JPH0431719A - Combustion diagnostic apparatus - Google Patents

Combustion diagnostic apparatus

Info

Publication number
JPH0431719A
JPH0431719A JP13705590A JP13705590A JPH0431719A JP H0431719 A JPH0431719 A JP H0431719A JP 13705590 A JP13705590 A JP 13705590A JP 13705590 A JP13705590 A JP 13705590A JP H0431719 A JPH0431719 A JP H0431719A
Authority
JP
Japan
Prior art keywords
flame
calculation circuit
circuit
receives
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13705590A
Other languages
Japanese (ja)
Other versions
JP2744677B2 (en
Inventor
Mitsunobu Hoshino
星野 光伸
Kaneya Misonoo
御園生 金哉
Yasuhiko Sato
康彦 佐藤
Masami Iida
飯田 政己
Kimiyo Tokuda
君代 徳田
Yuichi Ide
井出 雄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP13705590A priority Critical patent/JP2744677B2/en
Publication of JPH0431719A publication Critical patent/JPH0431719A/en
Application granted granted Critical
Publication of JP2744677B2 publication Critical patent/JP2744677B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Control Of Combustion (AREA)

Abstract

PURPOSE:To perform comparison with an excellent burning state readily by decomposing the output of the image obtained by photographing the flame of the burner of a furnace into the color components of three primary colors, and providing a high-temperature-area-rate operating circuit which receives red and blue signals and computes the area rate of the high-temperature part of the flame. CONSTITUTION:A flame-temperature-index operating circuit 25 receives the red and blue signals of a flame memory and computes the area rate of high temperature. The circuit 25 further receives the output of a high-temperature-area-rate operating circuit 20 and computes the temperature index of the temperature of the flame. A transmittance operating circuit 21 receives the red signal of the flame memory 7 and computes the transmittance of the flame. A low-luminance-area operating circuit 22 receives the red signal of the flame memory and computes the low-luminance area of the red component. A flame-transparency-index operating circuit 26 receives the outputs of the circuit 21 and the circuit 22 and computes the transparency index of the flame. A time-stability operating circuit 23 receives the green or red signal of the flame memory 7 and computes the time stability of the flame. An average- luminance-level operating circuit 24 receives the red signal of the flame memory 7 and computes the average luminance level of the flame. A flame-stability-index operating circuit 27 receives the outputs of the circuit 23 and the circuit 24 and computes the stability index of the flame. A diagnostic circuit 28 receives the outputs of the circuit 26 and the circuit 25, obtains the predefined individual-burner evaluating functions and outputs the result of the diagnosis of the burning state of the individual burner.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は事業用、産業用等ボイラの燃焼診断装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a combustion diagnostic device for boilers for business use, industrial use, etc.

〔従来の技術] 従来例を第4図により説明する。[Conventional technology] A conventional example will be explained with reference to FIG.

複数のバーナを有するボイラの火炉1の火炎2を観測す
る目的で各バーナに対し1台のイメージファイバ3を火
炉1に設置し、同イメージファイバ3にカラーカメラ4
が接続される。同カメラ4の出力はカラー映像デイスプ
レィ15に入力されるとともに、デコーダ5に接続され
その出力は赤(R)、緑(G)、青(B)の色成分6に
分解されて、フレームメモリ7に入力される。同フレー
ムメモリ7のR信号、G信号、B信号から次の演算結果
を導き、燃焼調整の指標としている。
For the purpose of observing the flame 2 of the furnace 1 of a boiler having multiple burners, one image fiber 3 is installed in the furnace 1 for each burner, and a color camera 4 is attached to the image fiber 3.
is connected. The output of the camera 4 is input to a color video display 15, and is also connected to a decoder 5, where the output is separated into red (R), green (G), and blue (B) color components 6, and is stored in a frame memory 7. is input. The following calculation results are derived from the R signal, G signal, and B signal of the frame memory 7, and are used as indicators for combustion adjustment.

(1)火炎表面の温度分布演算8 フレームメモリ7のR及びB信号を入力し、その比R/
Bをもとに二色温度計と同じ原理にて温度を算出する。
(1) Flame surface temperature distribution calculation 8 Input the R and B signals of the frame memory 7, and the ratio R/
The temperature is calculated based on B using the same principle as a two-color thermometer.

