JPH04309492A - Flux cored wire for gas shielded arc welding - Google Patents

Flux cored wire for gas shielded arc welding

Info

Publication number
JPH04309492A
JPH04309492A JP7659391A JP7659391A JPH04309492A JP H04309492 A JPH04309492 A JP H04309492A JP 7659391 A JP7659391 A JP 7659391A JP 7659391 A JP7659391 A JP 7659391A JP H04309492 A JPH04309492 A JP H04309492A
Authority
JP
Japan
Prior art keywords
tio2
toughness
weld metal
welding
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7659391A
Other languages
Japanese (ja)
Other versions
JP2908585B2 (en
Inventor
Kiyoshi Kato
清 加藤
Tsukasa Yoshimura
司 吉村
Hiroyuki Kyo
京 広之
Hirotoshi Ishide
石出 博俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Welding and Engineering Co Ltd
Original Assignee
Nippon Steel Welding and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13609611&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH04309492(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Welding and Engineering Co Ltd filed Critical Nippon Steel Welding and Engineering Co Ltd
Priority to JP7659391A priority Critical patent/JP2908585B2/en
Publication of JPH04309492A publication Critical patent/JPH04309492A/en
Application granted granted Critical
Publication of JP2908585B2 publication Critical patent/JP2908585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

PURPOSE:To provide the flux cored wire for gas shielded arc welding which has good welding workability and with which excellent toughness is obtainable. CONSTITUTION:This flux cored wire contains, by the total weight of the wire 4.0 to 55% TiO2, 0.2 to 0.6% SiO2, 0.4 to 1.0% Si, 1.5 to 3.0% Mn, 0.4 to 2.5% Ni, 0.05 to 0.20% Al, 0.04 to 0.11% Ti, 0.4 to 0.7% Mg, and 0.002 to 0.015% B in a steel sheath and has the ratio of the Ti and the TiO2 specified to the range of the following equation: 1.0 <=(Tidivided by TiO2)X100<=2.0. The low-temp. toughness is improved and the welded joint strength well balanced with base metal strength is assured in this way; in addition, the welding performance is greatly improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、溶接作業性が良好で、
かつ優れた低温じん性を得るガスシールドアーク溶接用
フラックス入りワイヤに関するものである。
[Industrial Application Field] The present invention has good welding workability,
The present invention also relates to a flux-cored wire for gas-shielded arc welding that has excellent low-temperature toughness.

【0002】0002

【従来の技術】ルチール系フラックス入りワイヤは、ビ
ード外観が優れ、溶接作業性・溶接能率が優れることか
ら、50キロ級高張力鋼などの溶接に広く使用されてい
る。このルチール系フラックス入りワイヤは、上述した
ように溶接作業性という面では優れた特長を持つが、一
方溶接金属の材質面からはじん性確保が難しく、特に−
20℃以下の低温域に於てじん性を確保するのは困難と
されていた。この理由としては、TiO2 が酸化性酸
化物であり、溶接時において、溶融金属から溶融スラグ
が浮上・分離し難いため、非金属介在物として溶接金属
中に残留し、結果として溶接金属中の酸素量が700〜
900ppm と著しく高くなることに起因する。
2. Description of the Related Art Rutile flux-cored wire has an excellent bead appearance and excellent welding workability and welding efficiency, and is therefore widely used for welding 50 kg class high tensile strength steel. As mentioned above, this rutile-based flux-cored wire has excellent features in terms of welding workability, but on the other hand, it is difficult to ensure toughness due to the material quality of the weld metal, especially -
It has been considered difficult to ensure toughness at low temperatures below 20°C. The reason for this is that TiO2 is an oxidizing oxide, and during welding, molten slag is difficult to float and separate from the molten metal, so it remains in the weld metal as a nonmetallic inclusion, resulting in oxygen in the weld metal. The amount is 700~
This is due to the extremely high concentration of 900 ppm.

【0003】このような問題を解決するための一例とし
て、特公昭59−44159号公報においては、フラッ
クス中にMgを添加し、更に金属Ti或はFe−Tiな
どの状態でTiを添加し、溶接金属の酸素量を低減させ
ることによって低温じん性の改善を図ることを開示して
いる。しかし、単にMg及びTiを添加するだけでは、
溶接金属の酸素量は若干は減少するものの、ミクロ組織
を微細化させることはできず、従って比較的大入熱で使
用する場合において低温じん性を確保するには不十分で
あった。
As an example of solving such problems, Japanese Patent Publication No. 59-44159 discloses that Mg is added to the flux, and Ti is further added in the form of metallic Ti or Fe-Ti. It is disclosed that the low temperature toughness is improved by reducing the amount of oxygen in the weld metal. However, simply adding Mg and Ti
Although the amount of oxygen in the weld metal was slightly reduced, it was not possible to refine the microstructure, and therefore it was insufficient to ensure low-temperature toughness when used with a relatively large heat input.

