JPH0431613A - Exhaust treatment system for internal combustion engine - Google Patents

Exhaust treatment system for internal combustion engine

Info

Publication number
JPH0431613A
JPH0431613A JP2136214A JP13621490A JPH0431613A JP H0431613 A JPH0431613 A JP H0431613A JP 2136214 A JP2136214 A JP 2136214A JP 13621490 A JP13621490 A JP 13621490A JP H0431613 A JPH0431613 A JP H0431613A
Authority
JP
Japan
Prior art keywords
filter
exhaust
passage
exhaust gas
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2136214A
Other languages
Japanese (ja)
Inventor
Shunichi Aoyama
俊一 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2136214A priority Critical patent/JPH0431613A/en
Publication of JPH0431613A publication Critical patent/JPH0431613A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To remove ash components on a filter clogged thereby to prevent decrease the performance of engine by flowing them in the reverse direction at an exhaust filter by the use of an exhaust gas circulation action to an intake system at the time of deceleration at which no particulate is generated just after regeneration of filter. CONSTITUTION:A system main body is composed of a filter 51 for collecting particulate in an exhaust passage 50 of an engine, means 52 for judging the regeneration time of filter, and means 53 for increasing the temperature of exhaust gas at the regeneration of filter. In the above constitution, an exhaust gas circulating passage 56 is connected to an intake passage 55 while being branched from a part between an exhaust gas throttle valve 54 provided at the passage 50 upstream of the filter 51 and the filter 51. A bypass valve 58 is provided at a bypass passage 57 bypassing the exhaust throttle valve 54 of the exhaust passage 50 and the filter 51. Means 59 detects deceleration conditions of engine. The exhaust throttle valve 54 is closed at the time of deceleration after regeneration of filter, and a bypass valve 58 is opened to flow back exhaust gas to the filter 51 with cleaning means 60.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は主としてディーゼル機関の排気処理装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention mainly relates to an exhaust treatment device for a diesel engine.

(従来の技術) ディーゼル機関の排気中のパーティキュレイト(微粒子
)等の大気中への放出を防ぐため、排気通路にパーティ
キュレイトを捕捉するフィルタを設置することがある。
(Prior Art) In order to prevent particulates (fine particles) in the exhaust gas of a diesel engine from being released into the atmosphere, a filter for trapping the particulates is sometimes installed in the exhaust passage.

この場合、フィルタで捕集したパーティキュレイトの堆
積量にしたがって排圧が上昇するため、機関性能に及ぼ
す影響が出てくる前に、捕捉したパーティキュレイトを
定期的に燃焼させてフィルタの再生を行っている。
In this case, the exhaust pressure increases as the amount of particulates collected by the filter accumulates, so the filter is regenerated by periodically burning the trapped particulates before they start to affect engine performance. It is carried out.

このため、例えば特開昭59−122721号公報にも
あるように、機関回転数の積算値から求めた再生時期に
達するとフィルタの上流に炭化水素、−酸化炭素等の未
燃燃料を適量供給し、捕集パーティキュレイトを燃焼さ
せている。
For this reason, as described in Japanese Patent Application Laid-Open No. 59-122721, when the regeneration time determined from the integrated value of engine speed is reached, an appropriate amount of unburned fuel such as hydrocarbons and carbon oxides is supplied upstream of the filter. and the collected particulates are burned.

排気中に導入された燃料はフィルタに捕捉されたカーボ
ンを主成分とするパーティキュレイトを燃焼させるため
の助燃剤として機能し、着火後の温度上昇によりパーテ
ィキュレイトは自動的に燃焼する。
The fuel introduced into the exhaust gas functions as a combustion aid to combust the particulates containing carbon as a main component trapped in the filter, and the particulates are automatically combusted due to the temperature rise after ignition.

(発明が解決しようとする課題) ところが、このようにフィルタの再生操作により、パー
ティキュレイトを燃焼除去することはできても、フィル
タに堆積した不燃性のアッシュ(灰分)の除去はできな
い。
(Problems to be Solved by the Invention) However, although it is possible to burn and remove particulates by regenerating the filter in this way, it is not possible to remove the non-flammable ash that has accumulated on the filter.

灰分は機関潤滑油に含まれる成分の燃焼によって発生す
るもので、微量ではあるが次第にフィルタに堆積してい
く。
Ash is generated by the combustion of components contained in engine lubricating oil, and although it is a small amount, it gradually accumulates on the filter.

この灰分はフィルタの目詰まりの原因ともなり、機関の
排圧を上昇させて燃費や出力性能を低下させる要因とな
っている。また、フィルタ表面に触媒を含浸させたタイ
プでは、触媒粒子への灰分の被覆により酸化性能が劣化
し、フィルタ再生効率を著しく低下させることもある。
This ash content also causes filter clogging, which increases engine exhaust pressure and reduces fuel efficiency and output performance. Furthermore, in the case of a type in which the filter surface is impregnated with a catalyst, the oxidation performance deteriorates due to the ash coating on the catalyst particles, which may significantly reduce the filter regeneration efficiency.