(2)時間安定度演算9 フレームメモリ7のG信号を入力し、G信号の時間1=
1.の画像からL = t zの画像の減算をを施し、
その結果の時間的変化量を算出する。
(2) Time stability calculation 9 Input the G signal of the frame memory 7, and time 1 of the G signal =
1. Subtract the image of L = tz from the image of
The resulting amount of change over time is calculated.

(3)スモーク演算10 フレームメモリ7のR信号とB信号を入力し、R信号と
B信号の差(R−B)を算出する。
(3) Smoke calculation 10 The R signal and B signal of the frame memory 7 are input, and the difference (R-B) between the R signal and the B signal is calculated.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の装置には次のような問題点があった。 The conventional device described above has the following problems.

(1)火炎表面の温度分布およびスモーク分布の2次元
の情報をもとに、人間が燃焼の良否を判断することは困
難である。
(1) It is difficult for humans to judge the quality of combustion based on two-dimensional information on the temperature distribution and smoke distribution on the flame surface.

(2)火炎の瞬間のデータをもとにした火炎表面の温度
分布、時間安定度および、スモーク分布に対し良否の判
断基準がないため、判断する人によって燃焼の良否の判
断が異る。
(2) Since there is no standard for judging whether the temperature distribution of the flame surface, temporal stability, or smoke distribution is good or bad based on the instantaneous data of the flame, the judgment of the good or bad combustion differs depending on the judge.

(3)火炎表面の温度分布および、スモーク分布は2次
元の分布データである。2次元分布データはそれを見て
人間がその良否を判断するデータとしては不適切である
(3) The temperature distribution on the flame surface and the smoke distribution are two-dimensional distribution data. Two-dimensional distribution data is inappropriate for humans to judge whether it is good or bad.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記課題を解決するため次の手段を講する。 The present invention takes the following measures to solve the above problems.

すなわち1、燃焼診断装置として、火炉中のバーナの火
炎をカラーカメラで撮映し、写された映像出力を三原色
の赤、緑、青の色成分に分解し、フレームメモリに入力
した装置において、上記フレームメモリの赤および青信
号を入力し火炎の高温部の面積率を算出する高温度面積
率演算回路と、同高温度面積率演算回路の出力を受け火
炎の温度指標を算出する火炎温度指標演算回路と、上記
フレームメモリの赤信号を入力し火炎の透過率を算出す
る透過率演算回路と、上記フレームメモリの赤信号を入
力し赤成分低輝度面積を算出する低輝度面積演算回路と
、上記透過率演算回路および低輝度面積演算回路の出力
を受け火炎の透明度指標を算出する火炎透明度指標演算
回路と、上記フレームメモリの緑または赤信号を入力し
火炎の時間安定度を算出する時間安定度演算回路と、上
記フレームメモリの赤信号を入力し火炎の平均輝度レベ
ルを算出する平均輝度レベル演算回路と、上記時間安定
度演算回路および上記平均輝度レベル演算回路の出力を
受け火炎の安定度指標を算出する火炎安定度指標演算回
路と、上記の火炎温度指標演算回路、火炎透明度指標演
算回路、および火炎安定度指標演算回路の出力を受け個
別バーナ評価関数を求め同個別バーナの燃焼状態を診断
出力する診断回路とを備えてなることを特徴とするよう
にした。
In other words, 1. As a combustion diagnosis device, the flame of a burner in a furnace is photographed using a color camera, and the photographed video output is separated into the three primary color components of red, green, and blue, and input into a frame memory. A high temperature area ratio calculation circuit that inputs the red and blue signals of the frame memory and calculates the area ratio of the high temperature part of the flame, and a flame temperature index calculation circuit that receives the output of the high temperature area ratio calculation circuit and calculates the flame temperature index. a transmittance calculation circuit that inputs the red signal of the frame memory and calculates the flame transmittance; a low-luminance area calculation circuit that inputs the red signal of the frame memory and calculates the red component low-luminance area; A flame transparency index calculation circuit that receives the outputs of the rate calculation circuit and the low brightness area calculation circuit and calculates the flame transparency index, and a time stability calculation circuit that receives the green or red signal from the frame memory and calculates the temporal stability of the flame. circuit, an average brightness level calculation circuit that inputs the red signal of the frame memory and calculates the average brightness level of the flame, and a flame stability index that receives the outputs of the time stability calculation circuit and the average brightness level calculation circuit. Receives the outputs of the flame stability index calculation circuit to be calculated, the flame temperature index calculation circuit, the flame transparency index calculation circuit, and the flame stability index calculation circuit described above, calculates an individual burner evaluation function, and outputs a diagnosis of the combustion state of the individual burner. The present invention is characterized in that it is equipped with a diagnostic circuit that performs

