JPH0431820B2 - - Google Patents

Info

Publication number
JPH0431820B2
JPH0431820B2 JP59062212A JP6221284A JPH0431820B2 JP H0431820 B2 JPH0431820 B2 JP H0431820B2 JP 59062212 A JP59062212 A JP 59062212A JP 6221284 A JP6221284 A JP 6221284A JP H0431820 B2 JPH0431820 B2 JP H0431820B2
Authority
JP
Japan
Prior art keywords
polished
grindstone
polishing
rotating shaft
magnetic circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59062212A
Other languages
Japanese (ja)
Other versions
JPS60207769A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59062212A priority Critical patent/JPS60207769A/en
Publication of JPS60207769A publication Critical patent/JPS60207769A/en
Publication of JPH0431820B2 publication Critical patent/JPH0431820B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、磁気吸引力を利用して砥石を被研磨
面に押し付け保持させる研磨方法に係り、詳しく
は、砥石を回転させることで効率のよい研磨を行
なうことができる回転式磁気吸引研磨方法および
この研磨方法に適した工具に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a polishing method that uses magnetic attraction to press and hold a grindstone against a surface to be polished. The present invention relates to a rotary magnetic attraction polishing method that can perform good polishing, and a tool suitable for this polishing method.

(従来の技術) 機械加工においては、NC工作機械などの普及
により爾後の磨き工程の占める割合が減少してい
るものの、依然として重要な地位を占めている。
特に、金型の製作工程における磨き工程の割合は
未だに全工程の3分の1近くを占めており、しか
も、そのほとんどを人に頼つているのが現状であ
る。従つて、金型の製作工程を合理化するには磨
き工程を自動化することが肝要であり、ロボツト
などによる磨き作業が要請されている。
(Conventional technology) In machining, although the proportion of the polishing process has decreased due to the spread of NC machine tools, it still occupies an important position.
In particular, the polishing process in the mold manufacturing process still accounts for nearly one-third of the total process, and most of the polishing process still relies on humans. Therefore, in order to streamline the mold manufacturing process, it is essential to automate the polishing process, and polishing operations using robots and the like are required.

このような要請を満足するために、本願発明者
は磁気吸引力を利用して砥石を被研磨面に押し付
け保持させて研磨圧を得ることができるようにし
た磁気吸引式研磨方法を特願昭58−35612号(特
公昭62−47150号)として先に提案した。
In order to satisfy these demands, the inventor of the present application has developed a magnetic attraction polishing method that uses magnetic attraction to press and hold a grindstone against the surface to be polished to obtain polishing pressure. It was first proposed as No. 58-35612 (Special Publication No. 62-47150).

この磁気吸引式研磨方法による場合は、第1図
に示すように、砥石1に磁石2を取り付けること
により、この磁石2による吸引力で法線N方向に
沿う研磨圧Fnを得ることができる。よつて、自
由曲面の研磨時にも研磨圧を一定に保持させるこ
とができるために砥石1を法線N方向に加圧する
必要がなく、接線N方向への力Ftを砥石1に加
えるだけでよく、しかも、磁石2は法線N方向に
倣つた状態で釣り合うために砥石1は常に被研磨
面3に法線N方向から一定圧力で加圧される。従
つて、このような磁気吸引式の研磨方法による場
合は加圧手段を必要としないので小型化でき、法
線N方向への反力がゼロであるために剛性が小さ
いロボツトによる磨き作業を具体化できるという
利点を有しているにもかかわらず、人手による磨
き作業には及ばないという不具合があつた。
In the case of this magnetic attraction polishing method, as shown in FIG. 1, by attaching a magnet 2 to a grindstone 1, a polishing pressure Fn along the normal N direction can be obtained by the attraction force of the magnet 2. Therefore, since the polishing pressure can be kept constant even when polishing a free-form surface, there is no need to pressurize the grindstone 1 in the normal direction N, and it is sufficient to apply force Ft to the grindstone 1 in the tangential direction N. Moreover, since the magnet 2 is balanced in a state following the direction of the normal line N, the grinding wheel 1 is always pressed against the surface to be polished 3 with a constant pressure from the direction of the normal line N. Therefore, since such a magnetic attraction polishing method does not require pressure means, it can be miniaturized, and since the reaction force in the normal N direction is zero, it is possible to perform polishing work by a robot with low rigidity. Although it has the advantage of being able to be polished manually, it has the disadvantage that it is not as good as manual polishing work.