本発明は、フィルタ再生後の急減速時などに高い過給圧
を利用してフィルタに空気を逆流させ、フィルタの清浄
を行い目詰まりを解消するようにした内燃機関の排気処
理装置を提供することを目的とする。
The present invention provides an exhaust treatment device for an internal combustion engine that uses high boost pressure to flow air back into the filter during sudden deceleration after filter regeneration, thereby cleaning the filter and eliminating clogging. The purpose is to

(課題を解決するための手段) 本発明は、第1図に示すように、機関の排気通路50に
介装したパーティキュレイト捕集用のフィルタ51と、
フィルタ再生時期を判定する手段52と、フィルタ再生
時に排気温度を上昇させる手段53とを備えた内燃機関
の排気処理装置において、前記フィルタ51の上流の排
気通路5oに設けた排気絞り弁54と、この排気絞り弁
54とフィルタ51の問から分岐して吸気通路55に接
続する排気還流通路56と、排気通路5oの排気絞り弁
54及びフィルタ51を迂回するバイパス通路57と、
このバイパス通路57に介装したバイパス弁58と、機
関の減速状態を検出する手段59と、フィルタ再生後の
減速時に排気絞り弁54を閉じると共にバイパス弁58
を開いてフィルタ51に排気を逆流させる清浄手段6o
とを備える。
(Means for Solving the Problems) As shown in FIG. 1, the present invention includes a filter 51 for collecting particulates interposed in an exhaust passage 50 of an engine;
An exhaust gas treatment device for an internal combustion engine comprising means 52 for determining filter regeneration timing and means 53 for increasing exhaust temperature during filter regeneration, an exhaust throttle valve 54 provided in the exhaust passage 5o upstream of the filter 51; An exhaust gas recirculation passage 56 that branches from the point between the exhaust throttle valve 54 and the filter 51 and connects to the intake passage 55, and a bypass passage 57 that bypasses the exhaust throttle valve 54 and the filter 51 in the exhaust passage 5o.
A bypass valve 58 interposed in the bypass passage 57, a means 59 for detecting the deceleration state of the engine, and a means 59 for closing the exhaust throttle valve 54 during deceleration after filter regeneration and the bypass valve 58.
Cleaning means 6o that opens and causes exhaust gas to flow back into the filter 51
Equipped with.

(作用) フィルタを再生しても灰分が残るが、例えば再生後の所
定の期間内で、Il閏減速状態に移行したときに、排気
絞り弁を閉じると共にバイパス弁を開くと、排気還流通
路に還流される排気は、フィルタを下流から上流に逆流
して流れる。
(Function) Even if the filter is regenerated, ash remains, but for example, if the exhaust throttle valve is closed and the bypass valve is opened during a predetermined period after regeneration, when the state shifts to the Il leap deceleration state, ash remains in the exhaust gas recirculation passage. The recirculated exhaust gas flows backward through the filter from downstream to upstream.

このとき、フィルタに捕集されていた灰分を、この逆流
排気により吹き飛ばしくブローオフ)、目詰まりを解消
する。
At this time, the ash trapped in the filter is blown off by this backflow exhaust, eliminating clogging.

なお、灰分は機関燃焼室を経由した後、排気通路、バイ
パス通路を経て排出される。
Incidentally, after passing through the engine combustion chamber, the ash is discharged through the exhaust passage and the bypass passage.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第2図において、1はディーゼルエンジンの機関本体、
2は吸気通路、3は排気通路で、排気通路3には酸化触
媒を担持させたパーティキュレイト捕集用の排気フィル
タ4が介装される。
In Figure 2, 1 is the main body of the diesel engine;
2 is an intake passage, 3 is an exhaust passage, and the exhaust passage 3 is interposed with an exhaust filter 4 for collecting particulates carrying an oxidation catalyst.

前記フィルタ4の上流には排気絞り弁7が設けられると
共に、フィルタ4と排気絞り弁7の間から分岐した排気
還流通路8が、吸気通路2の吸気絞り弁9の下流に接続
する。
An exhaust throttle valve 7 is provided upstream of the filter 4, and an exhaust gas recirculation passage 8 branched from between the filter 4 and the exhaust throttle valve 7 is connected downstream of the intake throttle valve 9 of the intake passage 2.

なお、排気還流通路8の途中にはワイヤメツシュ等で構
成された比較的口の荒いEGRフィルタ5が設けられ、
その下流に通常運転時に排気還流量を運転状態に応じて
制御する排気還流(EGR)弁10が介装される。
Note that an EGR filter 5 with a relatively rough opening made of wire mesh or the like is provided in the middle of the exhaust gas recirculation passage 8.
An exhaust gas recirculation (EGR) valve 10 is installed downstream of the exhaust gas recirculation (EGR) valve 10 for controlling the amount of exhaust gas recirculation according to the operating state during normal operation.