〔作用] 上記手段により、火炎温度指標演算回路はフレームメモ
リの赤および青信号を入力し高温度の面積率を算出する
。さらに火炎温度指標演算回路は同高温度面積率演算回
路の出力を受け火炎の温度指標を算出する。また透過率
演算回路はフレームメモリの赤信号を入力し火炎の透過
率を算出する。
[Operation] With the above means, the flame temperature index calculating circuit inputs the red and blue signals of the frame memory and calculates the high temperature area ratio. Further, the flame temperature index calculation circuit receives the output from the same high temperature area ratio calculation circuit and calculates a flame temperature index. Further, the transmittance calculation circuit inputs the red signal from the frame memory and calculates the flame transmittance.

さらに低輝度面積演算回路はフレームメモリの赤信号を
入力し赤成分低輝度面積を算出する。さらに火炎透明度
指標演算回路は透過率演算回路および低輝度面積演算回
路の出力を受け火炎の透明度指標を算出する。また時間
安定度演算回路はフレームメモリの緑または赤信号を入
力し火炎の時間安定度を算出する。さらに平均輝度レベ
ル演算回路は、フレームメモリの赤信号を入力し火炎の
平均輝度レベルを算出する。さらに火炎安定度指標演算
回路は時間安定度演算回路および上記平均輝度レベル演
算回路の出力を受け火炎の安定度指標を算出する。また
診断回路は、火炎温度指標演算回路、火炎透明度指標演
算回路、および火炎安定度指標演算回路の出力を受け予
め定義された個別バーナ評価関数を求め同個別バーナの
燃焼状態を診断出力する。
Further, the low brightness area calculation circuit receives the red signal from the frame memory and calculates the red component low brightness area. Furthermore, the flame transparency index calculation circuit receives the outputs of the transmittance calculation circuit and the low brightness area calculation circuit and calculates a flame transparency index. Further, the temporal stability calculation circuit inputs the green or red signal from the frame memory and calculates the temporal stability of the flame. Further, the average brightness level calculation circuit receives the red signal from the frame memory and calculates the average brightness level of the flame. Furthermore, the flame stability index calculation circuit receives outputs from the time stability calculation circuit and the average brightness level calculation circuit and calculates a flame stability index. The diagnostic circuit receives outputs from the flame temperature index calculation circuit, flame transparency index calculation circuit, and flame stability index calculation circuit, calculates a predefined individual burner evaluation function, and outputs a diagnosis of the combustion state of the individual burner.

このようにして火炉中の個別バーナの燃焼状態が容易に
診断されるようになる。
In this way, the combustion state of the individual burners in the furnace can be easily diagnosed.

〔実施例〕〔Example〕

本発明の一実施例を第1図から第3図により説明する。 An embodiment of the present invention will be described with reference to FIGS. 1 to 3.

なお、従来例で説明した部分は同一の番号をつけ、説明
を省略し、この発明に関する部分を主体に説明する。
Note that the parts explained in the conventional example are given the same numbers and the explanations are omitted, and the parts related to the present invention will be mainly explained.