(発明が解決しようとする課題) 本発明はこのような実状に鑑みてなされたもの
であり、研磨作業にともなつて生じるステイツク
スリツプパターン(摩擦振動模様)あるいは各セ
グメントの境界部分に発生する縞目模様などを解
消できるとともに、任意の3次元曲面をも高精度
に研磨することができる回転式磁気吸引研磨方法
およびこの研磨方法に適した工具を提供すること
を課題としている。
(Problems to be Solved by the Invention) The present invention has been made in view of the above-mentioned circumstances, and it solves the problem of stick strip patterns (frictional vibration patterns) that occur during polishing work or that occur at the boundaries of each segment. It is an object of the present invention to provide a rotary magnetic attraction polishing method that can eliminate striped patterns and polish arbitrary three-dimensional curved surfaces with high precision, and a tool suitable for this polishing method.

(課題を解決するための手段) 本発明に係る回転式磁気吸引研磨方法は、被研
磨面と対向する端面の3箇所に円滑な突部による
山部をほぼ等配させて形成したリング状をなす砥
石と被研磨材との間に磁気回路を形成することに
より、この磁気回路による吸引力で前記砥石の突
部を被研磨面に押し付け保持させ、前記砥石をリ
ングの中心を回転中心として回転させつつ、被研
磨面に沿つてランダムな速度およびストロークで
ずらし移動させて研磨することを特徴としてい
る。
(Means for Solving the Problems) A rotary magnetic attraction polishing method according to the present invention has a ring shape formed by substantially equally distributing peaks formed by smooth protrusions at three locations on an end face facing the surface to be polished. By forming a magnetic circuit between the eggplant grindstone and the material to be polished, the protrusion of the grindstone is pressed and held against the surface to be polished by the attractive force of this magnetic circuit, and the grindstone is rotated about the center of the ring. It is characterized by polishing by shifting the polishing surface along the surface to be polished at random speeds and strokes.

又、上記回転式磁気研磨方法に適した工具は、
被研磨面と交差する軸線を中心として回転駆動さ
れる回転軸を被研磨面に沿つてランダムな速度お
よびストロークで移動させる移動制御手段およ
び、この回転軸を軸方向に移動可能に支持する支
持手段を設けるとともに、前記回転軸の先端にホ
ルダを首振り可能に取り付けている。このホルダ
における被研磨面との対向面に取り付けた砥石を
前記ホルダの回転中心を中心とするリング状に形
成するとともに、この砥石における被研磨面との
対向面(研磨面)に円滑な突部による3個の山部
をほぼ等配形成して三山の砥石を構成している。
そして、被研磨材との間に磁気回路を形成して前
記砥石の山部を被研磨面に押し付け保持させる研
磨圧を創生する磁気回路形成手段を設けたことを
特徴としている。
In addition, tools suitable for the above rotary magnetic polishing method are:
Movement control means for moving a rotary shaft driven to rotate around an axis intersecting the surface to be polished at random speeds and strokes along the surface to be polished; and support means for supporting the rotary shaft so as to be movable in the axial direction. is provided, and a holder is swingably attached to the tip of the rotating shaft. A grindstone attached to the surface of the holder facing the surface to be polished is formed into a ring shape centered on the rotation center of the holder, and a smooth protrusion is formed on the surface (polishing surface) of the grindstone facing the surface to be polished. The three peaks are arranged approximately equally to form the three mountain whetstones.
The present invention is characterized in that a magnetic circuit forming means is provided which forms a magnetic circuit between the grinding material and the material to be polished to generate a polishing pressure that presses and holds the crest of the grindstone against the surface to be polished.

(作用) 以上のような構成において、回転軸の先端のホ
ルダを介して取り付けられている砥石は、永久磁
石あるいは電磁石などによる磁気回路形成手段に
より形成された磁気回路による吸引力で砥石の山
部を被研磨面に所定の力(研磨圧)で押圧保持さ
せている。又、このように磁気回路による吸引力
で被研磨面に押圧保持される砥石を取り付けたホ
ルダを回転軸の先端に首振り可能に取り付けてい
るために、砥石を被研磨面に押圧保持させる研磨
圧は常に被研磨面の法線方法に沿つた方向に作用
する。
(Function) In the above configuration, the grinding wheel attached via the holder at the tip of the rotating shaft is attracted to the crest of the grinding wheel by the attractive force generated by the magnetic circuit formed by the magnetic circuit forming means such as a permanent magnet or an electromagnet. is pressed and held against the surface to be polished with a predetermined force (polishing pressure). In addition, since the holder with the grindstone, which is held pressed against the surface to be polished by the attraction force generated by the magnetic circuit, is swingably attached to the tip of the rotating shaft, polishing in which the grindstone is held pressed against the surface to be polished is possible. Pressure always acts in a direction normal to the surface to be polished.