排気通路3の排気絞り弁7とフィルタ4を迂回するよう
にバイパス通路11が設けられ、この途中にバイパス通
路11を開閉するバイパス弁12が設けられる。
A bypass passage 11 is provided to bypass the exhaust throttle valve 7 and filter 4 of the exhaust passage 3, and a bypass valve 12 for opening and closing the bypass passage 11 is provided in the middle of the bypass passage 11.

前記排気絞り弁7、吸気絞り弁9、バイパス弁12、E
GR弁10はそれぞれダイヤフラム装置7a、9m、1
2a、10aによって駆動され、これらダイヤフラム装
置7a、9m、12m、10aに導入する作動圧力を制
御するため三方電磁弁7b、9b、12b、10bが設
けられる。
The exhaust throttle valve 7, the intake throttle valve 9, the bypass valve 12, E
The GR valve 10 includes diaphragm devices 7a, 9m, and 1, respectively.
Three-way solenoid valves 7b, 9b, 12b, 10b are provided to control the operating pressure introduced into these diaphragm devices 7a, 9m, 12m, 10a.

そして、フィルタ4の再生や清浄のために、これら各電
磁弁7b、9b、12b、10bの作動を制御するコン
トロールユニット6が備えられる。
In order to regenerate and clean the filter 4, a control unit 6 is provided that controls the operation of each of these electromagnetic valves 7b, 9b, 12b, and 10b.

コントロールユニット6には機関の運転状態を検出する
ために、機関回転数センサ15からの回転数信号Ne、
燃料噴射ポンプ14のレバー開度センサ16からの燃料
噴射量信号Q、機関冷却水温センサ17からの水温信号
Tw、フィルタ4の近傍に配置した排気温度センサ18
からの排気温度信号T1、フィルタ4の前後差圧センサ
19からの差圧信号ΔPがそれぞれ入力する。
The control unit 6 includes a rotational speed signal Ne from an engine rotational speed sensor 15 in order to detect the operating state of the engine.
A fuel injection amount signal Q from the lever opening sensor 16 of the fuel injection pump 14, a water temperature signal Tw from the engine cooling water temperature sensor 17, and an exhaust temperature sensor 18 disposed near the filter 4.
The exhaust gas temperature signal T1 from the filter 4 and the differential pressure signal ΔP from the front and rear differential pressure sensor 19 of the filter 4 are respectively input.

コントロールユニット6は差圧センサ19からの信号に
基づいてフィルタ4の目詰まり具合を判断し、再生時期
にあるときは、排気温度上昇手段を兼ねる、排気絞り弁
7と吸気絞り弁9を絞ると共に、バイパス弁12を閉じ
、さらに同時に必要に応じてフィルタ4の直前に配置し
た電気ヒータ13に通電してフィルタ直前の温度を上昇
させ、フィルタ4の再生を行う。
The control unit 6 determines the degree of clogging of the filter 4 based on the signal from the differential pressure sensor 19, and when it is time for regeneration, it throttles the exhaust throttle valve 7 and the intake throttle valve 9, which also serve as exhaust temperature raising means. , the bypass valve 12 is closed, and at the same time, if necessary, the electric heater 13 disposed immediately before the filter 4 is energized to raise the temperature immediately before the filter, thereby regenerating the filter 4.

吸気絞り弁9の絞り込みにより余剰空気が減り、かつ排
気絞り弁7の絞り込みによる排圧上昇で機関の燃料噴射
量が増え、これらが相まって排気温度が上昇し、ヒータ
13による加熱もあってフィルタ4に捕集されていたパ
ーティキュレイトをこの高温雰囲気の下で安定して着火
、燃焼させる。
Surplus air is reduced by throttling the intake throttle valve 9, and fuel injection amount of the engine increases due to the increase in exhaust pressure due to throttling of the exhaust throttle valve 7. These factors combine to raise the exhaust temperature, and due to heating by the heater 13, the filter 4 The particulates that had been collected are stably ignited and burned in this high-temperature atmosphere.

さらにまた、コントロールユニット6はフィルタ4に詰
まった灰分を除去するために、フィルタ4の再生後の機
関減速時に、排気絞り弁7を閉じると共にバイパス弁1
2を開き、さらにEGR弁10を開くと共に吸気絞り弁
9を絞ることにより排気還流通路8を経由して強力な排
気還流を行い、このとき排気絞り弁7が閉じているため
排気はフィルタ4の下流から上流へと逆流し、フィルタ
4に詰まっていた灰分をこの逆流排気によって吹き飛ば
すようになっている。
Furthermore, in order to remove ash clogging the filter 4, the control unit 6 closes the exhaust throttle valve 7 and closes the bypass valve 1 when the engine decelerates after the filter 4 is regenerated.
2 is opened, and further the EGR valve 10 is opened and the intake throttle valve 9 is throttled to perform strong exhaust gas recirculation via the exhaust gas recirculation passage 8. At this time, since the exhaust throttle valve 7 is closed, the exhaust gas is passed through the filter 4. The ash flows backward from downstream to upstream, and the ash clogged in the filter 4 is blown away by this backward flow exhaust.