第1図にて、フレームメモリ7の赤(R)信号と青(B
)信号は高温度面積率演算回路20を経て火炎温度指標
演算回路25へ送られる。またフレームメモリ7のR信
号は透過率演算回路21を経て火炎透明度指標演算回路
26へ送られる。さらに信号は低輝度面積演算回路22
を経て火炎透明度指標演算回路26へ送られる。またフ
レームメモリ7の緑(G)またはR信号は時間安定度演
算回路23を経て火炎安定度指標演算回路27へ送られ
る。さらにR信号は平均輝度レベル演算回路24を経て
火炎安定度指標演算回路27へ送られる。また火炎温度
指標演算回路25、火炎透明度指標演算回路26および
火炎安定度指標演算回路27の出力は診断回路2日を経
て表示装置29へ送られる。
In Figure 1, the red (R) signal and blue (B) signal of frame memory 7 are shown.
) The signal is sent to the flame temperature index calculation circuit 25 via the high temperature area ratio calculation circuit 20. Further, the R signal of the frame memory 7 is sent to the flame transparency index calculation circuit 26 via the transmittance calculation circuit 21. Furthermore, the signal is transmitted to the low brightness area calculation circuit 22.
The signal is sent to the flame transparency index calculation circuit 26 via the . Further, the green (G) or R signal of the frame memory 7 is sent to the flame stability index calculation circuit 27 via the time stability calculation circuit 23. Furthermore, the R signal is sent to the flame stability index calculation circuit 27 via the average brightness level calculation circuit 24. Further, the outputs of the flame temperature index calculation circuit 25, flame transparency index calculation circuit 26, and flame stability index calculation circuit 27 are sent to the display device 29 after passing through the diagnostic circuit for two days.

以上において高温度面積率演算回路20、火炎温度指標
演算回路25、透過率演算回路21、低輝度面積演算回
路22、火炎透明度指標演算回路26、時間安定度演算
回路23、平均輝度レベル演算回路24、火炎安定度指
標演算回路27、および診断回路28はまとめられて演
算装置100となっている。
In the above, high temperature area ratio calculation circuit 20, flame temperature index calculation circuit 25, transmittance calculation circuit 21, low brightness area calculation circuit 22, flame transparency index calculation circuit 26, time stability calculation circuit 23, average brightness level calculation circuit 24 , the flame stability index calculation circuit 27, and the diagnostic circuit 28 are combined into a calculation device 100.

以上の構成において、高温度面積率演算回路20は高温
度面積率を演算するとき、まず次のようにして(1)式
により火炎表面の温度分布を求める。
In the above configuration, when calculating the high temperature area ratio, the high temperature area ratio calculation circuit 20 first calculates the temperature distribution on the flame surface using equation (1) as follows.

すなわち、フレームメモリ7から入力したR信号、B信
号は第2図に示すR1j30. B 1j31の2次元
のデータ群である。この2次元のデータの個数は1つの
テレビ画面を所定の数に分割した結果である。ここでば
j=1〜100.j=1〜100として以下説明する。
That is, the R signal and B signal input from the frame memory 7 are input to R1j30. shown in FIG. This is a two-dimensional data group of B 1j31. The number of two-dimensional data is the result of dividing one television screen into a predetermined number of pieces. Here, j=1 to 100. The following description will be made assuming that j=1 to 100.

火炎表面の温度分布Tij33は前述の二色温度計の原
理にもとづきRij/Btjの関数32として求められ
る。
The temperature distribution Tij 33 on the flame surface is determined as a function 32 of Rij/Btj based on the principle of the two-color thermometer described above.

・(1) ここで aZ+ al+ aoは温度較正の実測値法に高温度面
積率()I) 34を(2)式にて求める。
- (1) Here, aZ + al + ao is calculated using the actual measurement value method of temperature calibration, and the high temperature area ratio () I) 34 is calculated using equation (2).

ここでSo:火炎面積(火炎表面温度分布Tijに於い
てT1(°C)以上の点の総和として定義) Sl:高温部面積(火炎表面温度分布Tijに於いて’
rz(”c)以上の点の総和として定義) 火炎温度指標演算回路2は高温度面積率演算回路20の
信号を受け火炎温度指標(Fl)を(3)式で求め出力
する。
Here, So: Flame area (defined as the sum of points above T1 (°C) in the flame surface temperature distribution Tij) Sl: High temperature area (in the flame surface temperature distribution Tij'
rz (defined as the sum of points equal to or higher than "c") The flame temperature index calculation circuit 2 receives the signal from the high temperature area ratio calculation circuit 20, calculates the flame temperature index (Fl) using equation (3), and outputs it.