【0004】また、特公昭56−6840号公報には、
Ti及びTiO2 量と、B及びB2 O3 量を制限
することにより、大入熱溶接を行なった場合でも良好な
低温じん性を得るガス被包アーク溶接用複合ワイヤが開
示されている。しかし、このような制約を行っても溶接
金属ミクロ組織の微細化が不十分であるため、溶接金属
のじん性は何等の改善もなされていなかった。
[0004] Also, in Japanese Patent Publication No. 56-6840,
A composite wire for gas-encapsulated arc welding is disclosed that obtains good low-temperature toughness even when high heat input welding is performed by limiting the amounts of Ti and TiO2 and the amounts of B and B2 O3. However, even with such restrictions, the weld metal microstructure is not sufficiently refined, and the toughness of the weld metal has not been improved in any way.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記諸問題
を解決し、溶接作業性が良好で、かつ優れたじん性を得
るガスシールドアーク溶接用フラックス入りワイヤを提
供するものである。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a flux-cored wire for gas-shielded arc welding that has good welding workability and excellent toughness.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
本発明の要旨とするところは、■鋼製外皮中にワイヤ全
重量に対して、TiO2 :4.0〜5.5%、SiO
2 :0.2〜0.6%、Si:0.4〜1.0%、M
n:1.5〜3.0%、Ni:0.4〜2.5%、Al
:0.05〜0.20%、Ti:0.04〜0.11%
、Mg:0.4〜0.7%、B:0.002〜0.01
5%を含有すると共に、上記TiとTiO2 の含有比
を下記の式で示される範囲とすることを特徴とするガス
シールドアーク溶接用フラック入りワイヤであり、1.
0≦(Ti÷TiO2 )×100≦2.0■鋼製外皮
中にワイヤ全重量に対して、TiO2 :4.0〜5.
5%、SiO2 :0.2〜0.6%、Si:0.4〜
1.0%、Mn:1.5〜3.0%、Ni:0.4〜2
.5%、Al:0.05〜0.20%、Ti:0.04
〜0.11%、Mg:0.4〜0.7%、B:0.00
2〜0.015%を含有し、かつMo:0.1〜0.3
%、Zr:0.03〜0.2%の1種または2種を含有
すると共に、上記TiとTiO2 の含有比を下記の式
で示される範囲とすることを特徴とするガスシールドア
ーク溶接用フラックス入りワイヤにある。
[Means for Solving the Problems] In order to achieve the above object, the gist of the present invention is as follows: (1) TiO2: 4.0 to 5.5%, SiO
2: 0.2-0.6%, Si: 0.4-1.0%, M
n: 1.5-3.0%, Ni: 0.4-2.5%, Al
:0.05~0.20%, Ti:0.04~0.11%
, Mg: 0.4-0.7%, B: 0.002-0.01
A crack-cored wire for gas-shielded arc welding, characterized in that the content ratio of Ti and TiO2 is within the range shown by the following formula.1.
0≦(Ti÷TiO2)×100≦2.0■ TiO2: 4.0 to 5.
5%, SiO2: 0.2-0.6%, Si: 0.4-
1.0%, Mn: 1.5-3.0%, Ni: 0.4-2
.. 5%, Al: 0.05-0.20%, Ti: 0.04
~0.11%, Mg: 0.4-0.7%, B: 0.00
Contains 2 to 0.015%, and Mo: 0.1 to 0.3
%, Zr: 0.03 to 0.2%, and the content ratio of Ti and TiO2 is within the range shown by the following formula. Found in flux-cored wire.

【0007】 1.0≦(Ti÷TiO2 )×100≦2.0[0007] 1.0≦(Ti÷TiO2)×100≦2.0

【00
08】
00
08]

【作用】上述した如く、ルチール系フラックス入りワイ
ヤは溶接作業性が優れる点にその最大の特長があるが、
従来のワイヤ組成に単にミクロ組織微細化に有効である
とされているTi,Bを複合添加しても、溶接金属のミ
クロ組織は微細化されず、低温じん性は何等の改善もみ
なかった。この原因について本発明者らは種々検討した
結果、■溶接金属中に残留する酸化物が大形の複合介在
物を形成し、粒内フェライトの核となる有効なTi酸化
物が不足するため、ミクロ組織の微細化が十分に達成さ
れないこと、■Bが酸化消耗する、或はB窒化物を形成
するため、γ粒界に偏析し初析フェライトの生成を抑制
するフリーBが十分確保できず、ミクロ組織の微細化が
十分に達成されないために、じん性が改善されないこと
を見い出した。
[Operation] As mentioned above, the greatest feature of rutile flux-cored wire is its excellent welding workability.
Even if Ti and B, which are said to be effective in refining the microstructure, were simply added in combination to the conventional wire composition, the microstructure of the weld metal was not refined, and the low-temperature toughness was not improved in any way. As a result of various studies by the present inventors regarding the cause of this problem, we found that: (1) the oxides remaining in the weld metal form large composite inclusions, and there is a lack of effective Ti oxides that become the core of intragranular ferrite; The microstructure is not sufficiently refined; ■B is consumed by oxidation or forms B nitrides, so it is not possible to secure enough free B, which segregates at the γ grain boundaries and suppresses the formation of pro-eutectoid ferrite. It was found that the toughness was not improved because the microstructure was not sufficiently refined.

【0009】そこで、低温じん性を改善するには、1)
溶接金属に粒内フェライトの核となるTi酸化物を極力
多く確保することが重要である。このTi酸化物源とし
て充填フラックス中の金属TiとTiO2 があるが、
このうち金属Tiは一部が酸化され一部が金属Tiとし
て溶接金属に歩留まる。一方、TiO2 はワイヤ先端
の溶滴の段階、つまりは非常に高温の状態で還元が進み
、次に溶滴がアーク中を飛行し溶融池に至る段階で、還
元されたTiがスラグとメタルとの界面に存在するため
、スラグ側から供給される酸素により再度酸化されTi
酸化物となる。こうして形成されたTi酸化物はTi2
 O3 などの低級酸化物であり、粒内フェライトの核
となり微細なアシキュラーフェライト組織の生成を促進
する。そして、このようにしてTiO2 からもたらさ
れるTi酸化物を極力多く確保するには、充填フラック
ス中のスラグ剤の主たる酸素源であるSiO2 を極力
少なくし、Si,MnおよびAl,Mgなどの脱酸剤の
脱酸効果を高め、スラグ剤中のTiO2 の還元を促進
させることが第1に必要であり、 2)更に、Al,Tiなどの窒化物形成元素を適量添加
することにより、γ粒界に偏析し初析フェライトの生成
を抑制するフリーBを確保することにより初めてミクロ
組織の微細化が可能であることを種々検討を行った結果
見いだしたものである。
[0009] Therefore, in order to improve low-temperature toughness, 1)
It is important to secure as much Ti oxide, which becomes the nucleus of intragranular ferrite, as possible in the weld metal. Metal Ti and TiO2 in the filling flux are sources of Ti oxide, but
Part of the metal Ti is oxidized and part remains as metal Ti in the weld metal. On the other hand, TiO2 is reduced at the stage of a droplet at the tip of the wire, that is, at a very high temperature, and then at the stage when the droplet flies through the arc and reaches the molten pool, the reduced Ti becomes slag and metal. Because it exists at the interface of Ti, it is oxidized again by oxygen supplied from the slag side.
It becomes an oxide. The Ti oxide thus formed is Ti2
It is a lower oxide such as O3, and serves as the core of intragranular ferrite and promotes the formation of a fine acicular ferrite structure. In order to secure as much Ti oxide as possible from TiO2 in this way, the amount of SiO2, which is the main oxygen source of the slag agent in the filling flux, should be reduced as much as possible, and Si, Mn, Al, Mg, etc. should be deoxidized. It is first necessary to enhance the deoxidizing effect of the slag agent and promote the reduction of TiO2 in the slag agent, and 2) Furthermore, by adding appropriate amounts of nitride-forming elements such as Al and Ti, As a result of various studies, it was discovered that it is possible to refine the microstructure only by securing free B that segregates into the steel and suppresses the formation of pro-eutectoid ferrite.

