側面に超音波を照射し、上記被覆表面での表面反射
波と、該被覆と円柱体本体との境界面若しくは被覆の各
層の境界面での境界面反射波とを検出して被覆層の肉厚
を求め、偏肉を推定することを特徴とする偏肉測定方法
Claim 1: When a coating die is used to apply a further layer of coating to a cylindrical body that has been coated with at least one layer, ultrasonic waves are applied to the side surface of the cylindrical body through the coating resin in the coating die. , and detecting the surface reflected waves at the coating surface and the interface reflected waves at the interface between the coating and the cylindrical body or at the interface between each layer of the coating to determine the thickness of the coating layer, A method for measuring uneven thickness, characterized by estimating uneven thickness.
【請求項2】  請求項1において、超音波の照射を複
数方向から照射することを特徴とする偏肉測定方法。
2. The method for measuring uneven thickness according to claim 1, characterized in that ultrasonic waves are irradiated from a plurality of directions.
【請求項3】  少なくとも一層からなる被覆が施され
た円柱体にさらに一層の被覆を施す被覆ダイスに設けら
れて上記円柱体の側面に超音波を照射する超音波発振器
と、この超音波発振器からの超音波の上記円柱体の被覆
表面での表面反射波と、該被覆と円柱体本体との境界面
若しくは被覆の各層の境界面での境界面反射波を検出す
る受信器と、この受信器が受けた表面反射波と境界面反
射波の時間差から被覆の肉厚を求め、偏肉を推定する処
理部、とを具えたことを特徴とする偏肉測定装置。
3. An ultrasonic oscillator that is provided on a coating die that applies an additional layer of coating to a cylindrical body that has been coated with at least one layer, and that irradiates ultrasonic waves to the side surface of the cylindrical body; a receiver for detecting a surface reflected wave of the ultrasonic wave on the coating surface of the cylindrical body and an interface reflected wave at the interface between the coating and the cylindrical body or at the boundary between each layer of the coating, and this receiver; What is claimed is: 1. A thickness unevenness measuring device comprising: a processing unit that calculates the thickness of a coating from the time difference between a surface reflected wave received by the surface reflected wave and an interface reflected wave and estimates a thickness unevenness.
【請求項4】  請求項3において、超音波発振器及び
受信器を複数台有することを特徴とする偏肉測定装置。
4. The thickness unevenness measuring device according to claim 3, comprising a plurality of ultrasonic oscillators and receivers.
JP8507991A 1991-04-17 1991-04-17 Method and device for measuring thickness deviation Withdrawn JPH04318437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8507991A JPH04318437A (en) 1991-04-17 1991-04-17 Method and device for measuring thickness deviation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8507991A JPH04318437A (en) 1991-04-17 1991-04-17 Method and device for measuring thickness deviation

Publications (1)

Publication Number Publication Date
JPH04318437A true JPH04318437A (en) 1992-11-10

Family

ID=13848613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8507991A Withdrawn JPH04318437A (en) 1991-04-17 1991-04-17 Method and device for measuring thickness deviation

Country Status (1)

Country Link
JP (1) JPH04318437A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088216A1 (en) * 2017-11-01 2019-05-09 住友電気工業株式会社 Optical fiber glass eccentricity measurement device and measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088216A1 (en) * 2017-11-01 2019-05-09 住友電気工業株式会社 Optical fiber glass eccentricity measurement device and measurement method
JPWO2019088216A1 (en) * 2017-11-01 2020-12-03 住友電気工業株式会社 Optical fiber glass eccentricity measuring device and measuring method
US11256027B2 (en) 2017-11-01 2022-02-22 Sumitomo Electric Industries, Ltd. Optical fiber glass eccentricity measurement device and measurement method

Similar Documents

Publication Publication Date Title
US5648038A (en) Systems and methods for monitoring material properties using microwave energy
US7080556B2 (en) Ultrasonic apparatus and methods for the monitoring of melting, mixing and chemical reaction processes
US4904080A (en) Method of monitoring solidification of a liquid composition
US5009102A (en) Method of monitoring solidification of a liquid composition
CA1268535A (en) Laser induced acoustic generation for sonic modulus
JPS5979133A (en) Method and device for measuring tension
CN114502351A (en) Method and system for blown film thickness measurement
JPH04318437A (en) Method and device for measuring thickness deviation
JPS638233A (en) Optical fiber drawing device
Fomitchov et al. Laser ultrasonic array system for real-time cure monitoring of polymer-matrix composites
US5804725A (en) Measurement of the cure state of a curable material using an ultrasonic wire waveguide
CA2030302C (en) Apparatus and method for determining elastic properties of optical fiber by contact area measurement
JPS60238737A (en) Uneven thickness detecting method of coating of optical fiber strand
JP2946651B2 (en) Anomaly point detection method for cladding for optical fiber coating
JP4234280B2 (en) Stretching method and stretching apparatus for translucent object
JPH04319641A (en) Eccentricity of coating measuring method
CN219200608U (en) System for measuring sound velocity temperature coefficient of liquid
JPS5957109A (en) Method and apparatus for controlling film thickness of coated steel pipe
JPH04319643A (en) Method and device for measuring eccentricity of coating
JPH04319642A (en) Method and device for measuring eccentricity of coating
JPH09101210A (en) Optical fiber sensor for temperature measurement
JPS58111710A (en) Method for measuring hose diameter
JPH04315939A (en) Method and device for measuring uneven thickness
JPH01196560A (en) Apparatus for measuring state of object to be measured using ultrasonic wave
JPH02228559A (en) Measurement of hardening state for optical fiber coating

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711