JPH0431486A - Oriented conductive organic thin film - Google Patents

Oriented conductive organic thin film

Info

Publication number
JPH0431486A
JPH0431486A JP13408990A JP13408990A JPH0431486A JP H0431486 A JPH0431486 A JP H0431486A JP 13408990 A JP13408990 A JP 13408990A JP 13408990 A JP13408990 A JP 13408990A JP H0431486 A JPH0431486 A JP H0431486A
Authority
JP
Japan
Prior art keywords
thin film
electron
polycyclic aromatic
aromatic compound
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13408990A
Other languages
Japanese (ja)
Other versions
JP2914518B2 (en
Inventor
Takashi Namikata
尚 南方
Masaru Ozaki
勝 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP13408990A priority Critical patent/JP2914518B2/en
Publication of JPH0431486A publication Critical patent/JPH0431486A/en
Application granted granted Critical
Publication of JP2914518B2 publication Critical patent/JP2914518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

PURPOSE:To realize the formation of an oriented conductive organic thin film having excellent stability and high conductivity by doping a specified linear condensed polycyclic aromatic compound with an electron-accepting molecule. CONSTITUTION:An oriented conductive organic thin film made by doping a linear condensed polycyclic aromatic compound of formula 1 (wherein x is 2 to 5) with an electron-accepting molecule. Examples of the electron-accepting molecule include a halogen, a Lewis acid, a proton acid, an electron-acceping organic molecule, and an electrolyte anion. This thin film can be formed by a method wherein a thin film of a condensed polycyclic aromatic compound is prepared and then doped with an electron-accepting molecule, or by a method wherein the doping is performed during the preparation of the thin film of the condensed polycyclic aromatic compound.

Description

【発明の詳細な説明】 (技術分野〕 本発明は配向性導電性有機薄膜に関する。[Detailed description of the invention] (Technical field〕 The present invention relates to oriented conductive organic thin films.

〔産業上の利用分野〕[Industrial application field]

本発明の配向性導電性有機薄膜は導電性材料として用い
ることができる。
The oriented conductive organic thin film of the present invention can be used as a conductive material.

〔従来技術および問題点〕[Prior art and problems]

これまで、ポリアセチレン、ポリピロール、ポリチオフ
ェン、ポリアリレンビニレン、ポリチェニレンビニレン
などの共役系高分子に電子供与性分子または電子受容性
分子をドーピングすることによって導電性材料が得られ
ることが知られている。またテトラチアフルバレンなど
の電子供与性分子とテトラシアノキノジメタンなどの電
子受容性分子の組合せによる電荷移動錯体が導電性を有
することも知られている。これらの導電性材料は高い電
導度を有するが薄膜形成が難しく、またこれら導電性材
料の大気中での酸化、ドーパントの付加反応などによる
安定性に問題があった。
Until now, it has been known that conductive materials can be obtained by doping conjugated polymers such as polyacetylene, polypyrrole, polythiophene, polyarylene vinylene, and polythenylene vinylene with electron-donating molecules or electron-accepting molecules. There is. It is also known that a charge transfer complex formed by a combination of an electron-donating molecule such as tetrathiafulvalene and an electron-accepting molecule such as tetracyanoquinodimethane has electrical conductivity. Although these conductive materials have high conductivity, it is difficult to form thin films, and there are also problems with stability due to oxidation of these conductive materials in the atmosphere, addition reactions of dopants, etc.

薄膜作製法としてLB法を用いて前記の導電性材料の薄
膜を作製する試みがなされているが高い導性を有し安定
性に優れた薄膜は得られていない9縮合多環芳香族化合
物の蒸着によって配向性薄膜が得られることは知られて
いる(Z、Physik、Chem。
Attempts have been made to fabricate a thin film of the above-mentioned conductive material using the LB method as a thin film fabrication method, but a thin film with high conductivity and excellent stability has not been obtained. It is known that oriented thin films can be obtained by vapor deposition (Z, Physik, Chem.

19、206 (I959))が、導電性薄膜を得た例
はない。
19, 206 (I959)), but there is no example in which a conductive thin film was obtained.

大気中での安定性に優れ、高い電導度を有するを機薄膜
が要求されている。
There is a need for thin films with excellent stability in the atmosphere and high conductivity.

〔問題を解決するための手段〕[Means to solve the problem]

このような問題点に鑑み、本発明者らは安定性に優れ、
高い電導度を有する有機薄膜を得るべく鋭意検討を重ね
た結果、本発明の配向性導電性有機薄膜を得るに至った
In view of these problems, the present inventors have developed a highly stable and
As a result of intensive studies to obtain an organic thin film with high conductivity, the oriented conductive organic thin film of the present invention was obtained.