従つて、外部からの力で砥石を被研磨面に押圧
保持させる必要性がなく、砥石を取り付けた回転
軸を被研磨面の接線方向に沿つて移動させるのみ
で所期の研磨を行なわせることができるために、
例えば剛性が小さく精度も悪い2自由度のロボツ
トでも高精度の研磨が可能となる。
Therefore, there is no need to press and hold the grindstone against the surface to be polished by external force, and desired polishing can be performed simply by moving the rotating shaft to which the grindstone is attached along the tangential direction of the surface to be polished. In order to be able to
For example, even a two-degree-of-freedom robot with low rigidity and poor precision can perform high-precision polishing.

又、被研磨面の接線方向に砥石を移動させるに
際しては、その速度およびストロークをランダム
にしているために、研磨によるステイツクスリツ
プパターンおよびセグメントの境界部分に発生す
る縞目模様などを解消することもできる。
In addition, when moving the grindstone in the tangential direction of the surface to be polished, the speed and stroke are random, so it is possible to eliminate stick-slip patterns and striped patterns that occur at the boundaries of segments due to polishing. You can also do it.

さらに、砥石をいわゆる3山のリング状に形成
しているために、砥石の静的バランスおよび動的
バランスを向上させることができるとともに、砥
石の山部の先端の曲率よりも小さい曲率をもつ凹
部までをも的確に研磨できる。
Furthermore, since the whetstone is formed into a so-called ring shape with three crests, the static and dynamic balance of the whetstone can be improved, and the concave portion has a smaller curvature than the curvature of the tip of the crest of the whetstone. It can also be polished accurately.

(実施例) 第2図は本発明に係る回転式磁気吸引研磨方法
に適した工具の具体例を示す断面図であり、金型
などで代表される被研磨材4の表面(被研磨面1
1)を研磨する砥石5はリング状に形成されてお
り、この砥石5の内側に磁気回路形成手段として
機能する永久磁石6を配設してこれらをともにホ
ルダ7における前記被研磨面11との対向面に取
り付けている。8は永久磁石6とホルダ7との間
に介在させた薄鋼板製のシムであり、このシム8
の厚さを変えることにより永久磁石6の取り付け
高さを変更できるようにしている。
(Example) FIG. 2 is a sectional view showing a specific example of a tool suitable for the rotary magnetic attraction polishing method according to the present invention.
A grindstone 5 for polishing 1) is formed in a ring shape, and a permanent magnet 6 functioning as a magnetic circuit forming means is disposed inside the grindstone 5, and both of them are connected to the surface to be polished 11 in the holder 7. It is attached to the opposite side. 8 is a shim made of thin steel plate interposed between the permanent magnet 6 and the holder 7;
By changing the thickness of the permanent magnet 6, the mounting height of the permanent magnet 6 can be changed.

前記ホルダ7はジヨイント9を介して回転軸1
0の先端に首振り可能に取り付けられており、前
記被研磨面11と交差する直線を軸心として回転
駆動される回転軸10と一体に回転する。又、前
記砥石5は摩耗が少なく目づまりがなく、しか
も、強磁性体である鋳鉄を母地とした鋳鉄ボンド
ダイヤモンド砥石で構成することが望まれる。
The holder 7 is connected to the rotating shaft 1 via a joint 9.
It is swingably attached to the tip of 0 and rotates together with a rotating shaft 10 that is driven to rotate about a straight line that intersects the surface to be polished 11. Further, it is desirable that the grinding wheel 5 has little wear and does not become clogged, and is constructed of a cast iron bonded diamond grinding wheel whose base material is cast iron, which is a ferromagnetic material.