線間急減速時など吸気通路2の強力な負圧により排気還
流量を一時的に急増させることができるので、フィルタ
4を逆流する排気流速も瞬間的に高まり、目詰まりして
いた灰分をブローオフすることができるのである。
As the exhaust gas recirculation amount can be temporarily increased rapidly due to the strong negative pressure in the intake passage 2 during sudden deceleration, the flow rate of the exhaust gas flowing backward through the filter 4 also increases instantaneously, blowing off clogging ash. It is possible.

なお、この清浄 除去作用はフィルタ4の再生直後で、
しかもパーティキュレイトの発生がない減速時に行なわ
れるので、バイパス弁12を開いてもパーティキュレイ
トが排出されることはなく、また、逆流排気中に含まれ
る灰分は微量であるので、これが機関燃焼室を経て排気
通路3、バイパス通路11から排出されても、白煙を生
じるようなごとはない。
Note that this cleaning and removal action occurs immediately after the filter 4 is regenerated.
Furthermore, since this is carried out during deceleration when no particulates are generated, no particulates are discharged even if the bypass valve 12 is opened, and since the ash contained in the backflow exhaust gas is very small, this does not cause engine combustion. Even if the smoke is discharged from the exhaust passage 3 and the bypass passage 11 through the chamber, no white smoke is generated.

次に第3図、第4図にしたがって、コントロールユニッ
ト6で実行される上記したフィルタ4の再生動作及び清
浄動作を説明する。
Next, the above-mentioned regeneration operation and cleaning operation of the filter 4 executed by the control unit 6 will be explained with reference to FIGS. 3 and 4.

まず第3図のフィルタ再生ルーチンにおいて、Slで各
検出信号Ne、Q、Tw、T1、ΔPを読込み、まず、
フィルタ4の前後差圧ΔPが所定値に達したかどうかを
於て、再生時期を判断する。
First, in the filter regeneration routine shown in FIG. 3, each detection signal Ne, Q, Tw, T1, ΔP is read by Sl, and
The regeneration timing is determined based on whether the differential pressure ΔP across the filter 4 has reached a predetermined value.

フィルタ4に捕集されるパーティキュレイトの堆積量に
応じて差圧が高まるので、これが所定値に達したときを
フィルタ4の再生時期とする。
Since the differential pressure increases according to the amount of particulates accumulated on the filter 4, the time when this pressure reaches a predetermined value is determined as the time to regenerate the filter 4.

なお、再生時期にないときは、Sllに移行してバイパ
ス弁12を閏じると共に、排気絞り弁7と吸気絞り弁9
とを開き、ヒータ13をオフに保ち、排気の全量をフィ
ルタ4に流入させパーティキュレイトの捕集を行う。
Note that when it is not the regeneration period, the state shifts to Sll and the bypass valve 12 is opened, and the exhaust throttle valve 7 and the intake throttle valve 9 are closed.
is opened, the heater 13 is kept off, and the entire amount of exhaust gas flows into the filter 4 to collect particulates.

またこの場合、EGR弁10は運転状態に応じて適切に
開度が制御され、したがって排気の一部が、排気系と吸
気系の差圧に対応しつつ排気還流通路8から吸気通路2
へと流入して、機関燃焼室での燃焼時に発生するNoに
の低減に寄与する。
Further, in this case, the opening degree of the EGR valve 10 is appropriately controlled depending on the operating condition, and therefore a portion of the exhaust gas is transferred from the exhaust recirculation passage 8 to the intake passage 2 while corresponding to the differential pressure between the exhaust system and the intake system.
This contributes to the reduction of No generated during combustion in the engine combustion chamber.

次いでS3で排気ガス温度T、が所定値以上であるかど
うかを判断し、以下のときはs4で機関冷却水温Twが
所定値よりも高いがどぅがを判断する。
Next, in S3, it is determined whether the exhaust gas temperature T is higher than a predetermined value, and if not, in S4, it is determined whether or not the engine cooling water temperature Tw is higher than the predetermined value.

排気温度が低く、かつ冷却水温も低いときはフィルタ4
の再生が困難なため、S12に移行してバイパス弁12
を開くと共に、排気、吸気絞り弁79を開き、ヒータ1
3もオフにして、とりあえずフィルタ4をバイパスして
排気を流し、それ以上の目詰まりによる機関性能の低下
を防ぐ。
Filter 4 when the exhaust temperature is low and the cooling water temperature is also low.
Since it is difficult to regenerate the bypass valve 12, the process moves to S12 and the bypass valve 12 is
At the same time, the exhaust and intake throttle valves 79 are opened, and the heater 1
3 is also turned off, and the exhaust air bypasses filter 4 for the time being to prevent further deterioration of engine performance due to clogging.

