JPH0431730Y2 - - Google Patents

Info

Publication number
JPH0431730Y2
JPH0431730Y2 JP5883086U JP5883086U JPH0431730Y2 JP H0431730 Y2 JPH0431730 Y2 JP H0431730Y2 JP 5883086 U JP5883086 U JP 5883086U JP 5883086 U JP5883086 U JP 5883086U JP H0431730 Y2 JPH0431730 Y2 JP H0431730Y2
Authority
JP
Japan
Prior art keywords
tube
metal tube
lamp
sodium
arc tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5883086U
Other languages
Japanese (ja)
Other versions
JPS62171152U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP5883086U priority Critical patent/JPH0431730Y2/ja
Publication of JPS62171152U publication Critical patent/JPS62171152U/ja
Application granted granted Critical
Publication of JPH0431730Y2 publication Critical patent/JPH0431730Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

〔考案の目的〕 (産業上の利用分野) 本考案は発光管バルブとして透光性セラミツク
スを使用する高圧ナトリウムランプに関する。 (従来の技術) 透光性セラミツクスたとえばアルミナ等の高密
度多結晶体からなるセラミツクスあるいはルビ
ー、サフアイア等の金属酸化物単結晶体からなる
セラミツクスを発光管バルブとして使用する高圧
ナトリウムランプは発光効率の極めて優れたラン
プとして知られている。このようなランプの発光
管バルブは、セラミツクスが高融点物質であるた
め石英ガラス製発光管バルブの場合のようにその
管端部を溶融して電極を封着することができない
ので、セラミツクスたとえばアルミナセラミツク
スの場合にはこれと熱膨張率が近似するたとえば
ニオブやタンタル等の高融点金属または同種セラ
ミツクスからなる閉塞体を用い、ガラスソルダの
ような封着材を介して上記両管端部を封止し、こ
の閉塞体にそれぞれ電極を支持させている。 そして上記一対の電極の内、少なくとも一方は
閉塞体を気密に貫通するたとえばニオブからなる
排気管を兼ねる金属管の一端に固着して支持さ
れ、始動用希ガス、水銀およびナトリウムを封入
した後、上記金属管の他端は圧着封止される。 また、上記発光管は通常内部を真空にした外管
内に封装されてランプが構成される。 ところで、このような構成のランプは、点灯中
にランプ電圧が大巾に上昇し、電源電圧が急激に
変動した場合に立ち消えを生じるものがあつた。 本考案者等はこのような不良発生の原因につき
調査した結果、本来は最冷部である金属管の封止
部側に溜まる筈の過剰に封入した水銀やナトリウ
ムが、発光管バルブと閉塞体との封止部内面側に
も溜まつていることを見い出した。このような状
態にあると、上記発光管バルブの封止部側は最冷
部である金属管封止部側よりも高温であるから、
当然発光管内の水銀やナトリウムの蒸気圧は上昇
するばかりでなく、さらにナトリウムは発光管バ
ルブの材料のアルミナや封着材のガラスソルダと
反応し消失するので、相対的に水銀分圧が上昇
し、ランプ電圧は上昇するものと推察される。次
に過剰の水銀やナトリウムが金属管封止部側から
発光管封止部方向へ移動する原因であるが、これ
は高圧ナトリウムランプに使用される上記金属管
の材料金属が限られたもので、たとえばよく使用
されるニオブは鉄、ニツケル、銅等に比較して加
工性が悪く、インゴツトから管状に成形する際の
圧延、押し出し、管引等の工程で金属管の表面に
管軸に沿う多数の細長溝状のしわを生じ、ランプ
が点滅を繰り返えすうちに、金属管内に溜まつて
いる水銀とナトリウムとからなるナトリウムアマ
ルガムは溶けて液状となり、毛細管現象によつて
上記細長溝状のしわを伝わつてより高温の発光管
内方向へ移動するものと考えられる。特に上記毛
細管現象を呈するのは幅が3μ以上あるしわで、
本考案者等の観察によれば、このような幅広のし
わの中にのみ封入物が浸入していることが判つ
た。 (考案が解決しようとする問題点) 上記のように最冷部である金属管の封止部側に
溜める筈の封入物が、金属管の内面に残る細長溝
状のしわを伝わつて高温部方向へ移動するため、
上記封入物の発光管内蒸気圧が上昇し、ランプ電
圧が大巾に上昇して立ち消えを生じるものが発生
し、これを防止する適当な手段がなかつた。 本考案は上記欠点を除去するもので、金属管の
封止端部側に溜める封入物の不所望の移動を防止
して、ランプ電圧の大巾上昇に基づく立ち消え不
良の発生を防ぎ、長寿命の高圧ナトリウムランプ
を提供することを目的とする。 〔考案の構成〕 (問題点を解決するための手段) 本考案の高圧ナトリウムランプでは、透光性セ
ラミツクスからなる発光管バルブの両端部に対設
する一対の電極の内、少なくとも一方の電極を金
属管で支持し、この金属管の内面の管軸方向に存
在する幅3μ以上の細長溝状のしわの数が、金属
管内面の円周方向100μ当り平均で3本以下とな
るようにしたものである。 (作用) 本考案の高圧ナトリウムランプは、金属管の成
形加工工程においてこの管内面に発生し、かつ、
金属管の封止端部に溜まる過剰封入の水銀やナト
リウムの発光管内方向への望ましくない移動の原
因となる幅広の細長溝状のしわの数を少なくした
ので、実質上支障のない程度にまで上記過剰封入
物の移動を防止でき、これによつて封入物の不所
望な蒸気圧上昇によるランプ電圧の大幅上昇に基
づく立ち消えランプの発生を防ぐことができる。 (実施例) 以下、図面に示した実施例に基づいて本考案を
詳細に説明する。第3図は本考案の高圧ナトリウ
ムランプの概略的構成の説明図で、1は硬質ガラ
ス製の外管、2は発光管、3は透光性セラミツク
スたとえばアルミナセラミツクスからなる発光管
バルブで、その両端開口部は同じくアルミナセラ
ミツクスからなる閉塞体4A,4Bによりガラス
ソルダを介して気密に封止されている。上記一方
の閉塞体4Aにはガラスソルダを介してたとえば
ニオブからなる金属管5が気密に貫通し、金属管
5の一端には電極6Aが固着して支持され、他端
は圧着して気密な封止部5aが形成され、他方の
閉塞体4Bにはガラスソルダを介してたとえばニ
オブからなるリード線7が気密に貫通し、その一
端には他方の電極6Bが固着支持されている。 また、発光管2内には始動用希ガスと共にラン
プ点灯時に蒸発する量よりも過剰の水銀とナトリ
ウムが封入されている。 さらに、第1図は上記金属管5の縦断面図、第
2図は同金属管5内面の一部拡大図を示し、8は
金属管をインゴツトから成形加工する工程で生じ
た管軸に沿う細長溝状のしわで、これ等のしわの
内、その幅Dが3μ以上のものは、金属管5内面
の矢印で示す円周方向100μ当り平均で3本以下
になるように設定してある。なお、9は過剰に封
入されて金属管5の封止部5a側に溜まる水銀と
ナトリウムからなるナトリウムアマルガム、10
は発光管内に連通する排気孔、6Aaは電極6A
の電極軸である。このような構成であれば、ラン
プ点灯時に昇温して溶融し、液体状になつた過剰
のナトリウムアマルガム9が、金属管5の封止部
5a側つまり最冷部から細長溝状のしわ8を毛細
管現象によつて伝わり、より高温の電極軸6Aa
側へ移動しようとしても、この移動を助ける3μ
以上の幅広のしわ8の数は少なく設定されている