すなわち、本発明は下記の式(I)においてXが2から
5で示される直鎖状縮合多環芳香族化合物に電子受容性
分子をドーピングした配向性導電性有機薄膜に関するも
のである。
That is, the present invention relates to an oriented conductive organic thin film in which a linear condensed polycyclic aromatic compound represented by the following formula (I) where X is 2 to 5 is doped with an electron-accepting molecule.

本発明で用いる直鎖状多環芳香族化合物について説明す
る。本発明で用いる直鎖状芳香族化合物として、ナフタ
セン(n=2)、ペンタセン(n==3)、ヘキサセン
(n=4)、ヘプタセン(n−5)を挙げることができ
る。
The linear polycyclic aromatic compound used in the present invention will be explained. Examples of the linear aromatic compound used in the present invention include naphthacene (n=2), pentacene (n=3), hexacene (n=4), and heptacene (n-5).

次に本発明で使用する電子受容性分子について説明する
。電子受容性分子としてC1z 、 Brz 、 Iz
、ICI、ICI、、IBr、IFなどのハロゲン、P
F5.八sF=、。
Next, the electron-accepting molecules used in the present invention will be explained. C1z, Brz, Iz as electron-accepting molecules
, ICI, ICI, , IBr, IF and other halogens, P
F5. 8sF=,.

5bFS、BF3 、 BClx 、 BBrz、SO
3、NOx 、 S(hなどのルイス酸、f(F 、 
H(J、 HNO3、HzSOs 、 H(JO<、F
SO3H、CjSO3H,CF35OJ 、酢酸、ぎ酸
などの有機酸、アミノ酸などのプロトン酸、TCNQ、
クロラニル、テトラフルオロテトラシアノキノジメタン
、テトラシアノエチレン、ジシアノクロロキノンなどの
電子受容性有機分子、FeCf3 、 Fe0C1、T
iCL、Zr(Ja 、HFC1a 、 NbPs、N
bCl5 、 Tacts 、MoCjs、WFs、W
CLi、IIF、、LnCI3、(Ln=La、 Ce
 、 Pr 、 Nd、S−などのランタノイド)など
の遷移金属化合物、Cl−1Br−1I−1C!04、
PFb−1AsF、−15bF6−1BF4−1FeC
L−スルホン酸アニオンなどの電解質アニオンなどを用
いることができる。
5bFS, BF3, BClx, BBrz, SO
3. Lewis acids such as NOx, S(h, f(F,
H(J, HNO3, HzSOs, H(JO<, F
SO3H, CjSO3H, CF35OJ, organic acids such as acetic acid and formic acid, protonic acids such as amino acids, TCNQ,
Electron-accepting organic molecules such as chloranil, tetrafluorotetracyanoquinodimethane, tetracyanoethylene, dicyanochloroquinone, FeCf3, Fe0C1, T
iCL, Zr(Ja, HFC1a, NbPs, N
bCl5, Tacts, MoCjs, WFs, W
CLi, IIF, , LnCI3, (Ln=La, Ce
, Pr, Nd, S-, etc.), transition metal compounds such as Cl-1Br-1I-1C! 04,
PFb-1AsF, -15bF6-1BF4-1FeC
Electrolyte anions such as L-sulfonic acid anions can be used.

これらの電子受容性分子は前記の直鎖状縮合多環芳香族
化合物と共存した場合に後者から電子移動が生じ後者の
電子受容性分子の分子構造は変化する。
When these electron-accepting molecules coexist with the linear condensed polycyclic aromatic compound, electron transfer occurs from the latter and the molecular structure of the latter electron-accepting molecule changes.

次に本発明の配向性導電性有機薄膜の作製法についてそ
の一例を示す。本発明の配向性導電性有機薄膜は前記の
縮合多環芳香族化合物薄膜作製後に電子受容性分子をド
ーピングして配向性導電性薄膜を得る方法、前記の縮合
多環芳香族化合物の薄膜作製時に電子受容性分子をドー
ピングして配向性導電性薄膜を得る方法によって作製す
ることができる。
Next, an example of the method for producing the oriented conductive organic thin film of the present invention will be described. The oriented conductive organic thin film of the present invention can be obtained by a method of doping an electron-accepting molecule to obtain an oriented conductive thin film after producing the fused polycyclic aromatic compound thin film described above; It can be produced by doping electron-accepting molecules to obtain an oriented conductive thin film.