【0010】本発明はこのような知見に基づいて完成し
たものであり、以下に、本発明における成分組成限定理
由について述べる。
The present invention was completed based on such knowledge, and the reasons for limiting the component composition in the present invention will be described below.

【0011】TiO2 :4.0〜5.5%TiO2 
は、ルチール系フラックス入りワイヤの主要成分であり
、溶接ビードに対するスラグ形成剤およびアーク安定剤
としての性質を示す。また溶接過程において一部が還元
されTiとして溶接金属中に歩留るとされている。しか
し、本発明者らが種々検討を行なった結果、TiO2 
から還元されたTiは、溶接凝固過程で再度酸化され、
粒内フェライトの核となるTi酸化物となることを見い
だした。このTi酸化物が適量存在して初めて、粒内フ
ェライトは微細なアシキュラーフェライトとなり、ミク
ロ組織が微細化されるが、ワイヤ全重量に対して4.0
%未満ではミクロ組織微細化に有効なTi酸化物が確保
できずじん性が不足する。また5.5%を超えると溶接
金属中に酸素量が増加し、2μmを超える大形の非金属
介在物が増加するため粒内フェライトの核となるTi酸
化物が不足しミクロ組織が微細化されないため、じん性
が低下するのでTiO2 は4.0〜5.5%とした。
[0011] TiO2: 4.0-5.5% TiO2
is the main component of rutile-based flux-cored wire and exhibits properties as a slag former and arc stabilizer for weld beads. It is also said that a part of Ti is reduced during the welding process and remains in the weld metal as Ti. However, as a result of various studies conducted by the present inventors, TiO2
The reduced Ti is oxidized again during the welding solidification process,
It was discovered that Ti oxide becomes the core of intragranular ferrite. Only when an appropriate amount of this Ti oxide exists, the intragranular ferrite becomes fine acicular ferrite, and the microstructure becomes finer.
If the amount is less than %, it is not possible to secure Ti oxide that is effective in refining the microstructure, resulting in insufficient toughness. Furthermore, if it exceeds 5.5%, the amount of oxygen increases in the weld metal, and large nonmetallic inclusions exceeding 2 μm increase, resulting in a lack of Ti oxide, which forms the nucleus of intragranular ferrite, and the microstructure becomes finer. The TiO2 content was set at 4.0 to 5.5% since the toughness would be lowered if the TiO2 content was not absorbed.

【0012】SiO2 :0.2〜0.6%SiO2 
は、スラグ剤中の主たる酸素源であり、また少量の添加
で大形の非金属介在物を形成し、粒内フェライト生成に
有効なTi酸化物との複合介在物を形成し、ミクロ組織
の微細化を阻害するので上限を0.6%とした。しかし
、0.2%未満ではスラグの被包性が急激に低下し、ビ
ードが凸型となるアンダーカットが発生するため、Si
O2 は0.2〜0.6%とした。
[0012] SiO2: 0.2-0.6% SiO2
is the main oxygen source in the slag agent, and also forms large nonmetallic inclusions when added in small amounts, forming composite inclusions with Ti oxide that are effective for intragranular ferrite formation, and improving the microstructure. Since it inhibits miniaturization, the upper limit was set at 0.6%. However, if it is less than 0.2%, the encapsulation of the slag decreases rapidly, and an undercut occurs in which the bead becomes convex.
O2 was set at 0.2-0.6%.

【0013】Si:0.4〜1.0% 脱酸剤として使用し溶接金属の酸素量を低減させる上で
効果がある。しかし0.4%未満では脱酸力が不足しブ
ローホールが発生し、また1.0%を超えるとフェライ
トを固溶硬化させじん性を低下させるので上限を1.0
%とした。
Si: 0.4-1.0% Used as a deoxidizing agent, it is effective in reducing the amount of oxygen in weld metal. However, if it is less than 0.4%, the deoxidizing power will be insufficient and blowholes will occur, and if it exceeds 1.0%, the ferrite will harden as a solid solution and the toughness will decrease, so the upper limit should be set at 1.0%.
%.

【0014】Mn:1.5〜3.0% Mnは脱酸を補助し溶融金属の流動性を改善する上で効
果があり、また強度・じん性を改善する上でも効果があ
る。しかし、1.5%未満では脱酸不足となり溶接欠陥
が発生し易く、また3.0%を超えると溶接金属が脱酸
過剰となりピットやブローホールが発生し易くなるので
1.5〜3.0%とした。
Mn: 1.5-3.0% Mn is effective in assisting deoxidation and improving the fluidity of molten metal, and is also effective in improving strength and toughness. However, if it is less than 1.5%, deoxidation is insufficient and welding defects are likely to occur, and if it exceeds 3.0%, the weld metal is excessively deoxidized and pits and blowholes are likely to occur. It was set to 0%.

【0015】Ni:0.4〜2.5% Niは強度・低温じん性を確保するために添加するが、
0.4%未満では十分なじん性改善効果が得られず、ま
た2.5%を超えると高温割れが発生しやすくなるので
0.4〜2.5%とした。
[0015] Ni: 0.4-2.5% Ni is added to ensure strength and low-temperature toughness.
If it is less than 0.4%, a sufficient toughness improvement effect cannot be obtained, and if it exceeds 2.5%, hot cracking is likely to occur, so it is set at 0.4 to 2.5%.