から、実質的に上記ナトリウムアマルガムの不所
望な移動は阻止される。したがつて、過剰の封入
ナトリウムアマルガム9が、最冷部からより高温
部に移動することによつて生じる封入物の蒸気圧
の不所望の上昇、それに基づくランプ電圧の大巾
の上昇、ランプの立ち消えが防止できる。 本実施例ランプと従来ランプ各100本について
比較試験したところ、点灯3000時間で従来ランプ
は4本の立ち消えを生じたのに対し、実施例ラン
プでは立ち消えを生じたものは皆無であつた。 次に封入物の移動の原因となる幅Dが3μ以上
のしわ8の金属管5内面の円周方向100μ当りの
平均数と、ランプ電圧VLおよび立ち消え不良発
生との関係について試験した結果を下表に示す。
なお、上記金属管5内面に生じるしわ8は、その
材料金属のインゴツトから管状に成形する際の圧
延、押し出し、管引き、焼鈍さらには例えばスキ
ンパス法と呼ばれる金属の表面にだけ塑性変形を
加えて、表面の結晶粒を細かくして滑らかにする
加工方法等の各加工条件により、その発生数や幅
Dが異なるので、種々な加工条件によつて作られ
た金属管につき、幅Dが3μ以上のしわ8の発生
数によつて層別して、それぞれの金属管5を使用
して各100本づつのランプを試作し、試験に供し
た。また、ランプは70Wと150Wの2品種の高圧
ナトリウムランプについて行なつた。
[Purpose of the invention] (Field of industrial application) The present invention relates to a high-pressure sodium lamp that uses translucent ceramics as an arc tube bulb. (Prior art) High-pressure sodium lamps that use translucent ceramics, such as ceramics made of high-density polycrystals such as alumina, or ceramics made of single crystals of metal oxides such as ruby or sapphire, as arc tube bulbs have low luminous efficiency. Known as an extremely excellent lamp. The arc tube bulb of such a lamp is made of ceramics, such as alumina, because the ceramic is a high-melting point material, so it is not possible to melt the tube end and seal the electrodes as in the case of a quartz glass arc tube bulb. In the case of ceramics, a closure body made of a high melting point metal such as niobium or tantalum or similar ceramics with a coefficient of thermal expansion similar to that of ceramics is used, and the ends of the tubes are sealed with a sealing material such as glass solder. and each electrode is supported by this closure. At least one of the pair of electrodes is fixedly supported at one end of a metal tube made of, for example, niobium and which also serves as an exhaust pipe, which airtightly penetrates the closing body, and after filling it with starting rare gas, mercury, and sodium, The other end of the metal tube is crimped and sealed. Further, the above-mentioned arc tube is usually sealed in an outer tube whose inside is evacuated to form a lamp. By the way, some lamps having such a configuration cause the lamp to go out when the lamp voltage increases significantly while the lamp is lit and the power supply voltage fluctuates rapidly. As a result of investigating the cause of such failures, the inventors of the present invention found that excessive mercury and sodium, which should have accumulated in the coldest part of the metal tube at the sealing part, were leaking into the arc tube bulb and the blocker. It was also found that the particles were accumulated on the inner surface of the sealing part. In this state, the sealed part side of the arc tube bulb is higher in temperature than the metal tube sealed part side, which is the coldest part.
Naturally, not only does the vapor pressure of mercury and sodium within the arc tube increase, but sodium also reacts with alumina, the material of the arc tube bulb, and glass solder, the sealing material, and disappears, causing a relative increase in the partial pressure of mercury. , the lamp voltage is presumed to increase. Next, the cause of excess mercury and sodium moving from the metal tube sealing part toward the arc tube sealing part is that the metal tube used in high-pressure sodium lamps is made of a limited amount of metal. For example, niobium, which is commonly used, has poor workability compared to iron, nickel, copper, etc., and during the rolling, extrusion, tube drawing, etc. processes