前者の配向性導電性薄膜の作製は、まず縮合多環芳香族
化合物の薄膜を真空蒸着法、MBE法、CVD法、スパ
ッタリングなどの薄膜形成法を用いて基板上に作製する
。この際、基板材料として石英ガラス、フッ化カルシウ
ム、サファイヤ、アルミナ、マグネシア、塩化ナトリウ
ム、塩化カリウム、窒化アルミニウム、ボロンナイトラ
イドなどのセラミック材料、シリコン、ゲルマニウム、
ITO、GaAs、 InSb、 GaNなどの半導体
材料、金、アルミニウム、銀、鉄、ステンレスなどの金
属材料、Y−Ba−Cu−0系、B1−5r−Ca−C
u−0系、Nb系などの超伝導材料、ポリエステル、ポ
リスチレン、ポリエチレン、ポリアセチレン、ポリピロ
ールなどの有機物材料などを用いることができる。また
、基板は使用する目的に応じて神々の形態が使用可能で
ある。
To prepare the former oriented conductive thin film, first, a thin film of a condensed polycyclic aromatic compound is formed on a substrate using a thin film forming method such as a vacuum evaporation method, an MBE method, a CVD method, or a sputtering method. At this time, the substrate materials include quartz glass, calcium fluoride, sapphire, alumina, magnesia, sodium chloride, potassium chloride, aluminum nitride, ceramic materials such as boron nitride, silicon, germanium,
Semiconductor materials such as ITO, GaAs, InSb, and GaN, metal materials such as gold, aluminum, silver, iron, and stainless steel, Y-Ba-Cu-0 series, B1-5r-Ca-C
Superconducting materials such as u-0 type and Nb type, organic materials such as polyester, polystyrene, polyethylene, polyacetylene, and polypyrrole can be used. In addition, the board can be used in the form of gods depending on the purpose of use.

成膜の際の基板温度はとくに限定されないが液体窒素温
度などの低温の場合には膜の配向性が低下する。基板温
度の増加に従って膜の配向性が向上する。しかし、前記
縮合多環芳香族化合物の融点以上に加熱すると薄膜の配
向性は低下する。従って、基板温度は通常−100°C
〜300°Cが好ましい。
Although the substrate temperature during film formation is not particularly limited, when the temperature is low, such as the temperature of liquid nitrogen, the orientation of the film decreases. The orientation of the film improves as the substrate temperature increases. However, when the fused polycyclic aromatic compound is heated above its melting point, the orientation of the thin film decreases. Therefore, the substrate temperature is usually -100°C
~300°C is preferred.

基板温度が室温近傍の条件においても良い配向性薄膜が
得られる。この配向性は通常のX線回折法によって評価
することができる。ここで(OOn)面(nは1以上の
整数)が選択的に現われることから配向性薄膜であるこ
とがわかる。薄膜形成法として、たとえば真空蒸着法を
用いた場合は圧力1O−2Torr以下の雰囲気で前記
の縮合多環芳香族イ′合物を加熱蒸着する。この雰囲気
の圧力は低い方が配向性薄膜を得るために望ましく好ま
しくは10” ’Torr以下である。またMBE法を
用いる場合は縮合多環芳香族の蒸着源としてクヌーセン
セル、電子線銃加熱、ガスセルのいずれも使用可能であ
リ、通常の成膜法によって配向性薄膜を得ることができ
る。さらにCVD法の場合は真空下またはキャリアーガ
ス存在下で縮合多環芳香族の蒸気を基板上に供給するこ
とによって配向性薄膜が得られる。また、スパッタリン
グは前記の縮合多環芳香族化合物ターゲットを用いてア
ルゴンスパッタにより薄膜形成ができる。以上のように
して配向性縮合多環芳香族化合物薄膜が得られ、この配
向性が高いほど高電導度の配向性導電性薄膜とするため
に好ましい。
A thin film with good orientation can be obtained even when the substrate temperature is near room temperature. This orientation can be evaluated by a normal X-ray diffraction method. Since (OOn) planes (n is an integer of 1 or more) selectively appear here, it can be seen that the film is an oriented thin film. When a vacuum evaporation method is used as a thin film forming method, for example, the condensed polycyclic aromatic compound is heated and evaporated in an atmosphere with a pressure of 10-2 Torr or less. The pressure of this atmosphere is preferably low in order to obtain an oriented thin film, and is preferably 10"' Torr or less. Also, when using the MBE method, a Knudsen cell, electron beam gun heating, Any gas cell can be used, and an oriented thin film can be obtained by a normal film forming method.Furthermore, in the case of the CVD method, the vapor of the condensed polycyclic aromatic is deposited on the substrate under vacuum or in the presence of a carrier gas. By supplying the fused polycyclic aromatic compound, an oriented thin film can be obtained.Also, a thin film can be formed by argon sputtering using the above-mentioned condensed polycyclic aromatic compound target.In the above manner, an oriented fused polycyclic aromatic compound thin film can be obtained. The higher the orientation is, the more preferable it is to obtain an oriented conductive thin film with higher conductivity.