【0016】Al:0.05〜0.20%Alは強脱酸
剤であり、溶着金属の酸化を妨げTiO2 の還元を促
進し、ミクロ組織を微細化しじん性を改善する上で効果
がある。更には、Bの酸化消耗を抑制し、γ粒界に偏析
するフリーBを確保する上で必須の成分である。しかし
、0.05%未満ではじん性改善効果は得られず、また
0.20%を超えるとAl酸化物が急激に増加し、これ
がTi酸化物と結合し大型の複合介在物となり、粒内フ
ェライトの核生成サイトとなるTi酸化物が不足するた
め、じん性が低下するので、Al量は0.05〜0.2
0%とした。
Al: 0.05-0.20% Al is a strong deoxidizing agent and is effective in preventing the oxidation of the weld metal, promoting the reduction of TiO2, refining the microstructure, and improving toughness. . Furthermore, it is an essential component for suppressing oxidative consumption of B and ensuring free B that segregates at the γ grain boundaries. However, if it is less than 0.05%, the toughness improvement effect cannot be obtained, and if it exceeds 0.20%, Al oxide increases rapidly, which combines with Ti oxide to form large composite inclusions, and inside the grain. Toughness decreases due to lack of Ti oxide, which becomes the nucleation site of ferrite, so the amount of Al should be 0.05 to 0.2.
It was set to 0%.

【0017】Ti:0.04〜0.11%Tiは強脱酸
剤であり溶着金属の酸化を妨げ、Bの酸化消耗を抑制す
る。また、溶接凝固過程の高温域でTiNを形成しNを
固定するため、冷却過程でBがBNとなることを妨げ、
γ粒界に偏析するフリーBを確保する上で必須の成分で
ある。この効果は、TiO2 の還元によるTi量確保
では不十分であり、金属Tiを添加することにより初め
て上記効果が得られる。しかし、0.04%未満では金
属Tiのほとんどが酸化消耗し、溶接金属にTiNを形
成する上で十分なTiが歩留らないため、上記効果が十
分得られずミクロ組織の微細化が不十分となり、じん性
改善効果が得られないので下限を0.04%とした。ま
た、0.11%を超えると炭化物を形成し、溶接金属が
過度に硬化する結果、著しくじん性が低下するので上限
を0.11%とした。
Ti: 0.04-0.11% Ti is a strong deoxidizing agent and prevents the oxidation of the weld metal and suppresses the oxidative consumption of B. In addition, since TiN is formed and N is fixed in the high temperature range of the welding solidification process, B is prevented from becoming BN during the cooling process.
It is an essential component to ensure free B that segregates at the γ grain boundaries. For this effect, securing the amount of Ti by reducing TiO2 is insufficient, and the above effect can only be obtained by adding metallic Ti. However, if it is less than 0.04%, most of the metal Ti will be oxidized and consumed, and there will not be enough Ti yield to form TiN in the weld metal, so the above effect will not be obtained sufficiently and the microstructure will not be refined. The lower limit was set at 0.04% because the content was sufficient and no toughness improvement effect could be obtained. Further, if it exceeds 0.11%, carbides are formed and the weld metal is excessively hardened, resulting in a significant decrease in toughness, so the upper limit was set at 0.11%.

【0018】Mg:0.4〜0.7% Mgは、高温のアーク中に於いて酸素と反応し、ワイヤ
先端の溶滴の段階で脱酸反応が行われる。その結果、脱
酸生成物が溶融池内に残留しないこと、更には溶融池内
で反応するSi,Mnの脱酸反応を助け、溶接金属の酸
素量を減少させる上で効果がある。しかし、0.4%未
満では上記効果が不足し、また0.7%を超えるとアー
ク長が過大となり立向溶接に於いて溶融金属が垂れ下が
り、ビード形成が不可能となるのでMgは0.4〜0.
7%とした。
Mg: 0.4-0.7% Mg reacts with oxygen in a high-temperature arc, and a deoxidation reaction takes place at the stage of droplets at the tip of the wire. As a result, deoxidation products do not remain in the molten pool, and furthermore, it helps the deoxidation reaction of Si and Mn reacting in the molten pool, and is effective in reducing the amount of oxygen in the weld metal. However, if the Mg content is less than 0.4%, the above effect is insufficient, and if it exceeds 0.7%, the arc length becomes excessive, causing the molten metal to sag during vertical welding, making it impossible to form a bead. 4-0.
It was set at 7%.

【0019】B:0.002〜0.015%Bは、γ粒
界に偏析し初析フェライトの生成を抑制し、溶接金属の
ミクロ組織を微細化することにより、じん性改善に効果
がある。しかし、0.002%未満ではミクロ組織微細
化によるじん性改善効果が得られず、また0.015%
を超えると炭化物を形成し著しくじん性を損なうので0
.002〜0.015%とした。
B: 0.002 to 0.015% B is effective in improving toughness by segregating at the γ grain boundaries, suppressing the formation of pro-eutectoid ferrite, and refining the microstructure of the weld metal. . However, if it is less than 0.002%, the toughness improvement effect due to microstructure refinement cannot be obtained, and if it is less than 0.015%,
If the
.. 002% to 0.015%.