σN ここで T:Hの平均値 σM =Hの分散値 H:Hの現在値 (3]式の平均値丁、分散値σ、は良好な運転、状況下
のデータをもとにして、予め求めた値である。
σN Here, T: Average value of H σM = Variance value of H H: Current value of H The average value and variance value σ in equation (3) are determined in advance based on data under good driving and conditions. This is the obtained value.

透過率演算回路21はR信号を受け透過率(τ)を(4
)弐で求める。
The transmittance calculation circuit 21 receives the R signal and calculates the transmittance (τ) by (4
) Find it with 2.

ここで N:データ総数、N = 100 x 100
Rij:赤信号(第2図の30) Tij :火炎表面の温度分布(第2図の33)また低
輝度面積演算回路22はR信号を受け赤成分低輝度面積
(Sll)を(5)式により算出する。
Here, N: total number of data, N = 100 x 100
Rij: Red signal (30 in Figure 2) Tij: Temperature distribution on the flame surface (33 in Figure 2) Also, the low brightness area calculation circuit 22 receives the R signal and calculates the red component low brightness area (Sll) using equation (5). Calculated by

S罠=Σ(Rij>−Roを満足する点を1とする)j ・ ・ ・(5) ここでRo :低輝度レベルのしきい値次4J炎透明度
指標演算回路26は透過率(τ)及び赤成分低輝度面積
(S+t )の信号をを入力して火炎透明度指標F2を
(6)式にて求める。
S trap = Σ (the point that satisfies Rij>-Ro is set as 1) j ・ ・ ・ (5) where Ro: threshold value of low luminance level The next 4J flame transparency index calculation circuit 26 calculates the transmittance (τ) and the signal of the red component low brightness area (S+t) are input, and the flame transparency index F2 is determined using equation (6).

σS11 ここで τ、に7:透過率(τ)及び赤成分低輝度面積(SR)
の平均値 σ、、σ、1:τ 及びS8の分散値 Kr、Ks*:重み係数、但しKr+Ksm=1τ、 
S糞 : τ、  S、  の現在イ直(6)式の平均
値、分散値は良好な運転状況下のデータをもとに、予め
求めた値である。
σS11 where τ, to 7: transmittance (τ) and red component low brightness area (SR)
Average value σ,, σ, 1: τ and variance value Kr, Ks* of S8: weighting coefficient, where Kr+Ksm=1τ,
S: The average value and variance of τ, S, and equation (6) are values determined in advance based on data under good driving conditions.

時間安定度演算回路23はRまたはGを入力する。The time stability calculation circuit 23 receives R or G as input.

ここでは例えばG信号を入力し、まずG信号の平均輝度
レベルα6を(7)と(8)式で順次求める。
Here, for example, a G signal is input, and first the average luminance level α6 of the G signal is sequentially determined using equations (7) and (8).

Δα、=αGlt11 −α、L2.       ・
 ・ ・(8)ここで Gijs緑信号の輝度レベル、  i 、  j = 
1〜100N:データ総数、 N= 100xlOOα
c(tr:を時刻の緑信号の平均輝度レベルさらに、平
均輝度レベル演算回路24はR信号を入力し赤成分の平
均輝度レベルを平均輝度レベル(αl)として(9)式
にて算出する。
Δα, = αGlt11 −α, L2.・
・ ・(8) Here, the brightness level of the Gijs green signal, i, j =
1 to 100N: total number of data, N= 100xlOOα
c(tr: is the average brightness level of the green signal at the time. Furthermore, the average brightness level calculation circuit 24 inputs the R signal and calculates the average brightness level of the red component as the average brightness level (αl) using equation (9).

ここで Rij:赤成分の輝度レベル i、j=l〜100 N:データ総数、 N= 100X100また火炎安定
度指標演算回路27は時間安定度(Δα6)及び平均輝
度レベル(α6)信号を入力して00式にて火炎安定度
指標F、を求める。
Here, Rij: brightness level i of red component, j=l~100 N: total number of data, N=100X100 Also, the flame stability index calculation circuit 27 inputs the temporal stability (Δα6) and average brightness level (α6) signals. Calculate the flame stability index F using formula 00.