次いで、得られた配向性薄膜に電子受容性分子をドーピ
ングして配向性導電性薄膜とすることができる。このド
ーピングの方法としてガス状分子(ドーパント)を用い
た気相ドーピング、ドーパント溶液または液状ドーパン
ト中でドーピングする液相ドーピング、固体状のドーパ
ントを薄膜に接触させて拡散させる固相ドーピングのい
ずれも使用可能である。また必要があれば電解すること
によりドーピングの効率を向上させることもできる。こ
のドーピングによって該薄膜の配向性がドビングを施さ
ない薄膜に比べて向上する。たとえば、ペンタセン蒸着
膜では沃素ドーピングによってX線回折パターンの(0
0n)面の回折強度増加と配向の乱れによるサブピーク
の回折強度の減少、消失が認められる。このことから、
ドーピングによって分子の配向性が向上していることが
わかる。
Next, the obtained oriented thin film can be doped with electron-accepting molecules to form an oriented conductive thin film. This doping method includes gas phase doping using gaseous molecules (dopants), liquid phase doping in which doping is performed in a dopant solution or liquid dopant, and solid phase doping in which a solid dopant is brought into contact with a thin film and diffused. It is possible. Further, if necessary, the efficiency of doping can be improved by electrolyzing. This doping improves the orientation of the thin film compared to a thin film that is not doped. For example, in a pentacene vapor-deposited film, the X-ray diffraction pattern changes to (0) due to iodine doping.
It is observed that the diffraction intensity of the sub-peaks decreases and disappears due to an increase in the diffraction intensity of the 0n) plane and disordered orientation. From this,
It can be seen that the molecular orientation is improved by doping.

次に後者の方法、すなわち前記の縮合多環芳香族化合物
の薄膜作製時に電子受容性分子を薄膜中に供給して導電
性薄膜を得る方法についてその一例を示す、前記の薄膜
作製法である真空蒸着法、MBE法を用いて縮合多環芳
香族化合物とドーパント(電子受容性分子)をそれぞれ
の蒸着源から基板上に積層して配向性導電性薄膜を得る
ことができる。必要があれば、成膜時の成膜速度の制御
ならびにシャッタリングを用いることによって縮合多環
芳香族化合物とドーパント分子が交互に規則正しく積層
した薄膜、たとえば一原子層ずつ積層した薄膜を得るこ
とができる。またCVD法では、縮合多環芳香族化合物
とドーパントの蒸気をそれぞれ基板上に供給して配向性
導電性薄膜を得ることもできる。スパッタリングではア
ルゴンとドーパント共存下での直鎖状縮合多環芳香族化
合物のスパッタリングにより薄膜を得ることができる。
Next, we will show an example of the latter method, that is, the method of supplying electron-accepting molecules into the thin film during the preparation of the thin film of the fused polycyclic aromatic compound to obtain a conductive thin film. An oriented conductive thin film can be obtained by laminating a condensed polycyclic aromatic compound and a dopant (electron-accepting molecule) on a substrate from their respective vapor deposition sources using a vapor deposition method or an MBE method. If necessary, it is possible to obtain a thin film in which condensed polycyclic aromatic compounds and dopant molecules are alternately and regularly stacked, for example, a thin film in which one atomic layer is stacked, by controlling the film deposition rate and using shuttering during film formation. can. Furthermore, in the CVD method, an oriented conductive thin film can also be obtained by supplying vapors of a condensed polycyclic aromatic compound and a dopant onto a substrate, respectively. In sputtering, a thin film can be obtained by sputtering a linear condensed polycyclic aromatic compound in the coexistence of argon and a dopant.

ドーパントによっては二元スパッタリングも可能である
。ここで用いる基板材料として前記の基板材料が使用可
能である。
Depending on the dopant, binary sputtering is also possible. As the substrate material used here, the above-mentioned substrate materials can be used.

本発明の薄膜の膜厚は利用する目的により変化するため
に限定できないが、50人からミクロンオーダーまで作
製が可能である。
The thickness of the thin film of the present invention cannot be limited because it varies depending on the purpose of use, but it can be manufactured from 50 to micron order.

必要があれば、本発明の薄膜上にドーパントの拡散・飛
散防止のための保護層や他の材料の層を設けることもで
きる。また本発明の薄膜を応用した機能材料とするため
に、本発明の薄膜と他の材料の薄膜の多層の積層膜とし
て用いることもできる。
If necessary, a protective layer or other material layer for preventing dopant diffusion and scattering can be provided on the thin film of the present invention. Furthermore, in order to obtain a functional material to which the thin film of the present invention is applied, it can also be used as a multilayer laminate of the thin film of the present invention and thin films of other materials.