冷却水温が設定値以上であれば、s5〜s7でヒータ1
3をオンにし、さらに回転数Neと燃料噴射量(負荷)
Qによって、予め設定されたマツプから運転状態に適し
た、吸気、排気絞りを行うように、各絞り弁7.9を作
動させ、またバイパス弁12を閉じる。
If the cooling water temperature is above the set value, heater 1 is turned on in s5 to s7.
Turn on 3, and then set the rotation speed Ne and fuel injection amount (load)
Q operates each throttle valve 7.9 and closes the bypass valve 12 so as to throttle the intake and exhaust air according to the preset map according to the operating conditions.

吸気絞り弁9を絞ると機関燃焼に関与しない余剰空気が
減り、排気温度が相対的に上昇し、また、排気絞り弁7
を絞ることにより、排圧が増加して、これに応じて図示
しない燃料噴射ポンプが噴射量を増加させていくために
、やはり排気温度が上昇する。
When the intake throttle valve 9 is throttled, surplus air that does not participate in engine combustion is reduced, the exhaust temperature increases relatively, and the exhaust throttle valve 7
By throttling the exhaust pressure, the exhaust pressure increases, and the fuel injection pump (not shown) increases the injection amount accordingly, which also causes the exhaust temperature to rise.

したがって、そのときの運転状態に応じて最適な昇温作
用が得られるように、吸気絞り弁9と排気絞り弁7の作
動を制御し、この結果、排気温度が上昇してフィルタ4
に捕集されたパーティキュレイトが着火燃焼し、効率的
な再生を行なう。
Therefore, the operation of the intake throttle valve 9 and the exhaust throttle valve 7 is controlled so as to obtain the optimum temperature raising effect according to the operating state at that time, and as a result, the exhaust gas temperature increases and the filter 4
The particulates collected are ignited and burned, resulting in efficient regeneration.

なお、前記S3で排気ガス温度が設定値以上のときは、
とくに排気温度上昇のための操作を行わなくても、フィ
ルり4のパーティキュレイトを自動的に燃焼させること
ができるので、S13でヒータ13はオフ、また吸気、
排気絞り弁9.7を開いたままとしておく。
Note that when the exhaust gas temperature is equal to or higher than the set value in S3,
Since the particulates in the fill 4 can be automatically combusted without any particular operation to raise the exhaust temperature, the heater 13 is turned off in S13 and the intake air
Leave exhaust throttle valve 9.7 open.

S8、S9で再生時間のカウントが行なわれ、再生時間
が所定時間に達するまで、以上の動作が継続される。し
たがって、フィルタ4に捕集されたパーティキュレイト
の堆積量が所定値に達すると、排気温度を上昇させなが
ら再生動作が行なわれ、パーティキュレイトを確実に燃
焼除去することができる。
The playback time is counted in S8 and S9, and the above operations are continued until the playback time reaches a predetermined time. Therefore, when the accumulated amount of particulates collected on the filter 4 reaches a predetermined value, the regeneration operation is performed while increasing the exhaust gas temperature, and the particulates can be reliably burned and removed.

このようにして所定の再生が終了すると、こんどはS1
4のフィルタ逆流清浄処理ルーチンに移行する。
When the predetermined playback is completed in this way, the S1
The process moves to the filter backflow cleaning processing routine in step 4.

これは第4図に示すようにして実行され、まず回転数N
e、負荷Qの各信号を読込み、かつ再生動作の終了時点
がら所定の時間内であるかどうかを判断する(S15,
16)。
This is carried out as shown in Fig. 4, and first the rotational speed N
e, load Q signals, and determine whether or not a predetermined time has elapsed since the end of the playback operation (S15,
16).

フィルタ4の逆流清浄作用は再生直後の、まだフィルタ
4にパーティキュレイトがほとんど捕集されていないと
きに行なうことが好ましい。
It is preferable to carry out the backflow cleaning action of the filter 4 immediately after regeneration, when almost no particulates have been collected on the filter 4 yet.

次いでS17とS18で、機関回転数が所定値よりも高
く、かつ機関減速時であるがどうが判断する。減速状態
の判断は機関回転数と負荷がら判断し、負荷(燃料噴射
量)が小さく、回転数が所定値以上のときは減速である
と判定される。
Next, in S17 and S18, it is determined whether the engine speed is higher than a predetermined value and the engine is decelerating. The deceleration state is determined based on the engine rotation speed and load, and when the load (fuel injection amount) is small and the rotation speed is equal to or higher than a predetermined value, it is determined that the engine is decelerating.

また、S19で燃料噴射量が所定値以下ならば、320
〜S22において、バイパス弁12を開き、さらに吸気
絞り弁9を絞り(閉じ)、がっEGR弁10を全開して
から、排気絞り弁9を閉じる。
Also, if the fuel injection amount is less than the predetermined value in S19, 320
- In S22, the bypass valve 12 is opened, the intake throttle valve 9 is further throttled (closed), the EGR valve 10 is fully opened, and the exhaust throttle valve 9 is closed.