when forming an ingot into a tube shape, it forms on the surface of the metal tube along the tube axis. As the lamp continues to blink, the sodium amalgam made up of mercury and sodium that has accumulated inside the metal tube melts and becomes liquid, and due to capillary action, the long and narrow grooves form. It is thought that the particles move along the wrinkles of the arc tube toward the inside of the arc tube, where the temperature is higher. In particular, wrinkles with a width of 3μ or more exhibit the above-mentioned capillary phenomenon.
According to the observations of the inventors of the present invention, it was found that the inclusion material penetrated only into such wide wrinkles. (Problem to be solved by the invention) As mentioned above, the inclusions that are supposed to accumulate on the sealed part side of the metal tube, which is the coldest part, propagate through the elongated groove-shaped wrinkles left on the inner surface of the metal tube and reach the high temperature part. To move in the direction of
The vapor pressure of the above-mentioned filler in the arc tube increases, and the lamp voltage increases significantly, causing some lamps to turn off, and there is no suitable means for preventing this. The present invention eliminates the above-mentioned drawbacks by preventing the undesired movement of the filler material accumulated at the sealed end of the metal tube, preventing the occurrence of failures caused by a large increase in lamp voltage, and extending the life of the lamp. The purpose is to provide high pressure sodium lamps. [Structure of the invention] (Means for solving the problems) In the high-pressure sodium lamp of the invention, at least one of the pair of electrodes disposed opposite to each other at both ends of the arc tube bulb made of translucent ceramic is Supported by a metal tube, the number of elongated groove-like wrinkles with a width of 3 μ or more existing in the tube axis direction on the inner surface of the metal tube is on average 3 or less per 100 μ in the circumferential direction of the inner surface of the metal tube. It is something. (Function) The high-pressure sodium lamp of the present invention is characterized by the fact that during the molding process of the metal tube, hydrogen is generated on the inner surface of the tube, and
We have reduced the number of wide, elongated groove-like wrinkles that cause undesirable migration of excess mercury and sodium that accumulates at the sealed end of the metal tube into the arc tube, so that there is virtually no problem. The movement of the excess fill material can be prevented, thereby preventing the occurrence of an extinguished lamp due to a large increase in lamp voltage due to an undesired increase in vapor pressure of the fill material. (Example) Hereinafter, the present invention will be described in detail based on the example shown in the drawings. FIG. 3 is an explanatory diagram of the general structure of the high-pressure sodium lamp of the present invention, in which 1 is an outer tube made of hard glass, 2 is an arc tube, and 3 is an arc tube bulb made of translucent ceramics, such as alumina ceramics. The openings at both ends are hermetically sealed by glass solder with closing bodies 4A and 4B also made of alumina ceramics. A metal tube 5 made of, for example, niobium passes through the one closure body 4A in an airtight manner through a glass solder, and an electrode 6A is fixedly supported