上記で得られたドーパント分子を含有する有機薄膜は、
その分子配向性に優れ、かつ高い導電性を示す。f!膜
の分子配向性は前記のX線回折法、電子線回折法などの
構造解析法によって評価できる。本発明の薄膜は(00
n)面(nは1以上の整数)の回折面が現われ、その格
子定数が分子の長袖に対応することがら縮合多環芳香族
化合物の分子がその長軸を基板面に垂直方向に規則正し
く配列していることがわかる。
The organic thin film containing dopant molecules obtained above is
It has excellent molecular orientation and exhibits high electrical conductivity. f! The molecular orientation of the film can be evaluated by structural analysis methods such as the above-mentioned X-ray diffraction method and electron beam diffraction method. The thin film of the present invention is (00
n) plane (n is an integer of 1 or more) appears, and since its lattice constant corresponds to the long sleeve of the molecule, the molecules of the condensed polycyclic aromatic compound are regularly arranged with their long axes perpendicular to the substrate surface. I know what you're doing.

本発明の薄膜の導電性は通常の方法である二端子法、四
端子法により評価できる。その電導度は使用する目的に
応じてドーパントの種類、含有量によって変化させるこ
とができる。本発明の薄膜の電導度は10−1357c
mから100 S/cmである。また、本発明の薄膜は
前記のように高い分子配向性を有するため、電導度に異
方性を有する。すなわち基板面に平行方向と垂直方向の
電導度の異方性(σ・/σよ)は1から104である。
The conductivity of the thin film of the present invention can be evaluated by a two-probe method or a four-probe method, which are conventional methods. The conductivity can be changed depending on the type and content of the dopant depending on the purpose of use. The conductivity of the thin film of the present invention is 10-1357c
m to 100 S/cm. Further, since the thin film of the present invention has high molecular orientation as described above, it has anisotropy in electrical conductivity. That is, the anisotropy (σ·/σ) of the conductivity in the direction parallel to and perpendicular to the substrate surface is from 1 to 104.

本発明の薄膜は大気中に長時間放置しても酸化、ドーパ
ントの付加反応などによる安定性に問題がなく非常に安
定であるため、電子材料としてエレクトロニクス、オプ
トエレクトロニクスなど種々の分野に応用でき工業上有
益である。
The thin film of the present invention is very stable even when left in the atmosphere for a long time without any stability problems due to oxidation or dopant addition reactions, so it can be applied as an electronic material in various fields such as electronics and optoelectronics, and has industrial applications. It is highly beneficial.

(実施例) 以下実施例により本発明をさらに詳細に説明する。(Example) The present invention will be explained in more detail with reference to Examples below.

実施例1 ペンタセンを石英ガラス基板上に500人の薄厚で真空
蒸着してペンタセンの薄膜を作製した。
Example 1 A thin film of pentacene was prepared by vacuum evaporating pentacene to a thickness of 500 ml on a quartz glass substrate.

基板温度は室温、圧力2x10づToorの雰囲気下で
、蒸着源はタングステンボートの抵抗加熱により行った
。該薄膜の構造をX線回折により測定したところ格子定
数15人の(00n)面(n=1〜3)が認められた。
The substrate temperature was room temperature, the pressure was 2 x 10 °C, and the vapor deposition source was resistance heating using a tungsten boat. When the structure of the thin film was measured by X-ray diffraction, a (00n) plane (n=1 to 3) with a lattice constant of 15 was observed.

次いで、得られた薄膜を沃素ガス雰囲気(室温、2 T
orrの圧力下)中でドーピングをおこない配向性導電
性薄膜を作製した。
Next, the obtained thin film was placed in an iodine gas atmosphere (room temperature, 2 T
An oriented conductive thin film was prepared by doping under a pressure of

該薄膜の構造をX線回折法(CuKα線)により測定し
たところ格子定数19人の(00n) (n = 1〜
14)の回折面が認められた。該薄膜の電導塵を直流四
端子法により測定したところ70 S/cmであった。
When the structure of the thin film was measured by X-ray diffraction method (CuKα ray), the lattice constant was 19 people (00n) (n = 1~
14) diffraction surface was observed. The conductive dust of the thin film was measured by a DC four-terminal method and was found to be 70 S/cm.

実施例2 実施例1と同様にしてポリエステル基板上に1000人
の膜厚でペンタセン薄膜を作製した。該″fj1Mの構
造をX線回折法により測定したところ格子定数15人の
(00n)面(n−1〜3)が認められメこ。
Example 2 In the same manner as in Example 1, a pentacene thin film with a thickness of 1000 mm was produced on a polyester substrate. When the structure of "fj1M" was measured by X-ray diffraction method, (00n) planes (n-1 to 3) with a lattice constant of 15 were observed.