【0020】 1.0≦(Ti÷TiO2 )×100≦2.0TiO
2 は、溶接過程において一部が還元されTiとして溶
接金属中に歩留る。この還元されたTiは、凝固過程に
於て再度酸化されTi酸化物となり、これが粒内フェラ
イトの核生成サイトとなる。また、γ粒界から生成する
初析フェライトの生成を抑制させるには、フリーBが必
要である。Bは凝固過程で一部が酸化消耗し、溶接金属
中に歩留るが、溶接凝固過程に於てB以外に有効な窒化
物形成元素が不足すると、B窒化物となりフリーBが不
足することになり、ミクロ組織が微細化されない。 これを防ぐには、少量の金属Tiを添加し、溶接金属中
に歩留るTiを確保し、TiNを生成させることにより
初めて実現できる。表2に示す軟鋼外皮を使用して作製
した表1に示すワイヤについて、表3の溶接条件および
図2に示す開先形状で溶接した検討例を図1に示す。同
図から明らかな如く、金属TiとTiO2 の含有比(
Ti÷TiO2 ×100)が増加するに比例して、溶
接金属中のTi量が増加する。このTi量増加に比例し
て溶接金属の破面遷移温度(vTrs)は改善され、こ
の効果は金属TiとTiO2 の比が1.0を超えると
顕著となるが、金属TiとTiO2 の比が2.0を超
えると溶接金属中のTi量が過大となるためじん性が低
下する。
1.0≦(Ti÷TiO2)×100≦2.0TiO
2 is partially reduced during the welding process and remains in the weld metal as Ti. This reduced Ti is oxidized again during the solidification process to become Ti oxide, which becomes a nucleation site for intragranular ferrite. Furthermore, free B is necessary to suppress the formation of pro-eutectoid ferrite generated from the γ grain boundaries. A portion of B is consumed by oxidation during the solidification process and remains in the weld metal, but if effective nitride-forming elements other than B are lacking during the welding solidification process, B nitrides are formed and free B is insufficient. , and the microstructure is not refined. This can only be prevented by adding a small amount of metallic Ti, ensuring a yield of Ti in the weld metal, and generating TiN. FIG. 1 shows a study example in which the wire shown in Table 1, which was manufactured using the mild steel outer skin shown in Table 2, was welded under the welding conditions shown in Table 3 and the groove shape shown in FIG. 2. As is clear from the figure, the content ratio of metallic Ti and TiO2 (
The amount of Ti in the weld metal increases in proportion to the increase in Ti÷TiO2×100). The fracture surface transition temperature (vTrs) of the weld metal is improved in proportion to this increase in Ti content, and this effect becomes remarkable when the ratio of metal Ti to TiO2 exceeds 1.0, but when the ratio of metal Ti to TiO2 If it exceeds 2.0, the amount of Ti in the weld metal becomes excessive and the toughness decreases.

【0021】[0021]

【表1】[Table 1]

【0022】[0022]

【表2】[Table 2]

【0023】[0023]

【表3】[Table 3]

【0024】本発明は以上の成分と残部は実質的に鉄か
らなるワイヤであるが、更にこれに下記のようにMo,
Zrの一種または二種を含有した本発明ワイヤは更にじ
ん性の向上が期待できる。
[0024] The present invention is a wire in which the above-mentioned components and the remainder are substantially made of iron, and furthermore, Mo,
The wire of the present invention containing one or two types of Zr can be expected to have further improved toughness.

【0025】Mo:0.1〜0.3% Moは、溶接金属の焼き戻し軟化抵抗を高め、大入熱溶
接におけるミクロ組織粗大化による強度の低下を防ぐた
め使用する。しかし、0.1%未満では上記効果が不足
し、また0.3%を超えるとMo炭化物を析出し、溶接
金属を著しく硬化させじん性を低下させるので0.1〜
0.3%とした。
Mo: 0.1 to 0.3% Mo is used to increase the temper softening resistance of the weld metal and to prevent a decrease in strength due to coarsening of the microstructure during high heat input welding. However, if it is less than 0.1%, the above effect is insufficient, and if it exceeds 0.3%, Mo carbide will precipitate, significantly hardening the weld metal and reducing the toughness.
It was set at 0.3%.

【0026】Zr:0.03〜0.2%Zrは強脱酸剤
であり溶着金属の酸化を妨げ、かつ溶接金属のミクロ組
織を微細化し、じん性改善に効果がある。しかし、0.
03%未満ではミクロ組織微細化によるじん性改善効果
が得られず、また0.2%を超えると炭化物を形成し著
しくじん性を損なうので0.03〜0.2%とした。
Zr: 0.03-0.2% Zr is a strong deoxidizing agent that prevents oxidation of the weld metal, refines the microstructure of the weld metal, and is effective in improving toughness. However, 0.
If it is less than 0.03%, the effect of improving the toughness by refining the microstructure cannot be obtained, and if it exceeds 0.2%, carbides are formed and the toughness is significantly impaired, so the content is set at 0.03 to 0.2%.

【0027】[0027]

【実施例】[実施例1]表2に示す軟鋼外皮を使用して
作製した表4に示すワイヤを用いて、表5に示す溶接条
件および図3に示す開先形状により低温用Alキルド鋼
溶接継手を作製した。この溶接継手から引張試験片及び
シャルピー衝撃試験片を採取し、機械試験を行なった結
果を表6に示した。表中のシャルピー衝撃試験において
、−60℃の吸収エネルギーが4.8kgf・m 以上
あれば良好な低温じん性を有するとした。
[Example] [Example 1] Using the wire shown in Table 4 produced using the mild steel outer skin shown in Table 2, welding conditions shown in Table 5 and the groove shape shown in Figure 3 were used to weld aluminum-killed steel for low temperature use. A welded joint was made. A tensile test piece and a Charpy impact test piece were taken from this welded joint, and mechanical tests were conducted. The results are shown in Table 6. In the Charpy impact test shown in the table, if the absorbed energy at -60°C is 4.8 kgf·m or more, it is considered to have good low-temperature toughness.

【0028】[0028]

【表4】[Table 4]

【0029】[0029]

【表5】[Table 5]

【0030】[0030]

【表6】[Table 6]

【0031】表4においてB1〜B4が本発明ワイヤで
あり、C1〜C4が本発明の限定外にある比較ワイヤで
ある。フラックス組成を本発明の限定内としたB1〜B
4のワイヤは、いずれも母材強度に適した強度を得、か
つ良好な低温じん性を得る。
In Table 4, B1 to B4 are the wires of the present invention, and C1 to C4 are comparative wires that are outside the scope of the present invention. B1 to B with flux composition within the limits of the present invention
All of the wires No. 4 have strength suitable for the strength of the base material and good low-temperature toughness.