機関の高回転からの急減速時には、吸気絞り弁9を絞る
ことにより、その下流の吸気通路2には強い負圧が発生
する。
When the engine suddenly decelerates from a high speed, the intake throttle valve 9 is throttled to generate strong negative pressure in the intake passage 2 downstream thereof.

したがって、この状態でEGR弁10を全開すると大量
の排気が排気還流通路8に還流され、このとき、排気絞
り弁7が閉じているため排気通路3から還流される排気
は全量がフィルタ4の下流から上流へと高速で通り抜け
る。
Therefore, when the EGR valve 10 is fully opened in this state, a large amount of exhaust gas is recirculated to the exhaust gas recirculation passage 8. At this time, since the exhaust throttle valve 7 is closed, the entire amount of exhaust gas recirculated from the exhaust passage 3 is downstream of the filter 4. passing through at high speed upstream.

このような高速排気の逆流により、フィルタ4に目詰ま
りしていた灰分は吹き飛ばされ、逆流排気と共に排気還
流通路8、吸気通路2から機関燃焼室へと還流されるの
である。
Due to the backflow of the high-speed exhaust gas, the ash clogging the filter 4 is blown away and is returned together with the backflow exhaust air from the exhaust gas recirculation passage 8 and the intake passage 2 to the engine combustion chamber.

なお、排気還流通路8にはメツシュの荒いEGRフィル
タ5が介装されているため、逆流排気中の灰分は微量で
あっても、−気にそのまま機関燃焼室に吸入されること
はなく、時間をかけて徐々にここを通過し、このため機
関への悪影響は回避される。
Furthermore, since the exhaust gas recirculation passage 8 is equipped with an EGR filter 5 with a rough mesh, even if the ash content in the backflow exhaust gas is small, it will not be sucked into the engine combustion chamber as it is, and the time will be reduced. It will gradually pass through this point, thus avoiding any negative impact on the engine.

そして、これらの動作は所定の時間(例えば数秒間)が
経過するまで継続され、所定時間の経過後に再生判定時
期データを消去し、総てを初期状態に戻し、次の再生動
作に備える(823〜525)。
These operations are continued until a predetermined time (for example, several seconds) has elapsed, and after the predetermined time has elapsed, the playback determination timing data is erased, everything is returned to the initial state, and the next playback operation is prepared (823). ~525).

逆流清浄作用はパーティキュレイトの発生がない(少な
い)機関の減速時で、しかもフィルタ4の再生直後に行
なわれるので、したがってバイパス弁12を開いてもパ
ーティキュレイトの外部への排出を生じることなく、フ
ィルタ4に詰まっていた不燃性の灰分を確実にかつ効率
的に除去することができる。また、この逆流清浄作用は
、フィルタ4の再生燃焼とは異なり、物理的に目詰まり
をブローオフするだけであるから、減速時にある程度の
排気還流量(流速)を確保できれば、2〜3秒という短
時間でも、目詰まりの除去は十分に可能である。
The backflow cleaning action is performed during deceleration of the engine when no (few) particulates are generated, and also immediately after the filter 4 is regenerated, so even if the bypass valve 12 is opened, particulates will not be discharged to the outside. Therefore, the non-flammable ash clogging the filter 4 can be reliably and efficiently removed. In addition, this backflow cleaning action differs from the regeneration combustion of the filter 4, and only physically blows off clogging, so if a certain amount of exhaust gas recirculation (flow velocity) can be secured during deceleration, it can be as short as 2 to 3 seconds. It is possible to remove clogging even if it takes a long time.

なお、前記EGRフィルタ5に通常運転時にカーボン等
が溜まると、排気還流精度が悪化したり、フィルタ4の
逆流清浄時のブローオフ効率が低下することも考えられ
るので、このフィルタ近傍にヒータを設けて、排気還流
をしないときに捕集したカーボンを燃焼除去するように
してもよい。
Note that if carbon etc. accumulate in the EGR filter 5 during normal operation, the accuracy of exhaust gas recirculation may deteriorate and the blow-off efficiency during backflow cleaning of the filter 4 may decrease, so a heater is provided near this filter. , the collected carbon may be removed by combustion when the exhaust gas is not recirculated.

このようにして、本発明では、フィルタ4に堆積したパ
ーティキュレイトの再生燃焼と、その直後における目詰
まり灰分の清浄・除去作用とを効率よく行えるのである
In this way, in the present invention, it is possible to efficiently regenerate and burn particulates accumulated on the filter 4 and to clean and remove clogging ash immediately after that.

この実施例ではフィルタ4の再生時に排気温度を上昇さ
せるために、排気絞り弁7と吸気絞り弁9並びにヒータ
13を用いたが、必ずしもこれらに限定されるわけでは
なく、例えば排気中に再生燃焼用の燃料を供給するよう
にしてもよい。
In this embodiment, the exhaust throttle valve 7, the intake throttle valve 9, and the heater 13 are used in order to raise the exhaust gas temperature when the filter 4 is regenerated. However, the present invention is not necessarily limited to these. It may also be possible to supply fuel for this purpose.