以上の構成において、砥石5と被研磨面11と
の間には磁気回路形成手段である永久磁石6によ
る磁気回路が第2図に点線で示すように形成さ
れ、この磁気回路による磁気吸引力を研磨圧とし
て砥石5が被研磨面11に圧接保持される。な
お、前記シム8の厚みを変えて永久磁石6の取り
付け高さを変化させれば磁気吸引力を変化させる
ことができ、これにともなつて砥石5に加えられ
る研磨圧を変化させることができる。
In the above configuration, a magnetic circuit is formed between the grinding wheel 5 and the surface to be polished 11 by the permanent magnet 6, which is a magnetic circuit forming means, as shown by the dotted line in FIG. The grindstone 5 is held in pressure contact with the surface to be polished 11 as a polishing pressure. Note that by changing the thickness of the shim 8 and changing the mounting height of the permanent magnet 6, the magnetic attraction force can be changed, and accordingly, the polishing pressure applied to the grindstone 5 can be changed. .

従つて、このような状態で回転軸10を回転駆
動させつつ被研磨面11に沿つて移動させれば、
砥石5に含有されている砥粒で被研磨面11が回
転研磨される。又、このような回転研磨に際して
は、回転軸10の移動にともなつて磁石6はホル
ダ8の首振り作用で被研磨面11の法線方向に倣
つた状態で釣り合うためにこの磁石6とともにホ
ルダ7に取り付けられている砥石5は常に被研磨
面11の法線方向に一定の圧力で加圧保持され
る。このために、回転軸10には砥石5を被研磨
面11に加圧する方向への力(加圧力)を加える
必要性がなく、接線方向への移動に必要な力を加
えるのみでよい。従つて、剛性が小さく精度の悪
い2自由度のロボツトであつても自由曲面の研磨
を行なうことができる。
Therefore, if the rotating shaft 10 is rotated and moved along the polished surface 11 in this state,
The surface to be polished 11 is rotationally polished using abrasive grains contained in the grindstone 5. In addition, during such rotary polishing, as the rotating shaft 10 moves, the magnet 6 follows the normal direction of the surface to be polished 11 due to the swinging action of the holder 8, and in order to maintain balance, the magnet 6 and the holder are moved together. The grindstone 5 attached to the grinding wheel 7 is always held under constant pressure in the normal direction of the surface to be polished 11. For this reason, there is no need to apply a force (pressure force) to the rotating shaft 10 in the direction of pressing the grindstone 5 against the surface to be polished 11, and it is only necessary to apply the force necessary for moving the grindstone 5 in the tangential direction. Therefore, even a two-degree-of-freedom robot with low rigidity and poor precision can polish a free-form surface.

なお、実施例では磁気回路形成手段として永久
磁石6を用いているが、この永久磁石6に代えて
鉄心にコイルを巻装した電磁石で磁気回路形成手
段を構成することもできる。
In the embodiment, the permanent magnet 6 is used as the magnetic circuit forming means, but instead of the permanent magnet 6, the magnetic circuit forming means may be formed of an electromagnet having a coil wound around an iron core.

第3図および第4図は本発明の他の実施例を示
すものであり、本実施例においては回転軸18を
x軸方向およびy軸方向に移動させる移動手段と
z軸方向(回転軸18の軸心方向)に移動自在に
支持する手段の具体例を示している。
3 and 4 show another embodiment of the present invention. In this embodiment, a moving means for moving the rotating shaft 18 in the x-axis direction and a y-axis direction and a moving means for moving the rotating shaft 18 in the z-axis direction (the rotating shaft 18 A specific example of means for supporting the device movably in the axial direction) is shown.

すなわち、第3図は回転軸18の回転駆動機構
およびz軸方向への支持機構を示したものであ
り、12は砥石、13は永久磁石、14はホルダ
であり、このホルダ14にボール座15を取り付
け、砥石12をホルダ14に保持させるととも
に、永久磁石13をボール座15に保持させてい
る。前記ボール座15にはリテライナ16および
スナツプリング17を介して回転軸18の先端に
設けたボール部20を回転自在に連結保持させる
ことにより、回転軸18に対してホルダ14およ
びボール座15を任意の方向に首振りできるよう
にしている。21は回転軸18のボール部20と
ボール座15とを回転方向に拘束してトルクを伝
達する植込みピンであり、前記回転軸18は回転
用モータ22により回転駆動される。
That is, FIG. 3 shows a rotational drive mechanism and a support mechanism for the rotating shaft 18 in the z-axis direction, where 12 is a grindstone, 13 is a permanent magnet, and 14 is a holder, in which a ball seat 15 is attached. is attached, and the grindstone 12 is held in the holder 14, and the permanent magnet 13 is held in the ball seat 15. By rotatably connecting and holding a ball portion 20 provided at the tip of the rotating shaft 18 to the ball seat 15 via a retainer 16 and a snap spring 17, the holder 14 and the ball seat 15 can be moved freely relative to the rotating shaft 18. It allows you to swing your head in any direction. Reference numeral 21 denotes an implant pin that restrains the ball portion 20 of the rotary shaft 18 and the ball seat 15 in the rotational direction and transmits torque, and the rotary shaft 18 is rotationally driven by the rotation motor 22 .