得られた膜を5 TorrのS03ガス雰囲気下に置く
ことによりドーピングして配向性導電性薄膜を得た。
The obtained film was doped by placing it under a 5 Torr S03 gas atmosphere to obtain an oriented conductive thin film.

該薄膜の構造をX線回折法(CuKα線)により測定し
たところ格子定数18人の(00n) (n = 1〜
8)の回折面が認められた。該薄膜の電導塵を直流四端
子法により測定したところ6S/cmであった。
When the structure of the thin film was measured by X-ray diffraction method (CuKα ray), the lattice constant was 18 people (00n) (n = 1~
8) diffraction surface was observed. The conductive dust of the thin film was measured by a DC four-terminal method and was found to be 6 S/cm.

実施例3 実施例1と同様にしてマグネシア基板上にペンタセン薄
膜を作製した。該薄膜をFeC/、のニトロメタン溶液
(0,1M)に1時間浸せきした。得られた薄膜の構造
をX線回折法により測定したところ格子定数20人の(
OOn)面(n = 1〜10)が認められた。該薄膜
の電導塵を直流四端子法により測定したところIs/c
mであった。
Example 3 A pentacene thin film was produced on a magnesia substrate in the same manner as in Example 1. The thin film was immersed in a FeC/nitromethane solution (0.1M) for 1 hour. The structure of the obtained thin film was measured by X-ray diffraction method, and the lattice constant was 20 people (
OOn) planes (n = 1 to 10) were observed. When the conductive dust of the thin film was measured by the DC four terminal method, Is/c
It was m.

実施例4 部分的に金薄膜(300人)をもうけた石英基板を用い
て該基板上にペンタセンを2000人の膜厚で真空蒸着
してペンタセン薄膜を得た。成膜条件として基板温度は
30℃、圧力4 x 10−’Torrの雰囲気下、蒸
着源はタングステンボートの抵抗加熱により行った。
Example 4 Using a quartz substrate on which a gold thin film (300 mm) was partially formed, pentacene was vacuum deposited on the substrate to a thickness of 2000 mm to obtain a pentacene thin film. The deposition conditions were as follows: the substrate temperature was 30° C., the pressure was 4×10 Torr, and the deposition source was resistance heating using a tungsten boat.

該薄膜の金薄膜をアノードとして過塩素酸テトラメチル
アンモニウムのアセトニトリル溶液(0,05mM)中
で電解することによりCl0a−のドーピングを行い配
向性導電性薄膜を得た。
The gold thin film was used as an anode and electrolyzed in an acetonitrile solution (0.05 mM) of tetramethylammonium perchlorate to perform Cl0a- doping to obtain an oriented conductive thin film.

該薄膜の構造をX線回折法(CuKα線)により測定し
たところ格子定数18人の(00n) (n = 1〜
10)の回折面が認められた。該薄膜の電導塵を直流四
端子法により測定したところ10 S/C11であった
When the structure of the thin film was measured by X-ray diffraction method (CuKα ray), the lattice constant was 18 people (00n) (n = 1~
10) Diffraction surface was observed. The conductive dust of the thin film was measured by a DC four-terminal method and was found to be 10 S/C11.

実施例5 部分的に金薄膜(膜厚500人)被覆した石英ガラス基
板上にペンタセン−沃素薄膜を作製した。
Example 5 A pentacene-iodine thin film was formed on a quartz glass substrate partially coated with a gold thin film (film thickness: 500 mm).

MBE装置を用いて、圧力10− ’Torrの雰囲気
下でペンタセンをにセル加熱、沃素はガスセルにより基
板上に5000人のペンタセン−沃素薄膜を作製した。
Using an MBE apparatus, pentacene was heated in a cell under a pressure of 10 Torr, and a 5000-thick pentacene-iodine thin film was prepared on a substrate using a gas cell for iodine.

該薄膜の作製条件である蒸着源の温度、雰囲気圧力の制
御によってペンタセンと沃素をそれぞれ単原子層ずつ積
層した。なお、基板温度はO′Cであった。
Monoatomic layers of pentacene and iodine were deposited by controlling the temperature of the vapor deposition source and the atmospheric pressure, which are the conditions for producing the thin film. Note that the substrate temperature was O'C.