【0032】一方、Ni量が本発明を超え、またTi量
が本発明の範囲を超え、金属TiとTiO2 の比が本
発明の範囲を超える比較ワイヤC1は、Ni量が過剰で
あり、さらに溶接金属中のTiが過剰に歩留まる溶接金
属が著しく硬化したためじん性が不足する。Si,Mn
,Al,Ti量が本発明の範囲未満で、かつTiO2 
量が本発明の範囲未満である比較ワイヤC2は、脱酸が
不十分であること、更には溶接金属のミクロ組織微細化
に有効なTi酸化物が不足することとが相乗して、著し
くじん性が低下している。また、TiO2 量が不足す
るためビード外観が劣化している。Al量が本発明の範
囲を超え、SiO2 が本発明の範囲を超えるC3は、
Al量が過多であるため、ミクロ組織の微細化が不十分
であるためじん性が低い。Si,Mn量が本発明の範囲
を超え、Ni量が本発明の範囲未満である比較ワイヤC
4は、Si,Mn量が過剰であるため溶接金属が過度に
硬化したこと、更にNiが不足することが相乗して著し
くじん性が低い。
On the other hand, the comparison wire C1 has an excessive amount of Ni, an amount of Ti that exceeds the range of the present invention, and a ratio of metal Ti to TiO2 that exceeds the range of the present invention. Excessive Ti in the weld metal remains.The weld metal is significantly hardened and lacks toughness. Si, Mn
, Al, Ti amounts are below the range of the present invention, and TiO2
Comparative wire C2, in which the amount was less than the range of the present invention, had a significant amount of dust due to insufficient deoxidation and a lack of Ti oxide, which is effective in refining the microstructure of the weld metal. sexuality is declining. Furthermore, the bead appearance deteriorated due to the insufficient amount of TiO2. C3 in which the Al amount exceeds the range of the present invention and the SiO2 exceeds the range of the present invention,
Since the amount of Al is excessive, the microstructure is insufficiently refined, resulting in low toughness. Comparison wire C in which the amount of Si and Mn exceeds the range of the present invention and the amount of Ni is less than the range of the present invention
In No. 4, the weld metal was excessively hardened due to excessive amounts of Si and Mn, and the lack of Ni combined to cause extremely low toughness.

【0033】即ち、本発明により、ルチール系フラック
ス入りワイヤの特長である良好な溶接作業性を確保し、
かつミクロ組織微細化により、ばらつきが少なく良好な
低温じん性を得、さらに母材強度とバランスの取れた溶
接金属強度を確保できることが明かである。
That is, the present invention ensures good welding workability, which is a feature of rutile flux-cored wire,
It is also clear that by refining the microstructure, it is possible to obtain good low-temperature toughness with little variation, and also to ensure weld metal strength that is well balanced with the base metal strength.

【0034】[実施例2]実施例1と同様に、表2に示
す軟鋼外皮を使用して作製した表7に示すワイヤを用い
て、表8及び図4に示す溶接条件と開先形状による60
キロ級高張力鋼溶接継手を作製した。この溶接継手から
引張試験片及びシャルピー衝撃試験片を採取し、機械試
験を行なった結果を表9に示した。表中シャルピー衝撃
試験における−40℃の吸収エネルギーが4.8kgf
・m以上あれば良好な低温じん性を有するとした。
[Example 2] In the same manner as in Example 1, using the wire shown in Table 7 manufactured using the mild steel outer skin shown in Table 2, welding conditions and groove shapes shown in Table 8 and FIG. 4 were used. 60
A kilo-class high-strength steel welded joint was fabricated. A tensile test piece and a Charpy impact test piece were taken from this welded joint, and mechanical tests were performed. Table 9 shows the results. In the table, the absorbed energy at -40℃ in the Charpy impact test is 4.8kgf
・If the value is 100 m or more, it is considered to have good low temperature toughness.

【0035】[0035]

【表7】[Table 7]

【0036】[0036]

【表8】[Table 8]

【0037】[0037]

【表9】[Table 9]

【0038】表7においてD1〜D4が本発明ワイヤで
あり、E1〜E4が本発明の限定外にある比較ワイヤで
ある。フラックス組成を本発明の限定内としたD1〜D
4のワイヤは、表8に示す比較的大入熱で使用された場
合においても、母材強度に適した強度を得、かつ良好な
低温じん性を有している。
In Table 7, D1 to D4 are the wires of the present invention, and E1 to E4 are comparative wires that are outside the scope of the present invention. D1 to D with flux composition within the limits of the present invention
Even when the wire No. 4 is used at the relatively large heat input shown in Table 8, it has a strength suitable for the strength of the base material and has good low-temperature toughness.

【0039】一方、Si,Mg量が本発明の範囲未満で
ある比較ワイヤE1は、脱酸が不足しTiO2 の還元
が不十分であること、さらには微小なブローホール・ピ
ットが多発するためじん性が低い。Al・Zr,B量が
本発明の範囲を超え、SiO2 が本発明の範囲未満で
ある比較ワイヤE2は、脱酸が過剰となり合金量が著し
く増加するためじん性が低い。さらにSiO2 が不足
するため、スラグの流動性が悪くなったためビードが不
揃いとなる。Mg,SiO2 が本発明の範囲を超え、
Ni量が本発明の範囲未満である比較ワイヤE3は、M
g量が過剰であるため溶接過程でのアーク長が著しく長
くなるためビードが不揃いとなっている。また、SiO
2 が過剰であるため溶接金属中の酸素量が増加し、ミ
クロ組織の微細化が不十分であるため、著しくじん性が
低下している。Ti,B量が本発明の範囲未満であり、
TiO2 が本発明の範囲を超える比較ワイヤE4は、
Ti,B量が不足するためミクロ組織が微細化されず、
またTiO2 が過多であるため溶接金属中の酸素量が
多くなったことが相乗してじん性が低い。
On the other hand, the comparative wire E1, in which the amount of Si and Mg is less than the range of the present invention, has insufficient deoxidation and insufficient reduction of TiO2, and also has many small blowholes and pits, which causes dust. low gender. Comparative wire E2, in which the amounts of Al, Zr, and B exceed the range of the present invention and the SiO2 content is below the range of the present invention, has low toughness because deoxidation is excessive and the amount of alloy increases significantly. Furthermore, due to the lack of SiO2, the fluidity of the slag deteriorates, resulting in uneven beads. Mg, SiO2 are beyond the scope of the present invention,
Comparison wire E3, in which the Ni amount is less than the range of the present invention, is M
Since the amount of g is excessive, the arc length during the welding process becomes significantly long, resulting in uneven beads. Also, SiO
2 is in excess, the amount of oxygen in the weld metal increases, and the microstructure is insufficiently refined, resulting in a significant decrease in toughness. The amounts of Ti and B are below the range of the present invention,
Comparison wire E4 whose TiO2 exceeds the scope of the invention is
Due to insufficient amounts of Ti and B, the microstructure is not refined,
Furthermore, since the amount of TiO2 is too large, the amount of oxygen in the weld metal increases, and the toughness is low.