なお、前記回転用モータ22の出力軸にはフレ
キシブルカツプリング24を介してトルクスリー
ブ25を連結し、このトルクスリーブ25にサス
ペンドスリーブ26およびスプラインドスリーブ
28を一体に結合している。そして、前記回転軸
18に設けたスプライン部を前記スプラインドス
リーブ28にスプライン嵌合(軸方向摺動自在に
のみ嵌合)させることにより、回転用モータ22
を取り付けたブラケツト29およびこのブラケツ
ト29の前面に取り付けられて前記フレキシブル
カツプリング24およびトルクスリーブ25など
を覆う保持アーム23に対して回転軸18を軸方
向(z軸方向)に移動自由に支持させている。1
9は回転軸18がスプラインドスリーブ28から
脱落してしまうことを防止する軸端座金であり、
回転軸18の基端側の端面にボルトで締付固定さ
れている。27はトルクスリーブ25およびサス
ペンドスリーブ26を保持アーム23に軸支する
軸受である。
A torque sleeve 25 is connected to the output shaft of the rotation motor 22 via a flexible coupling 24, and a suspend sleeve 26 and a splinted sleeve 28 are integrally connected to the torque sleeve 25. Then, by spline-fitting the spline portion provided on the rotating shaft 18 to the splined sleeve 28 (fitting only so as to be slidable in the axial direction), the rotating motor 22
The rotary shaft 18 is supported so as to be freely movable in the axial direction (z-axis direction) with respect to the bracket 29 to which the rotary shaft 18 is attached and the holding arm 23 which is attached to the front surface of the bracket 29 and covers the flexible coupling 24, the torque sleeve 25, etc. ing. 1
9 is a shaft end washer that prevents the rotating shaft 18 from falling off the splinted sleeve 28;
It is fastened and fixed to the proximal end face of the rotating shaft 18 with bolts. A bearing 27 pivotally supports the torque sleeve 25 and the suspend sleeve 26 on the holding arm 23.

一方、前記ブラケツト29は第4図に示すよう
にx軸方向移動装置30およびy軸方向移動装置
34により保持されている。この第4図におい
て、x軸方向移動装置30は、y軸方向移動装置
34を取り付けたx軸移動台31と、このx軸移
動台31に螺挿されたボールねじ軸32と、この
ボールねじ軸32を正逆回転駆動するDCサーボ
モータ33とで主要部を構成している。又、前記
y軸方向移動装置34は、前記ブラケツト29を
取り付けたy軸移動台35と、このy軸移動台3
5に螺挿したボールねじ軸36と、このボールね
じ軸36を正逆回転駆動するDCサーボモータ3
7とで主要部を構成している。そして、前記両ボ
ールねじ軸32,36を回転軸18の軸線と直交
する平面と平行な平面内で直交させることによ
り、DCサーボモータ33,37の正逆回転にと
もなつてブラケツト29をx軸方向およびy軸方
向にそれぞれ往復移動できるようにしている。
On the other hand, the bracket 29 is held by an x-axis moving device 30 and a y-axis moving device 34, as shown in FIG. In FIG. 4, the x-axis moving device 30 includes an x-axis moving table 31 to which a y-axis moving device 34 is attached, a ball screw shaft 32 screwed into the x-axis moving table 31, and a ball screw shaft 32 screwed into the x-axis moving table 31. The main part is composed of a DC servo motor 33 that drives the shaft 32 in forward and reverse rotation. Further, the y-axis direction moving device 34 includes a y-axis moving table 35 to which the bracket 29 is attached, and this y-axis moving table 3.
5 and a DC servo motor 3 that drives the ball screw shaft 36 in forward and reverse rotation.
7 constitutes the main part. By making both the ball screw shafts 32 and 36 orthogonal in a plane parallel to a plane perpendicular to the axis of the rotating shaft 18, the bracket 29 can be moved along the x-axis as the DC servo motors 33 and 37 rotate forward and backward. It is designed to be able to reciprocate in both the direction and the y-axis direction.