at one end of the metal tube 5, and the other end is crimped to form an airtight seal. A sealing portion 5a is formed, and a lead wire 7 made of, for example, niobium passes through the other closure body 4B in an airtight manner through a glass solder, and the other electrode 6B is fixedly supported at one end of the lead wire 7. Further, the arc tube 2 is filled with mercury and sodium in excess of the amount that evaporates when the lamp is lit, together with a starting rare gas. Further, FIG. 1 is a longitudinal cross-sectional view of the metal tube 5, and FIG. 2 is a partially enlarged view of the inner surface of the metal tube 5, and 8 is a cross-sectional view along the tube axis generated in the process of forming the metal tube from an ingot. Among these wrinkles in the form of long and narrow grooves, those with a width D of 3μ or more are set so that the average number of wrinkles is 3 or less per 100μ in the circumferential direction indicated by the arrow on the inner surface of the metal tube 5. . In addition, 9 is a sodium amalgam consisting of mercury and sodium that is excessively sealed and accumulates on the sealing part 5a side of the metal tube 5;
is an exhaust hole that communicates with the inside of the arc tube, and 6Aa is the electrode 6A.
This is the electrode axis. With this configuration, when the lamp is turned on, the excess sodium amalgam 9, which is heated and melted and turned into a liquid, forms elongated groove-shaped wrinkles 8 from the sealing part 5a side of the metal tube 5, that is, from the coldest part. is transmitted by capillary action to the higher temperature electrode shaft 6Aa.
Even if you try to move to the side, there is a 3μ that helps this movement.
Since the number of wide wrinkles 8 is set to be small, undesired movement of the sodium amalgam is substantially prevented. Therefore, an undesirable increase in the vapor pressure of the inclusion caused by the movement of excess sodium amalgam 9 from the coldest part to the hotter part, a consequent large increase in the lamp voltage, and an increase in the lamp voltage. Disappearance can be prevented. A comparative test was conducted on 100 lamps of this example and 100 conventional lamps, and it was found that four lamps of the conventional lamp went out after 3000 hours of lighting, whereas none of the lamps of this example went out. Next, we will examine the results of a test on the relationship between the average number of wrinkles 8 with a width D of 3μ or more per 100μ in the circumferential direction on the inner surface of the metal tube 5, which causes the movement of the filled material, the lamp voltage VL , and the occurrence of light-out failures. Shown in the table below.
The wrinkles 8 that occur on the inner surface of the metal tube 5 can be caused by rolling, extrusion, tube drawing, annealing, or by applying plastic deformation only to the surface of the metal, such as by the skin pass method, when forming the metal ingot into a tube shape. The number of occurrences and the width D vary depending on each processing condition, such as the processing method used to make the surface crystal grains finer and smoother, so the width D of metal tubes made under various processing conditions may be 3μ or more. The lamps were stratified according to the number of wrinkles 8, and 100 lamps were manufactured using each type of metal tube 5 for testing. In addition, two types of high-pressure sodium lamps, 70W and 150W, were used.