σ Δ α糞 σα糞 ここで Δ−1τ、 百:Δcr、及びαにの平均値・0ω σΔα岡、σαII:ΔαG及びα×の分散値ΔαG 
αR:ΔαG、α3の現在値 に、、に2 :重み係数、K + + K z・100
)式の平均値、分散値は良好な運転状況下のデータをも
とに、予め求めた値である。
σ Δ α feces σα feces where Δ−1τ, 100: Δcr, and the average value of α・0ω σΔαoka, σαII: ΔαG and the variance value of α× ΔαG
αR: ΔαG, the current value of α3, 2: Weighting coefficient, K + + K z・100
) The average value and variance value of the equation are values determined in advance based on data under good driving conditions.

診断回路28は燃焼診断の指標Fl+  F2+  F
sの信号を入力しまず00式にて、個別バーナ評価関数
(F)を求める。
The diagnostic circuit 28 is a combustion diagnostic indicator Fl+F2+F.
Input the signal of s and first calculate the individual burner evaluation function (F) using equation 00.

F=Σ Fi、   i=1〜3  ・・・01100
式にて求めた個別バーナ評価関数Fに対し、統計データ
から、複数のしきい値(no+  1+)を定義し、診
断結果を算出し、表示装置29へ出力する。
F=Σ Fi, i=1~3...01100
A plurality of threshold values (no+1+) are defined from statistical data for the individual burner evaluation function F determined by the formula, a diagnostic result is calculated, and the result is output to the display device 29.

以下に出力例を示す。An example output is shown below.

正常出カニF<n。Normal output crab F<n.

軽故障出カニno<F<n 重故障比カニ F > n I ここで 正常出力・・・良好な運転状況に近い 軽故障出力・・・良好な運転状況から、ずれが認められ
る 重故障出力・・・良好な運転状況からのずれ量が大きい
個別バーナに異常有 り を示す。
Minor failure output no < F < n Major failure ratio F > n I Here, normal output... Light failure output that is close to a good operating condition... Major failure output where a deviation is recognized from the good operating condition. ...Indicates an abnormality in individual burners that have a large deviation from good operating conditions.

第3図に表示装置29に表示された例を示す。FIG. 3 shows an example displayed on the display device 29.

図には、各バーナA4.A5・・・C6それぞれの火炎
温度指標(F、)、火炎透明度指標(F2)、火炎安定
度指標(F3)およびそれぞれの診断結果が示されてい
る。
The figure shows each burner A4. The flame temperature index (F, ), flame transparency index (F2), flame stability index (F3), and respective diagnostic results for A5...C6 are shown.

この例では、A4バーナの火炎温度指標(Fl)及び火
炎透明度指標(F2)のレベルが低下し、その評価関数
Fが1.<)”<n、となり、軽故障状態であることを
示している。
In this example, the levels of the flame temperature index (Fl) and flame transparency index (F2) of the A4 burner are lowered, and the evaluation function F is 1. <)”<n, indicating a light failure state.

A5バーナは火炎温度指標(Fl)及び火炎透明度指標
(F、)のレベルが更に低下しF>n+となり重故障状
態であることを示す。
The levels of the flame temperature index (Fl) and flame transparency index (F, ) of the A5 burner further decrease to become F>n+, indicating a serious failure state.

一方、C5,C6バーナに於ては、火炎温度指標(F、
)のみのレベルが低下したが、火炎安定度指標(F、)
及び火炎透明度指標(F2)が高しベルを維持しており
、個別バーナとしては軽又は重故障レベルに達していな
いことを示している。
On the other hand, in C5 and C6 burners, the flame temperature index (F,
) only the level of flame stability index (F, ) decreased.
and the flame transparency index (F2) remained high, indicating that the individual burner had not reached the level of minor or major failure.

以上のようにして個別バーナの燃焼状態が容易に診断さ
れるようになる。
As described above, the combustion state of each individual burner can be easily diagnosed.

[発明の効果] 以上に説明したように、本発明は次の効果を奏する。[Effect of the invention] As explained above, the present invention has the following effects.

(1)バーナ火炎の燃焼状態の特徴を抽出する。(1) Extract the characteristics of the combustion state of the burner flame.

火炎温度指標、火炎透明度指標、及び火炎安定度指標を
算出することによって、良好な燃焼状況との比較が容易
にできるようになる。
By calculating the flame temperature index, flame transparency index, and flame stability index, a comparison with a good combustion situation can be easily made.

(2)火炎温度指標、火炎透明度指標、および火炎安定
度指標から個別バーナの評価関数を算出することによっ
て、個別バーナの異常診断が的確にできるようになる。
(2) By calculating the evaluation function of each burner from the flame temperature index, flame transparency index, and flame stability index, it becomes possible to accurately diagnose abnormalities of the individual burners.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の構成ブロック線図、第2
図は同実施例の高温度面積率演算回路の演算処理系統図
、第3図は同実施例の表示装置の表示例図、第4図は従
来例の構成ブロック線図である。 l・・・火炉5       2・・・火炎3・・・イ
メージファイバ、   4・・・カラーカメラ。 5・・・デコーダ、       6・・・色成分7・
・・フレームメモリ。 25・・・火炎温度指標演算回路。 26・・・火炎透明度指標演算回路。 27・・・火炎安定度指標演算回路 28・・・診断回路、29・・・表示装置。 100・・・演算装置。
FIG. 1 is a configuration block diagram of an embodiment of the present invention, and FIG.
The figure is a calculation processing system diagram of the high temperature area ratio calculation circuit of the same embodiment, FIG. 3 is a display example diagram of the display device of the same embodiment, and FIG. 4 is a configuration block diagram of a conventional example. l... Furnace 5 2... Flame 3... Image fiber, 4... Color camera. 5...Decoder, 6...Color component 7.
...Frame memory. 25...Flame temperature index calculation circuit. 26...Flame transparency index calculation circuit. 27...Flame stability index calculation circuit 28...Diagnostic circuit, 29...Display device. 100... Arithmetic device.

Claims (1)

【特許請求の範囲】[Claims] 火炉中のバーナの火炎をカラーカメラで撮映し、写され
た映像出力を三原色の赤、緑、青の色成分に分解し、フ
レームメモリに入力した装置において、上記フレームメ
モリの赤および青信号を入力し火炎の高温部の面積率を
算出する高温度面積率演算回路と、同高温度面積率演算
回路の出力を受け火炎の温度指標を算出する火炎温度指
標演算回路と、上記フレームメモリの赤信号を入力し火
炎の透過率を算出する透過率演算回路と、上記フレーム
メモリの赤信号を入力し赤成分低輝度面積を算出する低
輝度面積演算回路と、上記透過率演算回路および低輝度
面積演算回路の出力を受け火炎の透明度指標を算出する
火炎透明度指標演算回路と、上記フレームメモリの緑ま
たは赤信号を入力し火炎の時間安定度を算出する時間安
定度演算回路と、上記フレームメモリの赤信号を入力し
火炎の平均輝度レベルを算出する平均輝度レベル演算回
路と、上記時間安定度演算回路および上記平均輝度レベ
ル演算回路の出力を受け火炎の安定度指標を算出する火
炎安定度指標演算回路と、上記の火炎温度指標演算回路
、火炎透明度指標演算回路、および火炎安定度指標演算
回路の出力を受け個別バーナ評価関数を求め同個別バー
ナの燃焼状態を診断出力する診断回路とを備えてなるこ
とを特徴とする燃焼診断装置。
The flame of the burner in the furnace is photographed with a color camera, the photographed video output is separated into the three primary color components of red, green, and blue, and the red and blue signals from the frame memory are input to a device that inputs the red and blue signals to the frame memory. A high temperature area ratio calculation circuit that calculates the area ratio of the high temperature part of the flame, a flame temperature index calculation circuit that receives the output of the high temperature area ratio calculation circuit and calculates the temperature index of the flame, and a red light of the frame memory. a transmittance calculation circuit that inputs the signal and calculates the flame transmittance, a low-brightness area calculation circuit that inputs the red signal of the frame memory and calculates the red component low-brightness area, and the transmittance calculation circuit and the low-brightness area calculation circuit a flame transparency index calculation circuit that receives the output of the circuit and calculates the flame transparency index; a time stability calculation circuit that receives the green or red signal from the frame memory and calculates the temporal stability of the flame; an average brightness level calculation circuit that inputs signals and calculates the average brightness level of the flame; and a flame stability index calculation circuit that receives outputs from the time stability calculation circuit and the average brightness level calculation circuit and calculates a flame stability index. and a diagnostic circuit that receives the outputs of the flame temperature index calculation circuit, flame transparency index calculation circuit, and flame stability index calculation circuit, calculates an individual burner evaluation function, and outputs a diagnosis of the combustion state of the individual burner. A combustion diagnostic device characterized by:
JP13705590A 1990-05-29 1990-05-29 Combustion diagnostic device Expired - Lifetime JP2744677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13705590A JP2744677B2 (en) 1990-05-29 1990-05-29 Combustion diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13705590A JP2744677B2 (en) 1990-05-29 1990-05-29 Combustion diagnostic device

Publications (2)

Publication Number Publication Date
JPH0431719A true JPH0431719A (en) 1992-02-03
JP2744677B2 JP2744677B2 (en) 1998-04-28

Family

ID=15189829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13705590A Expired - Lifetime JP2744677B2 (en) 1990-05-29 1990-05-29 Combustion diagnostic device

Country Status (1)

Country Link
JP (1) JP2744677B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547369A (en) * 1993-03-17 1996-08-20 Hitachi, Ltd. Camera, spectrum analysis system, and combustion evaluation apparatus employing them
JP2014095664A (en) * 2012-11-12 2014-05-22 Mitsubishi Heavy Ind Ltd Temperature detection method, temperature detection device and program
CN114485957A (en) * 2022-02-11 2022-05-13 华北电力科学研究院有限责任公司 Method and device for analyzing ignition stability of pulverized coal burner

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547369A (en) * 1993-03-17 1996-08-20 Hitachi, Ltd. Camera, spectrum analysis system, and combustion evaluation apparatus employing them
JP2014095664A (en) * 2012-11-12 2014-05-22 Mitsubishi Heavy Ind Ltd Temperature detection method, temperature detection device and program
CN114485957A (en) * 2022-02-11 2022-05-13 华北电力科学研究院有限责任公司 Method and device for analyzing ignition stability of pulverized coal burner
CN114485957B (en) * 2022-02-11 2024-04-19 华北电力科学研究院有限责任公司 Method and device for analyzing ignition stability of pulverized coal burner

Also Published As

Publication number Publication date
JP2744677B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
Wang et al. An optimized tongue image color correction scheme
KR930011974B1 (en) White balance adjusting device for a color video camera
US5547369A (en) Camera, spectrum analysis system, and combustion evaluation apparatus employing them
Pieri et al. Hitting the mark—a new color difference metric for HDR and WCG imagery
JPH0682385B2 (en) Color vision converter
JP4068188B2 (en) Image display device
Westland et al. Model of luminance contrast‐sensitivity function for application to image assessment
CN113848044B (en) Method for detecting brightness and chrominance consistency of display screen
JPH0431719A (en) Combustion diagnostic apparatus
CN109996061B (en) IR-CUT (Infrared-CUT) anomaly detection method and device
CN108156434B (en) Image processing method and device, computer readable storage medium and computer equipment
JP2006333463A (en) Color characteristic verification system for eye, light source and color reproducing apparatus
JPS62186247A (en) Method for determining quantity of exposure for photographic printing
CN107959842B (en) Image processing method and device, computer readable storage medium and computer equipment
JP2955052B2 (en) Combustion diagnostic device
CN113727086B (en) White balance adjusting method and device, monitoring equipment and computer readable storage medium
JP2001136314A (en) Color image evaluation method
JPS60263012A (en) Flame monitoring method
JP5673186B2 (en) Imaging apparatus and interpolation processing method of imaging apparatus
JP2007329591A (en) Calibration method in measurement of luminance and chromaticity
CN100386050C (en) Color misregistration reducer
JP2755807B2 (en) Burner clogging identification method
JPH01180430A (en) Temperature measuring method
JPS5850881A (en) Image pickup device
JP2002135802A (en) Signal processor, image pickup device, signal processing method and storage medium