なお、このようなx軸方向およびy軸方向への
移動量ならびに移動速度をマイクロコンピユータ
38でランダムに制御することにより、ブラケツ
ト29(砥石)の移動速度およびストロークをラ
ンダム制御するようにしている。このために、研
磨作業時における各セグメントの境界に発生する
縞目模様がぼかされるとともに、ステイツクスリ
ツプパターンを解消できる。
Note that by randomly controlling the amount and speed of movement in the x-axis and y-axis directions by the microcomputer 38, the speed and stroke of the bracket 29 (grindstone) are randomly controlled. Therefore, the striped pattern that occurs at the boundaries of each segment during the polishing operation is blurred, and the stick-slip pattern can be eliminated.

第5図は本発明に用いる砥石5,12の具体形
状を示したものであり、第5図aに示したように
被研磨面との対向面(研磨面)を平坦に形成した
場合は、被研磨面11に僅かな凹みがあつても研
磨残しを生じるが、第5図bに示すように被研磨
面11との対向面の3箇所に円滑な突部による山
部(サインカーブ状の突部)5a,12aをほぼ
等配させて形成した三山砥石を用いた場合は、こ
の砥石5,12の山部5a,12aの先端の曲率
よりも小さい曲率の凹曲面をも的確に研磨するこ
とができる。
FIG. 5 shows the specific shape of the grindstones 5 and 12 used in the present invention, and when the surface facing the surface to be polished (polishing surface) is formed flat as shown in FIG. 5a, Even if the surface to be polished 11 has a slight dent, it will leave unpolished parts, but as shown in FIG. When using a three-mounted whetstone formed by distributing protrusions 5a and 12a approximately equally, even concave curved surfaces with a smaller curvature than the curvature of the tips of the peaks 5a and 12a of the whetstones 5 and 12 can be accurately polished. be able to.

又、三山砥石を用いた場合は、被研磨面11が
凸曲面あるいは凹曲面のいずれであつても砥石
5,12と被研磨面11とが常に3点で接触する
ために研磨圧を安定させることができ、しかも、
平面砥石の場合のような被研磨面の凹凸による片
あたりの状態を回避できるので研磨精度も高くな
る。なお、砥石と磁石とを別に設ける代りに磁気
体化した砥石(砥粒含有磁石)を用いて研磨を行
なうことも可能である。
Furthermore, when a three-way grindstone is used, the polishing pressure is stabilized because the grinding wheels 5, 12 and the surface to be polished 11 are always in contact at three points, regardless of whether the surface to be polished 11 is a convex curved surface or a concave curved surface. can be done, and
Polishing accuracy is also increased because it is possible to avoid uneven contact due to unevenness on the surface to be polished, which is the case with flat grindstones. Note that instead of separately providing a grindstone and a magnet, it is also possible to perform polishing using a magnetic grindstone (abrasive grain-containing magnet).

(発明の効果) 本発明は、磁気吸引力で砥石を被研磨面に押圧
保持させるようにしているために、研磨圧を得る
ための加圧装置をもうける必要性がなく、砥石を
移動させる保持アームに対する反力を小さくする
ことができるとともに慣性力も小さくなり、従つ
て、砥石を移動させる場合の動特性をよくしてス
テイツクスリツプパターンの発生を予防できると
ともに、砥石の移動制御を容易化できる。
(Effects of the Invention) Since the present invention uses magnetic attraction to press and hold the whetstone against the surface to be polished, there is no need to provide a pressure device to obtain polishing pressure, and there is no need to provide a pressurizing device to obtain polishing pressure. The reaction force against the arm can be reduced, and the inertia force can also be reduced. Therefore, the dynamic characteristics when moving the grinding wheel can be improved, preventing the occurrence of stick slip patterns, and the movement of the grinding wheel can be easily controlled. .