【表】【table】

〔考案の効果〕[Effect of idea]

以上述べたように本考案の構成によれば、発光
管の最冷部である金属管の封止部側に溜まる過剰
封入物の高温部側への移動を防止できるので、発
光管における封入物の蒸気圧の不所望の増大を防
ぎ、ランプ電圧の上昇に基づくランプの立ち消え
発生を防止することができる。
As described above, according to the configuration of the present invention, it is possible to prevent excess inclusions that accumulate on the sealing part side of the metal tube, which is the coldest part of the arc tube, from moving to the high temperature part. It is possible to prevent an undesired increase in the vapor pressure of the lamp, and to prevent the lamp from going out due to an increase in lamp voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本考案の一実施例を示すもので、第1図
は要部である金属管の縦断面図、第2図は同金属
管内面の一部拡大図、第3図はランプ全体の概略
的構成説明図である。 1……外管、2……発光管、3……発光管バル
ブ、4A,4B……閉塞体、5……金属管、5a
……金属管の封止部、6A,6B……電極、8…
…しわ、9……ナトリウムアマルガム。
The drawings show one embodiment of the present invention; Fig. 1 is a longitudinal cross-sectional view of the main part of the metal tube, Fig. 2 is a partially enlarged view of the inner surface of the metal tube, and Fig. 3 is a schematic diagram of the entire lamp. FIG. 1... Outer tube, 2... Arc tube, 3... Arc tube bulb, 4A, 4B... Closure body, 5... Metal tube, 5a
...Sealing part of metal tube, 6A, 6B... Electrode, 8...
...wrinkles, 9...sodium amalgam.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 透光性セラミツクスよりなる発光管バルブの端
部に電極を支持する金属管を設けた発光管を具備
し、上記金属管の内面の管軸方向に存在する幅
3μ以上の細長溝状のしわの数が、金属管内面の
円周方向100μ当り平均で3本以下にしたことを
特徴とする高圧ナトリウムランプ。
An arc tube is provided with a metal tube that supports an electrode at the end of an arc tube bulb made of translucent ceramic, and the width of the inner surface of the metal tube in the tube axis direction is provided.
A high-pressure sodium lamp characterized in that the number of elongated groove-like wrinkles of 3 μ or more is on average 3 or less per 100 μ in the circumferential direction of the inner surface of the metal tube.
JP5883086U 1986-04-21 1986-04-21 Expired JPH0431730Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5883086U JPH0431730Y2 (en) 1986-04-21 1986-04-21

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5883086U JPH0431730Y2 (en) 1986-04-21 1986-04-21

Publications (2)

Publication Number Publication Date
JPS62171152U JPS62171152U (en) 1987-10-30
JPH0431730Y2 true JPH0431730Y2 (en) 1992-07-30

Family

ID=30889756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5883086U Expired JPH0431730Y2 (en) 1986-04-21 1986-04-21

Country Status (1)

Country Link
JP (1) JPH0431730Y2 (en)

Also Published As

Publication number Publication date
JPS62171152U (en) 1987-10-30

Similar Documents

Publication Publication Date Title
US5461277A (en) High-pressure gas discharge lamp having a seal with a cylindrical crack about the electrode rod
HU184878B (en) High-pressure discharge lamp
CN101213635B (en) Ceramic lamps and methods of making same
US3363133A (en) Electric discharge device having polycrystalline alumina end caps
KR20020008011A (en) High pressure discharge lamp and method for producing the same
CA1122255A (en) Fused silica lamp envelope and seal
US4539509A (en) Quartz to metal seal
US4910430A (en) High pressure sodium lamp substantially preventing movement of melted sodium-mercury amalgam during use
JPS6037645A (en) Metal vapor discharge lamp
US2114869A (en) Quartz-to-metal seal
US3886392A (en) Method of sealing alumina arc tube
JPH0431730Y2 (en)
US3986236A (en) Method of sealing alumina arc tube
JPH10154485A (en) Metal halide lamp
US4147952A (en) Method of sealing alumina arc tube
JPS62283543A (en) Metallic vapor discharge lamp
EP0319256B1 (en) High pressure sodium lamp with sodium amalgam of controlled amount sealed therein
KR20010023487A (en) High-pressure gas discharge lamp
US5208509A (en) Arc tube for high pressure metal vapor discharge lamp
US5188554A (en) Method for isolating arc lamp lead-in from frit seal
JPS63259958A (en) Ceramic discharge lamp
JPS61220265A (en) Metallic vapor discharge lamp
JPS61104557A (en) Tubular bulb and its manufacture
GB2085650A (en) High-pressure discharge lamp
JPS6316544A (en) High pressure sodium vapor lamp