該薄膜の構造をX線回折法(CuKα線)により測定し
たところ格子定数19人の(00n) (n、 = 1
〜14)の回折面が認められた。該薄膜の基板面方向の
電導塵(σ・)を直流四端子法により測定したところ電
導塵は80 S/cmであった。
When the structure of the thin film was measured by X-ray diffraction method (CuKα ray), the lattice constant was 19 people (00n) (n, = 1
~14) diffraction surfaces were observed. The conductive dust (σ·) of the thin film in the direction of the substrate surface was measured by a DC four-terminal method, and the conductive dust was 80 S/cm.

該薄膜上に金電極(500人)を真空蒸着法によって設
はサンドインチ状構造とした。この構造の膜に沃素をド
ーピングした後ペンタセン−沃素薄膜の基板面に垂直方
向の電導塵(σ工)を直流二端子法で測定したところ、
電導塵は0.04 S/cmであった。このことがら電
導塵の異方性(σ・/σ−1−)は2000である。
A gold electrode (500 electrodes) was placed on the thin film by vacuum evaporation to form a sandwich-inch structure. After doping a film with this structure with iodine, conductive dust (σ) in the direction perpendicular to the substrate surface of the pentacene-iodine thin film was measured using the DC two-terminal method.
The conductive dust was 0.04 S/cm. Therefore, the anisotropy (σ·/σ−1−) of the conductive dust is 2000.

実施例6 シリコン基板を用いヘキセン薄膜を真空蒸着法で作製し
た(膜厚は2000λ)、 この作製における作製条件
として圧力2 x 10−’Torr、基板温度は50
°C1蒸着源はタングステンボートの抵抗加熱で行った
。ついで実施例1と同様にして得られた薄膜に沃素ドー
ピングを施した。
Example 6 A hexene thin film was fabricated by vacuum evaporation using a silicon substrate (film thickness: 2000λ). The fabrication conditions for this fabrication were a pressure of 2 x 10-'Torr and a substrate temperature of 50℃.
The C1 vapor deposition source was resistance heating of a tungsten boat. The thin film obtained in the same manner as in Example 1 was then doped with iodine.

該薄膜の構造をX線回折法(CuKα線)により測定し
たところ格子定数22人の(00n) (n = 1〜
16)の回折面が認められた。該薄膜の電導度を直流四
端子法により測定したところ60 S/cmであった。
When the structure of the thin film was measured by X-ray diffraction method (CuKα ray), the lattice constant was 22 people (00n) (n = 1~
16) diffraction surface was observed. The electrical conductivity of the thin film was measured by a DC four-terminal method and was found to be 60 S/cm.

実施例7 ポリエチレンフィルム基板上にヘプタセン薄膜を膜厚1
000人で真空蒸着した。真空容器中でこの薄膜に50
3ガス(圧力5 mTorr)を導入してドーピングを
施した。
Example 7 Heptacene thin film on a polyethylene film substrate with a film thickness of 1
Vacuum deposition was performed by 000 people. This thin film was heated in a vacuum container for 50 min.
Doping was performed by introducing 3 gases (pressure: 5 mTorr).

成膜条件として基板温度は25°C1圧力1xlO−S
Torrの雰囲気下、蒸着源はタングステンボートの抵
抗加熱により成膜を行った。
The film forming conditions are: substrate temperature: 25°C, pressure: 1xlO-S
The film was formed in an atmosphere of Torr using resistance heating using a tungsten boat as the evaporation source.

得られた該薄膜の構造をX線回折法(CuKα線)によ
り測定したところ格子定数25人(00n) (n =
 1〜15)の回折面が認められた。該薄膜の電導度を
直流四端子法により測定したところ40 S/cmであ
った。
When the structure of the obtained thin film was measured by X-ray diffraction method (CuKα ray), the lattice constant was 25 (00n) (n =
Diffraction planes 1 to 15) were observed. The electrical conductivity of the thin film was measured by a DC four-terminal method and was found to be 40 S/cm.

実施例8 石英ガラス基板上に真空蒸着法で膜J!! 800人の
ナフタセン薄膜を作製した。成膜条件として基板温度は
40°C1圧力5 x 10−’Torrの雰囲気下で
、蒸着源はタングステンボートの抵抗加熱によって成膜
を行った。ついで真空容器中でこの薄膜にAsF。
Example 8 Film J! was formed on a quartz glass substrate by vacuum evaporation method. ! 800 naphthacene thin films were fabricated. The film formation conditions were such that the substrate temperature was 40° C., the pressure was 5×10 Torr, and the deposition source was resistance heating using a tungsten boat. Then, AsF was applied to this thin film in a vacuum container.

ガス(圧力5 mTorr)を導入してドーピングを施
した。
Doping was performed by introducing gas (pressure: 5 mTorr).