又、本発明は、軸方向に移動自在に支持された
回転軸の先端に砥石を首振り可能に取り付け、し
かも、接触安定性に優れたリング状の三山砥石を
用いているために、被研磨面の凹凸に関係なく砥
石を被研磨面に容易に倣わせて一定の研磨圧を得
ることができるなど、片あたりおよび研磨残しが
ない良好な研磨を行なわせることができる。
Furthermore, in the present invention, the grinding wheel is swingably attached to the tip of the rotary shaft that is supported so as to be movable in the axial direction, and a ring-shaped three-way grinding wheel with excellent contact stability is used. It is possible to easily make the grindstone follow the surface to be polished and obtain a constant polishing pressure regardless of the unevenness of the surface, and it is possible to perform good polishing without unevenness or polishing residue.

さらに本発明は、砥石の移動速度およびストロ
ークをランダムに設定しているために、研磨作業
に際して各セグメントの境界に発生する縞目模様
を防止できるとともに、ステイツクスリツプパタ
ーンの発生をも回避することができるなど、高精
度の研磨作業を行なうことができる。
Furthermore, since the moving speed and stroke of the grindstone are set randomly, the present invention can prevent striped patterns that occur at the boundaries of each segment during polishing work, and also avoids the generation of stick-slip patterns. High-precision polishing work can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本原理を示す説明図、第2
図は本発明に係る回転式磁気吸引研磨工具の実施
例を示す先端部分の断面図、第3図は本発明に係
る回転式磁気吸引研磨工具の他の実施例を示す断
面図、第4図は同じく移動制御手段を示す正面
図、第5図は砥石の具体例を示す斜視図である。 1,5,12……砥石、5a,12a……山
部、2,6,13……永久磁石、3,11……被
研磨面、4……被研磨材、7,14……ホルダ、
9……ジヨイント、10,18……回転軸、15
……ボール座、20……ボール部、21……植込
みピン、22……回転用モータ、23……保持ア
ーム、24……フレキシブルカツプリング、25
……トルクスリーブ、26……サスペンドスリー
ブ、27……軸受、28……スプラインドスリー
ブ、29……ブラケツト、30……x軸方向移動
装置、31……x軸移動台、32,36……ボー
ルねじ軸、33,37……DCサーボモータ、3
4……y軸方向移動装置、35……y軸移動台、
38……マイクロコンピユータ。
Figure 1 is an explanatory diagram showing the basic principle of the present invention, Figure 2 is an explanatory diagram showing the basic principle of the invention.
The figure is a cross-sectional view of the tip portion showing an embodiment of the rotary magnetically suction polishing tool according to the present invention, FIG. 3 is a cross-sectional view showing another example of the rotary magnetically suction polishing tool according to the present invention, and FIG. Similarly, FIG. 5 is a front view showing the movement control means, and FIG. 5 is a perspective view showing a specific example of the grindstone. 1, 5, 12... Grinding wheel, 5a, 12a... Mountain part, 2, 6, 13... Permanent magnet, 3, 11... Surface to be polished, 4... Material to be polished, 7, 14... Holder,
9... Joint, 10, 18... Rotating axis, 15
... Ball seat, 20 ... Ball part, 21 ... Implant pin, 22 ... Rotation motor, 23 ... Holding arm, 24 ... Flexible coupling, 25
... Torque sleeve, 26 ... Suspend sleeve, 27 ... Bearing, 28 ... Splinted sleeve, 29 ... Bracket, 30 ... Ball screw shaft, 33, 37...DC servo motor, 3
4...y-axis direction moving device, 35...y-axis moving table,
38...Microcomputer.

Claims (1)

【特許請求の範囲】 1 円滑な突部による3個の山部を等配に形成し
たリング状の砥石の前記山部を被研磨面にむけて
砥石と被研磨材との間に磁気回路を形成し、この
磁気回路による吸引力で砥石の山部を被研磨面に
押し付け保持させつつ砥石をリング中心を回転中
心として回転させかつランダムな速度およびスト
ロークにより被研磨面に沿つてずらし移動させな
がら研磨することを特徴とする回転式磁気吸引研
磨方法。 2 被研磨面と交差する軸線を中心として回転駆
動される回転軸と、前記回転軸を被研磨面に沿つ
てランダムな速度およびストロークでずらし移動
させる移動制御手段と、前記回転軸を軸方向に移
動可能に支持する支持手段と、前記回転軸の先端
に首振り可能に取り付けたホルダと、前記ホルダ
に取り付けられホルダの回転中心を中心とするリ
ング状に形成され被研磨面と対向する面を円滑な
突部による3個の山部に等配形成しかつ山部を被
研磨面に向けて取り付けた砥石と、前記砥石と被
研磨材との間に磁気回路を形成して砥石を被研磨
面に押し付け保持させる研磨圧を創生する磁気回
路形成手段を具備することを特徴とする回転式磁
気吸引研磨工具。
[Scope of Claims] 1. A ring-shaped grinding wheel having three equally spaced peaks formed by smooth protrusions, with the peaks facing the surface to be polished, and a magnetic circuit between the grindstone and the material to be polished. The ridges of the whetstone are pressed and held against the surface to be polished by the attraction force generated by this magnetic circuit, while the whetstone is rotated around the ring center and shifted along the surface to be polished at random speeds and strokes. A rotary magnetic suction polishing method characterized by polishing. 2. A rotating shaft rotationally driven around an axis intersecting the surface to be polished, a movement control means for shifting the rotating shaft at random speed and stroke along the surface to be polished, and a movement control means for moving the rotating shaft in the axial direction. a support means movably supported; a holder swingably attached to the tip of the rotating shaft; and a ring-shaped surface attached to the holder and centered around the rotation center of the holder, the surface facing the surface to be polished. A grindstone has three smooth protrusions that are evenly spaced and is attached with the peaks facing the surface to be polished, and a magnetic circuit is formed between the grindstone and the material to be polished, so that the grindstone can be polished. A rotary magnetic suction polishing tool characterized by comprising a magnetic circuit forming means that generates polishing pressure to press and hold a surface.
JP59062212A 1984-03-31 1984-03-31 Rotary type magnetic attraction polishing and apparatus thereof Granted JPS60207769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59062212A JPS60207769A (en) 1984-03-31 1984-03-31 Rotary type magnetic attraction polishing and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59062212A JPS60207769A (en) 1984-03-31 1984-03-31 Rotary type magnetic attraction polishing and apparatus thereof

Publications (2)

Publication Number Publication Date
JPS60207769A JPS60207769A (en) 1985-10-19
JPH0431820B2 true JPH0431820B2 (en) 1992-05-27

Family

ID=13193607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59062212A Granted JPS60207769A (en) 1984-03-31 1984-03-31 Rotary type magnetic attraction polishing and apparatus thereof

Country Status (1)

Country Link
JP (1) JPS60207769A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63124464U (en) * 1987-02-05 1988-08-12
JPH01127274A (en) * 1987-11-11 1989-05-19 Kyoei Denko Kk Magnetic polishing unit and surface polishing method
JPH0332570A (en) * 1989-06-27 1991-02-13 Okuma Mach Works Ltd Tool shaft sleeve replacing-type rotary tool shaft unit
JP2539523Y2 (en) * 1991-03-08 1997-06-25 日本碍子株式会社 Polishing equipment for insulator sand part
CN114324433B (en) * 2021-12-28 2024-06-07 中国葛洲坝集团水泥有限公司 XRF analysis-based rapid detection method for heavy metal chromium in sulfate slag

Also Published As

Publication number Publication date
JPS60207769A (en) 1985-10-19

Similar Documents

Publication Publication Date Title
JP2564214B2 (en) Uniform speed double-side polishing machine and method of using the same
JP6911547B2 (en) Super finishing method for grooves and manufacturing method for bearings
JPH0493169A (en) Polishing spindle
JPH0431820B2 (en)
JPH0512108B2 (en)
JPS6052246A (en) Polishing machine
JP3160841B2 (en) Method and apparatus for brush polishing of annular disk
JPH02131851A (en) Polishing device for curved face
JPH05169B2 (en)
JPH018287Y2 (en)
JPH01153258A (en) Polishing machine
JP2003225851A (en) Polishing method and polishing machine
JPH10286771A (en) Grinding device and grinding method
JPH0426206Y2 (en)
JPH04189458A (en) Curved surface polishing machine
JP2000263407A (en) Method and device for grinding peripheral spherical surface part and grinding wheel
JPH02139177A (en) Polishing tool
JPS609648A (en) Grinder
JPH03256661A (en) Spherical body machining device
JPS60213475A (en) Magnetic attraction type rotary polishing tool
EP4210904A1 (en) A machining tool
JP2000117609A (en) Grinding tool
JPS61209874A (en) Spherical body working device
JPH02124268A (en) Dresser for plane grinder
JPH05228818A (en) Polishing and holding device