(発明の効果) 以上のように本発明によれば、フィルタの再生直後など
の、しかもパーティキュレイトの発生がない減速時に、
吸気系への排気還流作用を利用してを排気をフィルタの
下流から上流に逆流させることにより、フィルタに目詰
まりしていた灰分を吹き飛ばして除去することができ、
フィルタの目詰まりによる機関性能の低下を防ぐと共に
、フィルタの寿命を大幅に延ばすことができるという効
果を生じる。
(Effects of the Invention) As described above, according to the present invention, during deceleration, such as immediately after filter regeneration, and when no particulates are generated,
By using the exhaust gas recirculation effect to the intake system and causing the exhaust gas to flow backwards from downstream to upstream of the filter, the ash that has clogged the filter can be blown out and removed.
This has the effect of preventing deterioration of engine performance due to filter clogging and significantly extending the life of the filter.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成図、第2区は同じくその実施例を
示す概略構成図、第3図はコントロールユニットで実行
されるフィルタ再生動作のフローチャート、第4図は同
じく清浄動作のフローチャートである。 1・・・機関本体、2・・・吸気通路、3・・・排気通
路、4・・・フィルタ、6・・・コントロールユニット
、7・・排気絞り弁、8−・・排気還流通路、9・・・
吸気絞り弁、10・・・排気還流(EGR)弁、11・
・・バイパス通路、12・・・バイパス弁、15・・・
回転数センサ、16・・・燃料噴射レバー開度センサ、
18・・・排気温度センサ。
Fig. 1 is a block diagram of the present invention, Section 2 is a schematic block diagram showing an embodiment thereof, Fig. 3 is a flowchart of the filter regeneration operation executed by the control unit, and Fig. 4 is a flowchart of the cleaning operation. be. DESCRIPTION OF SYMBOLS 1... Engine body, 2... Intake passage, 3... Exhaust passage, 4... Filter, 6... Control unit, 7... Exhaust throttle valve, 8-... Exhaust recirculation passage, 9 ...
Intake throttle valve, 10...Exhaust gas recirculation (EGR) valve, 11.
...Bypass passage, 12...Bypass valve, 15...
Rotation speed sensor, 16...Fuel injection lever opening sensor,
18...Exhaust temperature sensor.

Claims (1)

【特許請求の範囲】[Claims] 1.機関の排気通路に介装したパーティキュレイト捕集
用のフィルタと、フィルタ再生時期を判定する手段と、
フィルタ再生時に排気温度を上昇させる手段とを備えた
内燃機関の排気処理装置において、前記フィルタの上流
の排気通路に設けた排気絞り弁と、この排気絞り弁とフ
ィルタの間から分岐して吸気通路に接続する排気還流通
路と、排気通路の排気絞り弁及びフィルタを迂回するバ
イパス通路と、このバイパス通路に介装したバイパス弁
と、機関の減速状態を検出する手段と、フィルタ再生後
の減速時に排気絞り弁を閉じると共にバイパス弁を開い
てフィルタに排気を逆流させる清浄手段とを備えたこと
を特徴とする内燃機関の排気処理装置。
1. a filter for collecting particulates installed in an exhaust passage of an engine; a means for determining when to regenerate the filter;
An exhaust gas treatment device for an internal combustion engine, comprising means for increasing exhaust temperature during filter regeneration; an exhaust throttle valve provided in an exhaust passage upstream of the filter; and an intake passage branching from between the exhaust throttle valve and the filter. a bypass passage that bypasses the exhaust throttle valve and filter in the exhaust passage; a bypass valve installed in the bypass passage; a means for detecting the deceleration state of the engine; An exhaust gas treatment device for an internal combustion engine, comprising: a cleaning device that closes an exhaust throttle valve and opens a bypass valve to cause exhaust gas to flow back into a filter.
JP2136214A 1990-05-25 1990-05-25 Exhaust treatment system for internal combustion engine Pending JPH0431613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2136214A JPH0431613A (en) 1990-05-25 1990-05-25 Exhaust treatment system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2136214A JPH0431613A (en) 1990-05-25 1990-05-25 Exhaust treatment system for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH0431613A true JPH0431613A (en) 1992-02-03