得られた該薄膜の構造をX線回折法(CuKα線)によ
り測定したところ格子定数15人の(00n)(n=1
〜3)の回折面が認められた。該薄膜の電導度を直流四
端子法により測定したところlXl0−’S/cmであ
った。
When the structure of the obtained thin film was measured by X-ray diffraction method (CuKα ray), the lattice constant was 15 (00n) (n=1
-3) Diffraction planes were observed. The electrical conductivity of the thin film was measured by a DC four terminal method and was found to be 1X10-'S/cm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1で作製したペンタセン薄膜のX線回折
パターン、第2図は実施例1で作製したペンタセン−沃
素薄膜のX線回折パターンを示す。 特許出願人  旭化成工業株式会社
FIG. 1 shows the X-ray diffraction pattern of the pentacene thin film produced in Example 1, and FIG. 2 shows the X-ray diffraction pattern of the pentacene-iodine thin film produced in Example 1. Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】 下記の式( I )においてxが2から5で示される直鎖
状縮合多環芳香族化合物に電子受容性分子をドーピング
した配向性導電性有機薄膜 ▲数式、化学式、表等があります▼( I )
[Claims] An oriented conductive organic thin film obtained by doping a linear condensed polycyclic aromatic compound in which x is 2 to 5 in the following formula (I) with an electron-accepting molecule ▲ Mathematical formula, chemical formula, table etc.▼(I)
JP13408990A 1990-05-25 1990-05-25 Oriented conductive organic thin film Expired - Fee Related JP2914518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13408990A JP2914518B2 (en) 1990-05-25 1990-05-25 Oriented conductive organic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13408990A JP2914518B2 (en) 1990-05-25 1990-05-25 Oriented conductive organic thin film

Publications (2)

Publication Number Publication Date
JPH0431486A true JPH0431486A (en) 1992-02-03
JP2914518B2 JP2914518B2 (en) 1999-07-05

Family

ID=15120167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13408990A Expired - Fee Related JP2914518B2 (en) 1990-05-25 1990-05-25 Oriented conductive organic thin film

Country Status (1)

Country Link
JP (1) JP2914518B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268450A (en) * 2004-03-17 2005-09-29 Asahi Kasei Corp Organic semiconductor thin film, its manufacturing method, and organic semiconductor element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005268450A (en) * 2004-03-17 2005-09-29 Asahi Kasei Corp Organic semiconductor thin film, its manufacturing method, and organic semiconductor element

Also Published As

Publication number Publication date
JP2914518B2 (en) 1999-07-05

Similar Documents

Publication Publication Date Title
FI112555B (en) Electroluminescent device, process for its preparation and system of electroluminescent devices
Ono et al. Organometal halide perovskite thin films and solar cells by vapor deposition
Guo et al. Enhancement in the efficiency of an organic–inorganic hybrid solar cell with a doped P3HT hole-transporting layer on a void-free perovskite active layer
Kang et al. High-performance flexible organic light-emitting diodes using amorphous indium zinc oxide anode
US4269738A (en) Electrically conducting polymers
Bakhshi Electrically conducting polymers: from fundamental to applied research
Nüesch et al. Protonated metal-oxide electrodes for organic light emitting diodes
US9911935B2 (en) Transparent conducting oxide as top-electrode in perovskite solar cell by non-sputtering process
Zhang et al. Polymer with a 3D conductive network: a thickness-insensitive electron transport layer for inverted polymer solar cells
Shen et al. Role of electrode contamination in electron injection at Mg: Ag/Alq3 interfaces
Chen et al. Realizing high thermoelectric performance in n-type Bi2Te3 based thin films via post-selenization diffusion
Matsumoto et al. Conductivities of N-docosylpyridinium-(TCNQ) n (n= 1, 2) in the forms of monolayers at air-glycerin interface and Langmuir-Blodgett films
JPH0431486A (en) Oriented conductive organic thin film
Seto Inverted planer perovskite solar cells fabricated by all vapor phase process
Lu et al. Multi‐dimensional doping of polyaniline emeraldine base by hydrogensulfated fullerenol derivatives
Tam et al. Low-temperature conformal vacuum deposition of OLED devices using close-space sublimation
US5229845A (en) Electroconductive thin film of organic charge transfer complexes of bisethylenedithiatetrathiafulvalene
Nichogi et al. Mixed-stack charge-transfer films prepared by Langmuir-Blodgett technique and donor doping
US4406825A (en) Electrically conducting polyacetylenes
JP2864427B2 (en) Highly oriented organic thin film
JPH05274919A (en) Conductive organic thin film
JPH0581921A (en) Electric conductive organic thin film
Ronay et al. Interaction of niobium counter electrodes with aluminum oxide and rare-earth oxide tunnel barriers
JPH04218209A (en) Transparent organic thin film electrode
JPH04346401A (en) Non-linear electric resistor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees