JPH04313267A - Infrared rays detector - Google Patents

Infrared rays detector

Info

Publication number
JPH04313267A
JPH04313267A JP3070857A JP7085791A JPH04313267A JP H04313267 A JPH04313267 A JP H04313267A JP 3070857 A JP3070857 A JP 3070857A JP 7085791 A JP7085791 A JP 7085791A JP H04313267 A JPH04313267 A JP H04313267A
Authority
JP
Japan
Prior art keywords
tellurium
cadmium
xte
substrate
cadmium mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3070857A
Other languages
Japanese (ja)
Inventor
Muneyoshi Fukita
宗義 吹田
Kenji Yasumura
賢二 安村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3070857A priority Critical patent/JPH04313267A/en
Publication of JPH04313267A publication Critical patent/JPH04313267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a highly sensitive and high-integration infrared rays detector by preventing crosstalk. CONSTITUTION:A title item is provided with a P-N junction which is formed at one portion of cadmium mercury tellurium among a substrate 1 which consists of either of cadmium tellurium(CdTe), cadmium zinc tellurium(CdZnTe) gallium arsenic(GaAs), silicon.(Si), and sapphire (Al2O3) and has a groove 6 on the surface, cadmium mercury tellurium (DdxHq1-xTe) which is formed on a surface portion of a substrate 1, and a groove 5. Further, cadmium mercury tellurium 4 (CdyHg1-xTeO<=y<x) with a larger absorption coefficient for infrared rays than that of cadmium mercury tellurium (GdxHg1-xTe) is formed at least at either of a bottom of the groove and a side surface.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、赤外線検知器に関する
もので、特に多素子化した検知器の素子間のクロストー
クを防止するための構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an infrared detector, and more particularly to a structure for preventing crosstalk between elements of a multi-element detector.

【0002】0002

【従来の技術】図3は例えば特開昭63ー43366号
公報に示された従来のP− N接合赤外線検知器の構造
である。カドミウムテルル(Cd Te )あるいはカ
ドミウム亜鉛テルル(Cd Zn Te )基板1上に
所要のカドミウム水銀テルル(CdxHg1ーxTe 
)、例えばP型CdxHg1ーxTe 結晶2を形成し
、このP型CdxHg1ーxTe 結晶2表面に逆の伝
導型、例えばN型層3を形成している。 このような赤外線検知器に入射した赤外光は、CdxH
g1ーxTe 結晶2内で吸収されて光電変換されキャ
リアが発生する。この発生したキャリアは、CdxHg
1ーxTe 結晶2内を拡散し、Pー N接合部へ到達
する。Pー N接合部へ到達したキャリアは光電流を発
生し、赤外光の検知をすることができる。
2. Description of the Related Art FIG. 3 shows the structure of a conventional P-N junction infrared detector disclosed, for example, in Japanese Patent Application Laid-open No. 43366/1983. The required amount of cadmium mercury tellurium (CdxHg1
), for example, a P-type CdxHg1-xTe crystal 2 is formed, and on the surface of this P-type CdxHg1-xTe crystal 2, an opposite conductivity type, for example, an N-type layer 3 is formed. Infrared light incident on such an infrared detector is CdxH
g1-xTe is absorbed within the crystal 2 and photoelectrically converted to generate carriers. This generated carrier is CdxHg
It diffuses within the 1-xTe crystal 2 and reaches the P-N junction. The carriers that reach the P-N junction generate a photocurrent, allowing infrared light to be detected.

【0003】0003

【発明が解決しようとする課題】しかし、上記のような
構造をした従来の赤外線検知器において画素の集積度が
高くなると、赤外光によって発生したキャリアの拡散長
が画素ピッチに対して相対的に長くなり、図4に示すよ
うに複数のP−N接合部へキャリアが拡散し、クロスト
ークを生ずる問題がある。さらに、画素ピッチが短くな
ると、N層3の横方向への広がりが画素ピッチに対して
相対的に長くなり、隣接するN層が重なり、クロストー
クを生ずる場合もあった。
[Problems to be Solved by the Invention] However, as the density of pixels in conventional infrared detectors with the above structure increases, the diffusion length of carriers generated by infrared light becomes larger relative to the pixel pitch. As shown in FIG. 4, carriers diffuse into a plurality of PN junctions, causing crosstalk. Furthermore, as the pixel pitch becomes shorter, the width of the N layer 3 in the lateral direction becomes longer relative to the pixel pitch, and adjacent N layers overlap, sometimes resulting in crosstalk.

【0004】本発明は、かかる問題点を解決するために
なされたものであり、上記のような原因で発生するクロ
ストークを防止し、高感度、高集積度の赤外線検知器を
得ることを目的とする。
The present invention has been made to solve these problems, and aims to prevent crosstalk caused by the above-mentioned causes and to obtain a highly sensitive and highly integrated infrared detector. shall be.

【0005】[0005]

【課題を解決するための手段】本発明に係わる赤外線検
知器は、カドミウムテルル(Cd Te )、カドミウ
ム亜鉛テルル(Cd Zn Te )、ガリウムひ素(
Ga As )、シリコン(Si )およびサファイア
(Al2O3 )のうちの一方よりなり表面に溝を有す
る基板、この基板の表面部に形成されたカドミウム水銀
テルル(CdxHg1ーxTe )、並びに上記溝間の
このカドミウム水銀テルルの一部に形成されたPーN接
合を備えたものである。
[Means for Solving the Problems] The infrared detector according to the present invention uses cadmium tellurium (Cd Te ), cadmium zinc telluride (Cd Zn Te ), and gallium arsenide (
A substrate made of one of GaAs), silicon (Si), and sapphire (Al2O3) and having grooves on its surface, cadmium mercury tellurium (CdxHg1-xTe) formed on the surface of this substrate, and this between the grooves. It is equipped with a PN junction formed in a part of cadmium mercury telluride.

【0006】さらに溝の底および側面の少なくとも一方
に、カドミウム水銀テルル(CdxHg1ーxTe )
より赤外光に対する吸収係数が大きいカドミウム水銀テ
ルル(CdyHg1ーyTe 0≦y<x)を形成した
ものである。
Further, at least one of the bottom and side surfaces of the groove is coated with cadmium mercury tellurium (CdxHg1-xTe).
It is made of cadmium mercury tellurium (CdyHg1-yTe 0≦y<x), which has a larger absorption coefficient for infrared light.

【0007】[0007]

【作用】本発明における赤外線検知器は、基板上に溝を
形成しているので、隣接するN層(またはP層)が重な
らずクロストークを防止できる。従って、キャリア拡散
長以下の画素ピッチを有するような画素の高集積化が可
能となる。
[Operation] Since the infrared detector according to the present invention has grooves formed on the substrate, adjacent N layers (or P layers) do not overlap and crosstalk can be prevented. Therefore, it is possible to highly integrate pixels having a pixel pitch that is equal to or less than the carrier diffusion length.

【0008】また、この赤外線検知器の受光部であるC
dxHg1ーxTe より赤外光に対する吸収係数が大
きいカドミウム水銀テルル(CdyHg1ーyTe 0
≦y<x)は赤外線吸収層4として働くため、これを上
記溝の底および側面の少なくとも一方に形成すると、こ
の部分に入射した赤外光によってキャリアが発生せずク
ロストークを生じない。従って、赤外線検知器の高感度
化が可能となる。
[0008] Furthermore, C, which is the light receiving part of this infrared detector,
dxHg1-xTe Cadmium mercury telluride (CdyHg1-yTe 0
≦y<x) acts as the infrared absorbing layer 4, so if this is formed on at least one of the bottom and side surfaces of the groove, no carriers are generated by the infrared light incident on this portion, and no crosstalk occurs. Therefore, it becomes possible to increase the sensitivity of the infrared detector.

【0009】[0009]

【実施例】実施例1.以下、本発明の一実施例を図につ
いて説明する。図1は本発明の一実施例を示す斜視図、
図2a,b,c,d,eはそれぞれ図1に示す本発明の
一実施例の製造工程を示す断面図である。
[Example] Example 1. Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of the present invention;
2a, b, c, d, and e are cross-sectional views showing the manufacturing process of the embodiment of the present invention shown in FIG. 1, respectively.

【0010】まず製造方法について説明する。図2aに
おいてCd Te基板1上に溝5を形成して図2bの状
態になる。この溝5内に、赤外線検知器の受光部である
CdxHg1ーxTe より赤外光に対する吸収係数が
大きく赤外線吸収層4となる組成yが0≦y<xを有す
るCdyHg1ーyTe 結晶を形成して図2cの状態
となる。この状態で、P形CdxHg1ーxTe 結晶
2をエピタキシャル成長させたものが図2dの状態であ
る。溝5間のP型CdxHg1ーxTe 結晶2の表面
層の一部にN層3を形成することによりPーN接合を形
成する。これが図2eの状態である。
First, the manufacturing method will be explained. In FIG. 2a, grooves 5 are formed on the CdTe substrate 1, resulting in the state shown in FIG. 2b. In this groove 5, a CdyHg1-yTe crystal is formed, which has a larger absorption coefficient for infrared light than CdxHg1-xTe, which is the light receiving part of the infrared detector, and has a composition y of 0≦y<x, which forms the infrared absorption layer 4. The state shown in FIG. 2c is reached. In this state, a P-type CdxHg1-xTe crystal 2 is epitaxially grown, resulting in the state shown in FIG. 2d. A PN junction is formed by forming an N layer 3 on a part of the surface layer of the P-type CdxHg1-xTe crystal 2 between the grooves 5. This is the situation in Figure 2e.

【0011】前記のようにCd Te 基板1に形成し
た溝は、隣接する画素のN層を重ならずに形成できるた
めクロストークを防止できる。従って、キャリア拡散長
以下の画素ピッチを有する高集積度の赤外線検知器の作
製が可能となる。
The grooves formed in the CdTe substrate 1 as described above can prevent crosstalk because the N layers of adjacent pixels can be formed without overlapping. Therefore, it is possible to manufacture a highly integrated infrared detector having a pixel pitch equal to or less than the carrier diffusion length.

【0012】また、赤外線検知器の受光部であるCdx
Hg1ーxTe より赤外光に対する吸収係数が大きい
組成0≦y<xを有するCdyHg1ーyTe は赤外
線吸収層4として働くため、これを上記溝の底および溝
側面に形成すれば、この部分に入射した赤外光によって
キャリアが発生せずクロストークを生じない。従って、
上記高集積化に加えて高感度の赤外線検知器作製が可能
となる。
[0012] Furthermore, Cdx, which is the light receiving part of the infrared detector,
CdyHg1-yTe, which has a composition 0≦y<x and has a larger absorption coefficient for infrared light than Hg1-xTe, works as the infrared absorption layer 4, so if it is formed on the bottom and side surfaces of the groove, the light incident on this part will be No carriers are generated by the infrared light, and no crosstalk occurs. Therefore,
In addition to the above-mentioned high integration, it becomes possible to produce a highly sensitive infrared detector.

【0013】実施例2.ところで上記説明では、基板1
としてCdTe結晶を用いたが、Cd Zn Te あ
るいはGa As あるいはSi あるいはAl2O3
 基板を用いてもよい。ただし、Ga As 基板を用
いる場合、溝5形成の後に基板との格子整合を取るため
Cd Teを基板表面全域につける必要がある。又、S
i 基板を用いる場合、溝5形成の後に格子整合を取る
ためGa As を付け、その後Cd Te を基板表
面全域に付ける必要がある。
Example 2. By the way, in the above explanation, the substrate 1
CdTe crystal was used as the crystal, but CdZnTe or GaAs or Si or Al2O3
A substrate may also be used. However, when using a GaAs substrate, it is necessary to apply CdTe to the entire surface of the substrate after forming the grooves 5 in order to achieve lattice matching with the substrate. Also, S
When using an i substrate, it is necessary to apply GaAs to obtain lattice matching after forming the groove 5, and then apply CdTe to the entire surface of the substrate.

【0014】実施例3.また、上記説明ではP型のCd
xHg1ーxTe を形成した後にN型のCdxHg1
ーxTe を形成した構造で説明したが、N型のCdx
Hg1ーxTe を形成した後でP型のCdxHg1ー
xTe を形成した構造のものでも利用できるのはいう
までもなく、この場合は隣接するP層の広がりを防止で
きる。
Example 3. In addition, in the above explanation, P-type Cd
After forming xHg1-xTe, N-type CdxHg1
-xTe was explained, but N-type Cdx
Needless to say, a structure in which P-type CdxHg1-xTe is formed after Hg1-xTe is formed can also be used, and in this case, spreading of the adjacent P layer can be prevented.

【0015】[0015]

【発明の効果】以上のように、本発明によれば、カドミ
ウムテルル(Cd Te )、カドミウム亜鉛テルル(
Cd Zn Te )、ガリウムひ素(Ga As )
、シリコン(Si )およびサファイア(Al2O3 
)のうちの一方よりなり表面に溝を有する基板、この基
板の表面部に形成されたカドミウム水銀テルル(Cdx
Hg1ーxTe )、並びに上記溝間のこのカドミウム
水銀テルルの一部に形成されたPーN接合を備えたので
、隣接するN層(またはP層)の広がりを基板上に形成
した溝によって防ぎ、キャリアの拡散長以下の画素ピッ
チを有するような高集積度の赤外線検知器が得られる。
[Effects of the Invention] As described above, according to the present invention, cadmium telluride (CdTe), cadmium zinc telluride (
CdZnTe), gallium arsenide (GaAs)
, silicon (Si) and sapphire (Al2O3
) with grooves on its surface, and a substrate made of cadmium mercury tellurium (Cdx) formed on the surface of this substrate.
Hg1-xTe) and a P-N junction formed in a part of this cadmium mercury telluride between the grooves, the spread of the adjacent N layer (or P layer) can be prevented by the groove formed on the substrate. , a highly integrated infrared detector having a pixel pitch smaller than the carrier diffusion length can be obtained.

【0016】さらに溝の底および側面の少なくとも一方
に、カドミウム水銀テルル(CdxHg1ーxTe )
より赤外光に対する吸収係数が大きいカドミウム水銀テ
ルル(CdyHg1ーyTe 0≦y<x)を形成すれ
ば、上記効果に加えて、キャリアの発生を赤外線吸収層
によって制御しクロストークを防止できるため、高感度
の赤外線検知器が得られる。
Furthermore, cadmium mercury telluride (CdxHg1-xTe) is applied to at least one of the bottom and side surfaces of the groove.
By forming cadmium mercury tellurium (CdyHg1-yTe 0≦y<x), which has a larger absorption coefficient for infrared light, in addition to the above effects, carrier generation can be controlled by the infrared absorption layer and crosstalk can be prevented. A highly sensitive infrared detector can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例1の要部を示す斜視図である。FIG. 1 is a perspective view showing essential parts of a first embodiment of the present invention.

【図2】本発明の実施例1の製造工程を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing the manufacturing process of Example 1 of the present invention.

【図3】従来の赤外線検知器を示す断面図である。FIG. 3 is a sectional view showing a conventional infrared detector.

【図4】従来の赤外線検知器の問題点を説明する説明図
である。
FIG. 4 is an explanatory diagram illustrating problems with a conventional infrared detector.

【符号の説明】[Explanation of symbols]

1  基板 2  P型CdxHg1ーxTe 層 3  N型CdxHg1ーxTe 層 4  組成0≦y<xのCdyHg1ーyTeよりなる
赤外線吸収層 5  溝 6  赤外光
1 Substrate 2 P-type CdxHg1-xTe layer 3 N-type CdxHg1-xTe layer 4 Infrared absorption layer 5 made of CdyHg1-yTe with composition 0≦y<x Groove 6 Infrared light

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  カドミウムテルル(Cd Te )、
カドミウム亜鉛テルル(Cd Zn Te )、ガリウ
ムひ素(Ga As )、シリコン(Si )およびサ
ファイア(Al2O3 )のうちの一方よりなり表面に
溝を有する基板、この基板の表面部に形成されたカドミ
ウム水銀テルル(CdxHg1ーxTe )、並びに上
記溝間のこのカドミウム水銀テルルの一部に形成された
PーN接合を備えた赤外線検知器。
[Claim 1] Cadmium telluride (CdTe),
A substrate made of one of cadmium zinc telluride (CdZnTe), gallium arsenide (GaAs), silicon (Si), and sapphire (Al2O3) and having grooves on its surface, and cadmium mercury tellurium formed on the surface of this substrate. (CdxHg1-xTe), and an infrared detector with a PN junction formed in a portion of this cadmium mercury tellurium between the grooves.
【請求項2】  溝の底および側面の少なくとも一方に
、カドミウム水銀テルル(CdxHg1ーxTe )よ
り赤外光に対する吸収係数が大きいカドミウム水銀テル
ル(CdyHg1ーyTe 0≦y<x)を形成した請
求項第1項記載の赤外線検知器。
2. A claim in which cadmium mercury tellurium (CdyHg1-yTe 0≦y<x), which has a larger absorption coefficient for infrared light than cadmium mercury-tellurium (CdxHg1-xTe), is formed on at least one of the bottom and side surfaces of the groove. The infrared detector according to item 1.
JP3070857A 1991-04-03 1991-04-03 Infrared rays detector Pending JPH04313267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3070857A JPH04313267A (en) 1991-04-03 1991-04-03 Infrared rays detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3070857A JPH04313267A (en) 1991-04-03 1991-04-03 Infrared rays detector

Publications (1)

Publication Number Publication Date
JPH04313267A true JPH04313267A (en) 1992-11-05

Family

ID=13443656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3070857A Pending JPH04313267A (en) 1991-04-03 1991-04-03 Infrared rays detector

Country Status (1)

Country Link
JP (1) JPH04313267A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111539A (en) * 1994-10-07 1996-04-30 Nec Corp Manufacture of photovoltaic type hgcdte infrared ray detector
JP2008072136A (en) * 2007-10-24 2008-03-27 Nagoya Industrial Science Research Inst Method for manufacturing semiconductor radiation detector
US8039808B2 (en) 2005-09-15 2011-10-18 Koninklijke Philips Electronics N.V. Performance solid state detectors

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111539A (en) * 1994-10-07 1996-04-30 Nec Corp Manufacture of photovoltaic type hgcdte infrared ray detector
US8039808B2 (en) 2005-09-15 2011-10-18 Koninklijke Philips Electronics N.V. Performance solid state detectors
JP2008072136A (en) * 2007-10-24 2008-03-27 Nagoya Industrial Science Research Inst Method for manufacturing semiconductor radiation detector

Similar Documents

Publication Publication Date Title
US8766393B2 (en) Low-noise semiconductor photodetectors
Tsaur et al. Long-wavelength Ge/sub x/Si/sub 1-x//Si heterojunction infrared detectors and 400* 400-element imager arrays
JPH10290023A (en) Semiconductor photodetector
US5936268A (en) Epitaxial passivation of group II-VI infrared photodetectors
US20140217540A1 (en) Fully depleted diode passivation active passivation architecture
JPS63128677A (en) Mamufacture of semiconductor photodetector
JPH04318970A (en) Manufacture of photosensor
CA2050363A1 (en) Photo-sensing device
US5599733A (en) Method using cadmium-rich CdTe for lowering the metal vacancy concentrations of HgCdTe surfaces
JPH04313267A (en) Infrared rays detector
JPH0828493B2 (en) Light detector
US4939561A (en) Infrared sensor
JPS6343366A (en) Infrared detector
US5804463A (en) Noble metal diffusion doping of mercury cadmium telluride for use in infrared detectors
US5198370A (en) Method for producing an infrared detector
US5187378A (en) Photodetector
JPH02237154A (en) Light-detecting device
Riley et al. HgCdTe hybrid focal-plane arrays
JPS63108782A (en) Semiconductor photodetector
JP2670289B2 (en) Infrared detecting photodiode and method for manufacturing the same
JP2664459B2 (en) Infrared detector
JPH07105522B2 (en) Semiconductor device
JP2848345B2 (en) Infrared detector
JP2716025B2 (en) Array type infrared detector and method of manufacturing the same
JP2699838B2 (en) Infrared detector and manufacturing method thereof