Family

ID=15169975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2136214A Pending JPH0431613A (en) 1990-05-25 1990-05-25 Exhaust treatment system for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH0431613A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0831209A1 (en) 1996-09-19 1998-03-25 Toyota Jidosha Kabushiki Kaisha A device for purifying the exhaust gas of an internal combustion engine
WO2003086580A1 (en) * 2002-04-12 2003-10-23 Illinois Valley Holding Company APPARATUS AND METHOD FOR FILTERING PARTICULATE AND REDUCING NOx EMISSIONS
US7269942B2 (en) 2003-05-15 2007-09-18 Illinois Valley Holding Company Wall flow particulate trap system
US7410521B2 (en) 2005-02-28 2008-08-12 Caterpillar Inc. Filter service system and method
US7419532B2 (en) 2004-10-05 2008-09-02 Caterpillar Inc. Deposition system and method
US7462222B2 (en) 2004-10-05 2008-12-09 Caterpillar Inc. Filter service system
JP2009085150A (en) * 2007-10-01 2009-04-23 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
KR101036945B1 (en) * 2011-02-08 2011-05-25 (주)일신오토클레이브 Cleaning structure for nano disperser and method of the same
US7992382B2 (en) 2003-08-01 2011-08-09 Illinois Valley Holding Company Particulate trap system and method
JP2012052553A (en) * 2011-11-17 2012-03-15 Ud Trucks Corp Engine exhaust purification device
US8142552B2 (en) 2007-06-29 2012-03-27 Caterpillar Inc. Filter purge system utilizing a reactive propellant
US8157897B2 (en) 2007-06-29 2012-04-17 Caterpillar Inc. Filter purge system utilizing impact wave generating device and vacuum source

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5941066A (en) * 1996-09-19 1999-08-24 Toyota Jidosha Kabushiki Kaisha Device for purifying the exhaust gas of an internal combustion engine
EP0831209A1 (en) 1996-09-19 1998-03-25 Toyota Jidosha Kabushiki Kaisha A device for purifying the exhaust gas of an internal combustion engine
WO2003086580A1 (en) * 2002-04-12 2003-10-23 Illinois Valley Holding Company APPARATUS AND METHOD FOR FILTERING PARTICULATE AND REDUCING NOx EMISSIONS
US6989045B2 (en) 2002-04-12 2006-01-24 Illinois Valley Holding Co. Apparatus and method for filtering particulate and reducing NOx emissions
US7273514B2 (en) * 2002-04-12 2007-09-25 Illinois Valley Holding Company Apparatus and method for filtering particulate and NOx emissions
US7269942B2 (en) 2003-05-15 2007-09-18 Illinois Valley Holding Company Wall flow particulate trap system
US7992382B2 (en) 2003-08-01 2011-08-09 Illinois Valley Holding Company Particulate trap system and method
US7419532B2 (en) 2004-10-05 2008-09-02 Caterpillar Inc. Deposition system and method
US7462222B2 (en) 2004-10-05 2008-12-09 Caterpillar Inc. Filter service system
US7410521B2 (en) 2005-02-28 2008-08-12 Caterpillar Inc. Filter service system and method
US8142552B2 (en) 2007-06-29 2012-03-27 Caterpillar Inc. Filter purge system utilizing a reactive propellant
US8157897B2 (en) 2007-06-29 2012-04-17 Caterpillar Inc. Filter purge system utilizing impact wave generating device and vacuum source
JP2009085150A (en) * 2007-10-01 2009-04-23 Nissan Diesel Motor Co Ltd Exhaust emission control device for engine
KR101036945B1 (en) * 2011-02-08 2011-05-25 (주)일신오토클레이브 Cleaning structure for nano disperser and method of the same
JP2012052553A (en) * 2011-11-17 2012-03-15 Ud Trucks Corp Engine exhaust purification device

Similar Documents

Publication Publication Date Title
US6990802B2 (en) Apparatus and method for regenerating particulate filter that removes particulates out of exhaust gas for internal combustion engine
JPH1089046A (en) Exhaust emission control device for diesel engine
JPH0431613A (en) Exhaust treatment system for internal combustion engine
KR102540442B1 (en) System of forcibly regenerating gasoline particulate filter
JP4161575B2 (en) Exhaust gas purification device for internal combustion engine
JPH0431614A (en) Exhaust gas treatment system
JPS63134810A (en) Regenerative apparatus of particulate trap
JP2861599B2 (en) Diesel engine exhaust purification system
JPH0367013A (en) Particulate catching device of diesel engine
JPH0447119A (en) Exhaust disposal equipment of internal combustion engine
JP2004263579A (en) Method and program for regenerating exhaust gas purifying filter
JP4248415B2 (en) Exhaust gas purification system for internal combustion engine
JP2003201829A (en) Exhaust emission control device of diesel engine
JP2003286820A (en) Engine exhaust-emission control device
JP2004162612A (en) Exhaust emission control device for internal combustion engine
JPH0544439A (en) Exhaust gas purifying device for diesel engine
JPH0422705A (en) Exhaust processing equipment for internal combustion engine
JP2926769B2 (en) Exhaust gas purification device for internal combustion engine
JP3257233B2 (en) Exhaust particulate processing equipment for internal combustion engines
JPH0614016Y2 (en) Exhaust gas purification device for diesel engine
JP2008157135A (en) Egr control device for engine
JPH0734846A (en) Particulate trap device
JPS62113814A (en) Diesel engine exhaust gas processing device
JPH0710015Y2 (en) Particulate trap filter regeneration device
JPS60216017A (en) Exhaust gas particulate processing device in internal- combustion engine provided with turbocharger