JPH0431320A - Oxide superconductor and circuit wiring - Google Patents

Oxide superconductor and circuit wiring

Info

Publication number
JPH0431320A
JPH0431320A JP2132516A JP13251690A JPH0431320A JP H0431320 A JPH0431320 A JP H0431320A JP 2132516 A JP2132516 A JP 2132516A JP 13251690 A JP13251690 A JP 13251690A JP H0431320 A JPH0431320 A JP H0431320A
Authority
JP
Japan
Prior art keywords
superconductor
circuit wiring
oxide superconductor
earth element
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2132516A
Other languages
Japanese (ja)
Inventor
Takuya Uzumaki
拓也 渦巻
Kazunori Yamanaka
一典 山中
Nobuo Kamehara
亀原 伸男
Koichi Niwa
丹羽 紘一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2132516A priority Critical patent/JPH0431320A/en
Publication of JPH0431320A publication Critical patent/JPH0431320A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To obtain a Bi-Sr-Ca-Cu-O superconductor having improved critical temperature and critical current density by substituting a part of the Ca site with a rare-earth element in such a manner as to get a compound of a specific chemical formula. CONSTITUTION:The objective oxide superconductor is produced by substituting a part of Ca of a Bi-Sr-Ca-Cu-O superconductor in such a manner as to get a compound expressed by formula Bi2Sr2Ca1-xLnxCuOy (Ln is rare-earth element). For example, powders of BiO3, Lu2O3, SrCO3, CaCO3 and CuO are weighed and mixed at molar ratios (Bi:Lu:Sr:Ca:Cu) of 2.0:0.1:2.0:0.9:2.0, the mixture is preliminarily calcined at 820 deg.C for 12hr, mixed again to improve the uniformity of the mixture and subjected to main baking at 860 deg.C for 24hr to obtain a Bi-based superconductor of formula Bi2.0Sr2.0Ca0.9Lu0.1Cu2.0Oy. The baked product is crushed, mixed, converted to a paste with an organic solvent, printed on an MgO substrate to form a thick layer and baked to obtain a printed circuit.

Description

【発明の詳細な説明】 〔概 要〕 酸化物超伝導体及び回路配線に係り、特に臨界温度と臨
界電流密度が高く、また経時変化が少ない良質な酸化物
超伝導体及び回路配線に関し、高い臨界温度、大きな臨
界電流密度を備えた超伝導膜を提供し、且つその膜から
なる回路配線を提供することを目的とし、 Bi −Sr −Ca −Cu −0系超伝導体におい
て、前記Caの一部を下記化学式で示されるように置換
してなること、 Bi25r2Cal xL、、XCu0y(1)上式で
り、、:希土類元素、及び該酸化物超伝導体からなる回
路配線によって構成される。
[Detailed Description of the Invention] [Summary] This invention relates to oxide superconductors and circuit wiring, especially high-quality oxide superconductors and circuit wiring that have high critical temperatures and high critical current densities, and have little change over time. The purpose of the present invention is to provide a superconducting film having a critical temperature and a large critical current density, and to provide a circuit wiring made of the film, and in a Bi-Sr-Ca-Cu-0 based superconductor, the above-mentioned Ca Bi25r2Cal xL, , XCu0y (1) The above formula is formed by substituting a part as shown in the following chemical formula, and is constituted by circuit wiring made of a rare earth element and the oxide superconductor.

〔産業上の利用分野〕[Industrial application field]

本発明は酸化物超伝導体及び回路配線に係り、特に臨界
温度と臨界電流密度が高く、また経時変化が少ない良質
な酸化物超伝導体及び回路配線に関するものである。
The present invention relates to oxide superconductors and circuit wiring, and particularly relates to high-quality oxide superconductors and circuit wiring that have high critical temperatures and high critical current densities, and have little change over time.

〔従来の技術〕[Conventional technology]

例えばBi −5r −Ca−Cu−○からなるBI系
超超伝導体少なくとも3種類の超伝導相(臨界温度Tc
が10に、80に、ll0Kの相)が知られている。そ
の110に相のBi系超伝導体は臨界温度Tcは高いが
その合成が非常に困難であり、しかも超伝導体結晶が合
成されるにつれて、臨界電流密度Jcが減少するため高
臨界電流密度Tcを達成しに(い。
For example, a BI-based superconductor consisting of Bi-5r-Ca-Cu-○ has at least three types of superconducting phases (critical temperature Tc
10, 80, and 110K phases) are known. Although the 110-phase Bi-based superconductor has a high critical temperature Tc, its synthesis is very difficult, and as the superconductor crystal is synthesized, the critical current density Jc decreases, so the critical current density Tc is high. To achieve (I).

一方Tcが80に相のBi系超伝導体の合成は比較的簡
単であり、Jcの減少も殆どない。
On the other hand, the synthesis of a Bi-based superconductor with a Tc of 80 is relatively simple, and there is almost no decrease in Jc.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の如< ll0K相のBi系超伝導体は合成はしに
くいものの、スパッタ法、スクリーン印刷法等を利用し
て5rTi03あるいはMgO等の基板上に堆積した後
、熱処理することにより超伝導膜を得ている。
Although it is difficult to synthesize the Bi-based superconductor in the <ll0K phase as described above, it is possible to form a superconducting film by depositing it on a substrate such as 5rTi03 or MgO using sputtering or screen printing, and then heat-treating it. It has gained.

一方、酸化物超伝導体厚膜の77KにおけるJcはスパ
ッタ法等による薄膜よりも低く、デバイスや回路配線に
応用するに当たり、高臨界温度、高臨界電流密度を達成
する必要がある。
On the other hand, the Jc of an oxide superconductor thick film at 77K is lower than that of a thin film made by sputtering or the like, and when applied to devices and circuit wiring, it is necessary to achieve a high critical temperature and a high critical current density.

本発明は高い臨界温度、大きな臨界電流密度を備えた酸
化物超伝導体を提供し、且つその膜を回路配線等に使用
することを目的とする。
An object of the present invention is to provide an oxide superconductor having a high critical temperature and a large critical current density, and to use the film for circuit wiring and the like.

〔課題を解決するための手段〕 上記課題は本発明によればBi −Sr −Ca −C
U−○系超伝導体において、前記Caの一部を下記化学
式で示されるように置換してなることを特徴とする酸化
物超伝導体。
[Means for solving the problem] According to the present invention, the above problem can be solved by Bi-Sr-Ca-C
An oxide superconductor characterized in that, in a U-○ series superconductor, a part of the Ca is substituted as shown in the following chemical formula.

B125r2Ca1−xLnxCuOy       
  (1)上式でLn:希土類元素 によって解決される。
B125r2Ca1-xLnxCuOy
(1) Solved by Ln: rare earth element in the above equation.

本発明では上記希土類元素の置換基XをQ<x〈0.3
に限定することが好ましい。このXの範囲外であると臨
界温度が従来と同程度か、それ以下となる。
In the present invention, the substituent X of the rare earth element is Q<x<0.3
It is preferable to limit it to . If X is outside the range, the critical temperature will be on the same level as the conventional one or lower.

また本発明では酸化物超伝導体からなる回路配線が提供
される。
Further, the present invention provides circuit wiring made of an oxide superconductor.

本発明において希土類元素はLa 、Pr 、Nd。In the present invention, the rare earth elements are La, Pr, and Nd.

Lu 5Y、Sc等が用いられるが特にY、Luがより
好ましく用いられる。
Lu 5Y, Sc, etc. are used, but Y and Lu are particularly preferably used.

〔作 用〕[For production]

本発明によればCaサイトに一部希土類元素を置換する
ことによって高い臨界温度、大きな臨界電流密度を備え
た超伝導膜を作製することができ、超伝導回路配線など
に応用することが可能となる。
According to the present invention, a superconducting film with a high critical temperature and a large critical current density can be produced by substituting a portion of Ca sites with rare earth elements, which can be applied to superconducting circuit wiring, etc. Become.

〔実施例〕〔Example〕

以下本発明の実施例を図面にもとすいて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施例ではB12. osr2.oCao、 
、、Luo、 lCu2. oOyからなるBi系超伝
導体を製造した。
In the embodiment of the present invention, B12. osr2. oCao,
,,Luo, lCu2. A Bi-based superconductor consisting of oOy was manufactured.

まず出発原料としてBi、[]3. Lu2[1,、5
rCQ3.  CaC[13゜CuOの各粉末を用いた
。各粉末はBi : Lu : Sr :Ca:Cu=
2.0 +0.1 :2.0 +0.9 :2.0(m
ol)になるように秤量し、全粉末を混合し、820℃
の温度で12時間、仮焼成を行った。その後各粉末をよ
り均質にするため再混合した後、860℃の温度で24
時間本焼成を行った。
First, Bi as a starting material, []3. Lu2[1,,5
rCQ3. Each powder of CaC[13°CuO was used. Each powder is Bi:Lu:Sr:Ca:Cu=
2.0 +0.1 :2.0 +0.9 :2.0(m
ol), mix all the powders, and heat at 820°C.
Temporary firing was performed at a temperature of 12 hours. Each powder was then remixed to make it more homogeneous and then heated to 860°C for 24 hours.
Main firing was performed for an hour.

本焼成後、得られた焼成体(バルク)をX線回折測定を
行った結果、低Tc相(80K)のみが合成されている
ことがわかった。抵抗率の温度変化を測定した結果、T
cは90にであり、77にでのJcは28OA/cfI
lであった。
After the main firing, X-ray diffraction measurement of the obtained fired body (bulk) revealed that only a low Tc phase (80K) was synthesized. As a result of measuring the temperature change in resistivity, T
c is 90 and Jc at 77 is 28OA/cfI
It was l.

作製したバルクを粉砕、混合した後、MEK(メチルエ
チルケトン)、アセトン等の有機溶剤を混ぜ、ペースト
を作製した。このペーストを用いて、第1図に示すよう
にMgO基板1上に約100戸厚さに酸化物超伝導厚膜
2の印刷を行った。
After pulverizing and mixing the produced bulk, organic solvents such as MEK (methyl ethyl ketone) and acetone were mixed to produce a paste. Using this paste, an oxide superconducting thick film 2 was printed on an MgO substrate 1 to a thickness of approximately 100 mm, as shown in FIG.

860℃、1時間焼成を行った厚膜2の電気抵抗の温度
変化を第2図に示す。Tce=90にであり、77にで
のJcは350A/c++!であった。このJc値はほ
とんどが110に相から成る厚膜で得られる臨界電流密
度Jc以上の高い値である。このようにして得られた厚
膜は回路配線として有効に利用される。
FIG. 2 shows the temperature change in electrical resistance of the thick film 2 that was fired at 860° C. for 1 hour. Tce=90 and Jc at 77 is 350A/c++! Met. This Jc value is higher than the critical current density Jc obtained with a thick film consisting mostly of 110 phase. The thick film thus obtained can be effectively used as circuit wiring.

またスパッタ法よりMgO基板上に約10J11I+以
下の本発明の酸化物超伝導薄膜の回路配線及びその回路
配線を有するデバイスも得られる。
Moreover, a circuit wiring of the oxide superconducting thin film of the present invention having a thickness of about 10J11I+ or less and a device having the circuit wiring can also be obtained by sputtering on an MgO substrate.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によればBi −Ln −
Sr −Ca−Cu−○系(Ln=希土類)厚膜におい
て、Tcを77に以上に保ちながら臨界電流密度を高め
ることができる。
As explained above, according to the present invention, Bi −Ln −
In the Sr-Ca-Cu-○ (Ln=rare earth) thick film, the critical current density can be increased while maintaining Tc at 77 or higher.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる酸化物超伝導体からなる厚膜を
示す斜視図であり、 第2図は本発明に係る酸化物超伝導厚膜の電気抵抗の温
度変化を示す図である。 1・・・MgO基板、   2・・・酸化物超伝導厚膜
FIG. 1 is a perspective view showing a thick film made of an oxide superconductor according to the present invention, and FIG. 2 is a diagram showing temperature changes in electrical resistance of the oxide superconductor thick film according to the present invention. 1... MgO substrate, 2... Oxide superconducting thick film.

Claims (1)

【特許請求の範囲】 1、Bi−Sr−Ca−Cu−O系超伝導体において、
前記Caの一部を下記化学式で示されるように置換して
なることを特徴とする酸化物超伝導体。 Bi_2Sr_2Ca_1_−_xLn_xCuO_y
(1)上式でLn:希土類元素 2、前記希土類元素の置換量xを0<x<0.3にする
ことを特徴とする特許請求の範囲第1項記載の酸化物超
伝導体。 3、請求項1記載の酸化物超伝導体からなる回路配線。
[Claims] 1. In a Bi-Sr-Ca-Cu-O superconductor,
An oxide superconductor characterized in that a part of the Ca is substituted as shown in the following chemical formula. Bi_2Sr_2Ca_1_-_xLn_xCuO_y
(1) The oxide superconductor according to claim 1, wherein in the above formula, Ln: rare earth element 2, and the substitution amount x of the rare earth element satisfies 0<x<0.3. 3. Circuit wiring made of the oxide superconductor according to claim 1.
JP2132516A 1990-05-24 1990-05-24 Oxide superconductor and circuit wiring Pending JPH0431320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2132516A JPH0431320A (en) 1990-05-24 1990-05-24 Oxide superconductor and circuit wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2132516A JPH0431320A (en) 1990-05-24 1990-05-24 Oxide superconductor and circuit wiring

Publications (1)

Publication Number Publication Date
JPH0431320A true JPH0431320A (en) 1992-02-03

Family

ID=15083158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2132516A Pending JPH0431320A (en) 1990-05-24 1990-05-24 Oxide superconductor and circuit wiring

Country Status (1)

Country Link
JP (1) JPH0431320A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198026A (en) * 1990-11-29 1992-07-17 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Bi-sr-ca-cu-o superconductor material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04198026A (en) * 1990-11-29 1992-07-17 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Bi-sr-ca-cu-o superconductor material

Similar Documents

Publication Publication Date Title
Gardner et al. Neutron powder diffraction studies of Sr2RuO4 and SrRuO3
Iyo et al. High-pressure synthesis and properties of Ba2Can− 1CunO2n (O, F) 2 (n= 2–5) superconductors
JPH0431320A (en) Oxide superconductor and circuit wiring
JPS63288944A (en) Production of high temperature superconductor
Abd-Shukor et al. Formation and superconductivity of Pr and Nd-substituted Tl-1212 phase Tl 0.85 Cr 0.15) Sr 2 CaCu 2 O 7
Kurian et al. Bi (2223) thick films (TC (0)= 109K) on Ba2GdNbO6: a new perovskite ceramic substrate for BSCCO superconductor
JP2817048B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconducting film by screen printing
JPH0764560B2 (en) Layered copper oxide
Yadava et al. Structural ordering and chemical stability of a complex perovskite oxide DyBa2ZrO5. 5 with YBa2Cu3O7-δ superconductors
Khan et al. Synthesis and study of Raman active modes of Cu1− xTlxBa2CaCu2O8− y superconductor thin films
Iyo et al. Preparation and superconductivity of (B1− xCx)(Sr1− yBay) 2Ca2Cu3Oz
JP2817170B2 (en) Manufacturing method of superconducting material
JP3287028B2 (en) Tl, Pb-based oxide superconducting material and method for producing the same
Ogawa et al. Fabrication of (Hg, Re)-1212 thin films on STO substrates with buffer layers
Slobodin et al. Synthesis and structure of (Ca, Sr)-substituted lanthanum manganite
KR930002579B1 (en) Manufacturing method of thick film super conductor
JPH025582A (en) Manufacture of superconducting thin film
JP3284010B2 (en) Metal oxide material and superconducting device using the same
JPH0238359A (en) Production of superconductor
JPH07100610B2 (en) Manufacturing method of superconducting material
JP3272349B2 (en) Manufacturing method of superconducting wiring
WO1991003426A1 (en) Superconducting material and production thereof
JPH0825744B2 (en) Manufacturing method of superconducting material
Adıgüzel et al. Infrared and Structural Properties of Y 1− x Nd x Ba 2 Cu 3 O 7− δ (0≤ x≤ 1)
JPH0772086B2 (en) Method for producing thick film of Bi-Sr-Ca-Cu-O-based superconducting oxide