【0040】即ち、本発明により、ルチール系フラック
ス入りワイヤの特長である良好な溶接作業性を確保し、
かつ溶接入熱が大きくミクロ組織が粗大化しやすい使用
条件下に於いてもミクロ組織微細化が達成されているた
め、良好な低温じん性および母材強度とバランスの取れ
た溶接金属強度を得ることが明かである。
That is, the present invention ensures good welding workability, which is a feature of rutile flux-cored wire,
In addition, microstructure refinement is achieved even under usage conditions where the welding heat input is large and the microstructure tends to become coarse, so it is possible to obtain good low-temperature toughness and weld metal strength that is well-balanced with base metal strength. is clear.

【0041】以上が本発明の主要構成であるが、アーク
安定化や、少量のスラグの物性調整によるビード形状良
好化を図るため、Na2 O,K2O,MnO,MgO
,Al2 O3 ,ZrO2 ,FeO,Fe2 O3
 などの酸化物を、その総量が7%を超えない範囲で添
加することができる。
The above is the main structure of the present invention, but in order to stabilize the arc and improve the bead shape by adjusting the physical properties of a small amount of slag, Na2O, K2O, MnO, MgO
, Al2 O3 , ZrO2 , FeO, Fe2 O3
It is possible to add oxides such as in the total amount not exceeding 7%.

【0042】[0042]

【発明の効果】以上に示したように、本発明ワイヤによ
り初めてルチール系フラックス入りワイヤの特長である
優れた作業性を確保し、かつ清浄な溶着鋼を得ることに
より低温でじん性を改善でき、また母材強度とバランス
の取れた溶接継手強度を確保でき、更には溶接能率をも
著しく改善できる。
[Effects of the Invention] As shown above, the wire of the present invention ensures the excellent workability that is a feature of rutile flux-cored wire for the first time, and improves toughness at low temperatures by obtaining clean welded steel. In addition, it is possible to ensure a welded joint strength that is well balanced with the base metal strength, and furthermore, it is possible to significantly improve welding efficiency.

【0043】従って、低温じん性を要求される高張力鋼
を使用する構造物の溶接加工において溶接部の品質向上
、溶接能率の改善が図れる。
[0043] Therefore, it is possible to improve the quality of welded parts and the welding efficiency in welding structures using high-strength steel that requires low-temperature toughness.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】溶接金属のじん性、Ti量に及ぼす金属Tiと
TiO2 の比の影響を示す図。
FIG. 1 is a diagram showing the influence of the ratio of metal Ti and TiO2 on the toughness and Ti content of weld metal.

【図2】図1で用いた開先形状を示す図。FIG. 2 is a diagram showing the groove shape used in FIG. 1.

【図3】本発明の実施例で用いた開先形状を示す図。FIG. 3 is a diagram showing a groove shape used in an example of the present invention.

【図4】本発明の実施例で用いた開先形状を示す図。FIG. 4 is a diagram showing a groove shape used in an example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  鋼製外皮中にワイヤ全重量に対して、
TiO2 :4.0〜5.5%、 SiO2 :0.2〜0.6%、 Si:0.4〜1.0%、 Mn:1.5〜3.0%、 Ni:0.4〜2.5%、 Al:0.05〜0.20%、 Ti:0.04〜0.11%、 Mg:0.4〜0.7%、 B  :0.002〜0.015% を含有すると共に、上記TiとTiO2 の含有比を下
記式で示される範囲に規制することを特徴とするガスシ
ールドアーク溶接用フラックス入りワイヤ。 1.0≦(Ti÷TiO2 )×100≦2.0【請求
項2】  鋼製外皮中にワイヤ全重量に対して、TiO
2 :4.0〜5.5%、 SiO2 :0.2〜0.6%、 Si:0.4〜1.0%、 Mn:1.5〜3.0%、 Ni:0.4〜2.5%、 Al:0.05〜0.20%、 Ti:0.04〜0.11%、 Mg:0.4〜0.7%、 B  :0.002〜0.015% を含有し、かつ Mo:0.1〜0.3%、 Zr:0.03〜0.2%、 の1種または2種を含有せしめ、更に上記TiとTiO
2 の含有比を下記式で示される範囲に規制することを
特徴とするガスシールドアーク溶接用フラックス入りワ
イヤ。 1.0≦(Ti÷TiO2 )×100≦2.0
[Claim 1] Based on the total weight of the wire in the steel jacket,
TiO2: 4.0~5.5%, SiO2: 0.2~0.6%, Si: 0.4~1.0%, Mn: 1.5~3.0%, Ni: 0.4~ Contains 2.5%, Al: 0.05-0.20%, Ti: 0.04-0.11%, Mg: 0.4-0.7%, B: 0.002-0.015%. A flux-cored wire for gas-shielded arc welding, characterized in that the content ratio of Ti and TiO2 is regulated within the range shown by the following formula. 1.0≦(Ti÷TiO2)×100≦2.0 [Claim 2] TiO
2: 4.0~5.5%, SiO2: 0.2~0.6%, Si: 0.4~1.0%, Mn: 1.5~3.0%, Ni: 0.4~ Contains 2.5%, Al: 0.05-0.20%, Ti: 0.04-0.11%, Mg: 0.4-0.7%, B: 0.002-0.015%. and contains one or two of the following: Mo: 0.1 to 0.3%, Zr: 0.03 to 0.2%, and further contains the above Ti and TiO
A flux-cored wire for gas shielded arc welding, characterized in that the content ratio of 2 is regulated within the range shown by the following formula. 1.0≦(Ti÷TiO2)×100≦2.0
JP7659391A 1991-04-09 1991-04-09 Flux-cored wire for gas shielded arc welding Expired - Fee Related JP2908585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7659391A JP2908585B2 (en) 1991-04-09 1991-04-09 Flux-cored wire for gas shielded arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7659391A JP2908585B2 (en) 1991-04-09 1991-04-09 Flux-cored wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JPH04309492A true JPH04309492A (en) 1992-11-02
JP2908585B2 JP2908585B2 (en) 1999-06-21

Family

ID=13609611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7659391A Expired - Fee Related JP2908585B2 (en) 1991-04-09 1991-04-09 Flux-cored wire for gas shielded arc welding

Country Status (1)

Country Link
JP (1) JP2908585B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833530B2 (en) * 2001-04-09 2004-12-21 Kiswel, Ltd. Flux cored wire for gas shielded arc welding
KR100502571B1 (en) * 2000-07-25 2005-07-22 현대종합금속 주식회사 Flux cored wire for co2 gas shielded arc welding
NL1034459C2 (en) * 2006-10-02 2008-10-16 Kobe Seiko Sho Kobe Steel Kk Flux core wire for gas arc welding of high tensile steel.
JP2009018337A (en) * 2007-07-13 2009-01-29 Kobe Steel Ltd Flux cored wire for gas-shielded arc welding
CN100462182C (en) * 2005-11-24 2009-02-18 武汉铁锚焊接材料股份有限公司 Carbon steel cored solder wire for gas-shielded arc welding
JP2009061474A (en) * 2007-09-06 2009-03-26 Kobe Steel Ltd Flux-cored wire for gas-shielded arc welding
KR101035723B1 (en) * 2008-11-26 2011-05-19 현대종합금속 주식회사 Flux cored wire for gas shielded arc welding of high tensile strength steel
CN102528332A (en) * 2010-12-20 2012-07-04 昆山京群焊材科技有限公司 High-strength low-temperature-resistant TiO2-series CO2 gas-shielded low-hydrogen type flux-cored wire
EP3378594A1 (en) 2017-03-21 2018-09-26 Nippon Steel & Sumikin Welding Co., Ltd. Flux-cored wire for gas-shielded arc welding
CN112917043A (en) * 2021-01-26 2021-06-08 西安理工大学 Gas shielded welding wire for X100 pipeline steel welding and preparation method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100502571B1 (en) * 2000-07-25 2005-07-22 현대종합금속 주식회사 Flux cored wire for co2 gas shielded arc welding
US6833530B2 (en) * 2001-04-09 2004-12-21 Kiswel, Ltd. Flux cored wire for gas shielded arc welding
CN100462182C (en) * 2005-11-24 2009-02-18 武汉铁锚焊接材料股份有限公司 Carbon steel cored solder wire for gas-shielded arc welding
NL1034459C2 (en) * 2006-10-02 2008-10-16 Kobe Seiko Sho Kobe Steel Kk Flux core wire for gas arc welding of high tensile steel.
JP2009018337A (en) * 2007-07-13 2009-01-29 Kobe Steel Ltd Flux cored wire for gas-shielded arc welding
JP2009061474A (en) * 2007-09-06 2009-03-26 Kobe Steel Ltd Flux-cored wire for gas-shielded arc welding
KR101035723B1 (en) * 2008-11-26 2011-05-19 현대종합금속 주식회사 Flux cored wire for gas shielded arc welding of high tensile strength steel
CN102528332A (en) * 2010-12-20 2012-07-04 昆山京群焊材科技有限公司 High-strength low-temperature-resistant TiO2-series CO2 gas-shielded low-hydrogen type flux-cored wire
EP3378594A1 (en) 2017-03-21 2018-09-26 Nippon Steel & Sumikin Welding Co., Ltd. Flux-cored wire for gas-shielded arc welding
CN112917043A (en) * 2021-01-26 2021-06-08 西安理工大学 Gas shielded welding wire for X100 pipeline steel welding and preparation method

Also Published As

Publication number Publication date
JP2908585B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
JP5792050B2 (en) Submerged arc welding method for low temperature steel
JPS5944159B2 (en) Flux-cored wire for gas shield arc welding
KR20040010398A (en) Flux-cored wire for gas-shielded arc welding
JP5097499B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
JP4958872B2 (en) Large heat input electroslag welding method
JP5450260B2 (en) Weld metal with excellent hot crack resistance
JPH04309492A (en) Flux cored wire for gas shielded arc welding
JP3787104B2 (en) Flux-cored wire for gas shielded arc welding
JP3120912B2 (en) Flux-cored wire for gas shielded arc welding
JPH07164184A (en) Flux cored wire for gas shielded arc welding
JP5064928B2 (en) Flux-cored wire for submerged arc welding for high-strength steel.
JP4625415B2 (en) Solid wire for gas shielded arc welding
JPH08257785A (en) Flux cored wire for arc welding to improve low temp. crack resistance of steel weld zone
JP2723335B2 (en) Flux-cored wire for gas shielded arc welding
JP5340014B2 (en) Submerged arc welding method for low temperature steel
JP5726017B2 (en) Bond flux and welding method for submerged arc welding
JP2011224612A (en) Electroslag welded joint with excellent toughness
JP5244035B2 (en) Weld metal
JPS632592A (en) Flux cored wire for low alloy heat resistant steel welding
JPH05269593A (en) Flux cored wire for gas shielded metal-arc welding
KR20020008681A (en) Flux cored wire for co2 gas shielded arc welding
JP3203527B2 (en) Flux-cored wire for gas shielded arc welding
JP2011206828A (en) Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding
JP2004337871A (en) Low hydrogen coated electrode for low-alloy heat-resistant steel
KR102664069B1 (en) Flux cored wire for gas shielded arc welding

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees