JPH04308696A - Beam position monitor for particle accelerator - Google Patents

Beam position monitor for particle accelerator

Info

Publication number
JPH04308696A
JPH04308696A JP9960091A JP9960091A JPH04308696A JP H04308696 A JPH04308696 A JP H04308696A JP 9960091 A JP9960091 A JP 9960091A JP 9960091 A JP9960091 A JP 9960091A JP H04308696 A JPH04308696 A JP H04308696A
Authority
JP
Japan
Prior art keywords
electrodes
vacuum chamber
electrode
electromotive force
beam position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9960091A
Other languages
Japanese (ja)
Inventor
Mizuho Ida
井田 瑞穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP9960091A priority Critical patent/JPH04308696A/en
Publication of JPH04308696A publication Critical patent/JPH04308696A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To measure the center position of the particle beam inside a vacuum chamber in a particle accelerator such as a synchrotron. CONSTITUTION:A plurality of electrodes 40a-40e and 42a-42e are arranged in the circumferential direction at the same pitch d at upper and lower plane parts 44a and 44b, respectively, at the inside periphery of a vacuum chamber 22. The electromotive force occurring in each electrode 40a-40e and 42a-42e corresponds to the distance between them and an electron beam 34, so a beam position arithmetic circuit 48 compares the electromotive forces of the electrodes 40a-40e and 42a-42e (or 42a-42e) with each other, and seeks the position of the electrode, where the electromotive force at the peak can be gotten, as the center position in the horizontal direction of the electron beam 34. By narrowing the pitch and arranging the more electrodes, resolution can be improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、電子シンクロトロン
等の粒子加速器において、真空チャンバー内の粒子ビー
ム位置を測定するビーム位置モニタに関し、簡易な演算
で正確にビームの水平方向中心位置を測定できるように
したものである。
[Industrial Application Field] This invention relates to a beam position monitor that measures the position of a particle beam in a vacuum chamber in a particle accelerator such as an electron synchrotron, and is capable of accurately measuring the horizontal center position of the beam with simple calculations. This is how it was done.

【0002】0002

【従来の技術】近年、電子シンクロトロンは、シンクロ
トロン放射光(SOR)装置として、超々LSI回路の
作成、医療分野における診断、分子解析、構造解析等様
々な分野への適用が期待されている。
[Prior Art] In recent years, electron synchrotrons, as synchrotron radiation (SOR) devices, are expected to be applied to various fields such as the creation of ultra-super LSI circuits, diagnosis in the medical field, molecular analysis, and structural analysis. .

【0003】SOR光装置の概要を図2に示す。電子発
生装置(電子銃等)10で発生した電子ビームは線型加
速装置(ライナック)12で光速近くに加速され、入射
部14の偏向電磁石16で偏向されて、インフレクタ1
8を介してシンクロトロン20の真空チャンバー22内
に入射される。真空チャンバー22に入射された電子ビ
ームは高周波加速空洞21でエネルギを与えられながら
収束電磁石23で収束され、偏向電磁石24で偏向され
て真空チャンバー22中を回り続ける。偏向電磁石24
で偏向される時に発生するシンクロトロン放射光はビー
ムチャンネル26を通して例えば露光装置28に送られ
て超々LSI回路作成用の光源等として利用される。
FIG. 2 shows an outline of an SOR optical device. An electron beam generated by an electron generator (electron gun, etc.) 10 is accelerated to near the speed of light by a linear accelerator (linac) 12, deflected by a deflection electromagnet 16 in an input section 14, and then passed through an inflector 1.
8 into the vacuum chamber 22 of the synchrotron 20. The electron beam incident on the vacuum chamber 22 is energized by the high frequency acceleration cavity 21, focused by the focusing electromagnet 23, deflected by the deflection electromagnet 24, and continues to circulate in the vacuum chamber 22. Bending electromagnet 24
The synchrotron radiation generated when being deflected by the beam channel 26 is sent to, for example, an exposure device 28 through a beam channel 26, and is used as a light source for producing ultra-super LSI circuits.

【0004】真空チャンバー22の各直線部には、電極
式ビーム位置モニタ30が2個ずつ全周で合計8個設け
られている。この電極式ビーム位置モニタ30は真空チ
ャンバー22内のビーム中心位置を検出するもので、そ
の検出に応じて各種電磁石の励磁量を制御することによ
り、電子ビームが真空チャンバー22内の中心軌道を通
るようにして、真空チャンバー22の内壁に衝突するこ
となく長時間周回できるようにしている。
[0004] Two electrode type beam position monitors 30 are provided on each straight section of the vacuum chamber 22, for a total of eight electrode type beam position monitors 30 on the entire circumference. This electrode type beam position monitor 30 detects the beam center position within the vacuum chamber 22, and controls the amount of excitation of various electromagnets according to the detection, so that the electron beam passes through the center orbit within the vacuum chamber 22. In this way, it is possible to circulate for a long time without colliding with the inner wall of the vacuum chamber 22.

【0005】従来の電極式ビーム位置モニタの構成を図
3に示す。これは、前記図2において真空チャンバー2
2を電極式ビーム位置モニタ30の位置で輪切にした状
態を示すものである。真空チャンバー22内には電子ビ
ーム34(図はビーム中心位置を示す)が周回している
。電極式位置モニタ30はボタン電極等で構成され、通
常1箇所に4個の電極30a〜30dをビーム34の周
囲に配置して構成される。各電極30a〜30dにはビ
ーム34の通過により起電力a〜dが誘起される。
FIG. 3 shows the configuration of a conventional electrode type beam position monitor. This corresponds to the vacuum chamber 2 in FIG.
2 is cut into rings at the position of the electrode type beam position monitor 30. An electron beam 34 (the figure shows the beam center position) circulates within the vacuum chamber 22. The electrode type position monitor 30 is composed of button electrodes and the like, and is usually constructed by arranging four electrodes 30a to 30d at one location around the beam 34. Electromotive forces a to d are induced in each of the electrodes 30a to 30d by the passage of the beam 34.

【0006】ビーム位置演算回路36はこれら検出信号
a〜dに基づきビーム位置を検出する。すなわち、水平
方向ビーム位置Phは例えば、 で求められる。また垂直方向ビーム位置Pvは、kh,
kv:比例係数 で求められる。
The beam position calculation circuit 36 detects the beam position based on these detection signals a to d. That is, the horizontal direction beam position Ph can be obtained by, for example. Also, the vertical beam position Pv is kh,
kv: Determined by proportionality coefficient.

【0007】[0007]

【発明が解決しようとする課題】前記演算式によりビー
ム位置を求める従来のビーム位置モニタでは、真空チャ
ンバー内の中心位置近くではビーム位置を正確に求める
ことができるが、真空チャンバー内の中心位置から外れ
るほど誤差が大きくなる欠点があった。特に、真空チャ
ンバーの断面形状が前記図3のように水平方向に幅が広
いレーストラック型では、水平方向の検出位置精度が低
かった。この発明は、前記従来の技術における問題点を
解決して、真空チャンバー内水平方向のビーム位置を正
確に検出することができる。ビーム位置モニタを提供し
ようとするものである。
[Problem to be Solved by the Invention] With the conventional beam position monitor that calculates the beam position using the above calculation formula, the beam position can be accurately determined near the center position in the vacuum chamber, but There was a drawback that the further the error occurred, the greater the error. In particular, in a racetrack type vacuum chamber in which the cross-sectional shape of the vacuum chamber is wide in the horizontal direction as shown in FIG. 3, the detection position accuracy in the horizontal direction is low. The present invention solves the problems in the conventional techniques and can accurately detect the beam position in the horizontal direction within the vacuum chamber. It attempts to provide a beam position monitor.

【0008】[0008]

【課題を解決するための手段】この発明は、内周面に水
平方向の平坦部を有する真空チャンバーを具えた粒子加
速器において、前記平坦部に略々同一ピッチで略々周方
向に並べて配設された複数の電極と、これら各電極の起
電力を比較して、粒子ビームの径方向中心位置を求める
演算部とを具備してなるものである。
[Means for Solving the Problems] The present invention provides a particle accelerator equipped with a vacuum chamber having a flat portion in the horizontal direction on its inner circumferential surface, in which particles are arranged in a substantially circumferential direction at substantially the same pitch on the flat portion. The apparatus is equipped with a calculation unit that compares the electromotive forces of the plurality of electrodes and the electromotive force of each of these electrodes to determine the radial center position of the particle beam.

【0009】[0009]

【作用】この発明によれば、真空チャンバー内の水平方
向の平坦部に略々同一ピッチで略々周方向に複数の電極
を並べて配設したので、これら各電極の起電力はビーム
中心位置に近いところでは大きく、ビーム中心位置から
遠いところでは小さくなる。したがって、これら各電極
の起電力を比較することにより、その大小から粒子ビー
ムの中心位置を正確に検出することができる。
[Operation] According to the present invention, a plurality of electrodes are arranged circumferentially at approximately the same pitch on a horizontally flat part of the vacuum chamber, so that the electromotive force of each of these electrodes is directed to the beam center position. It is large near the beam center and small when it is far from the beam center position. Therefore, by comparing the electromotive force of each of these electrodes, the center position of the particle beam can be accurately detected from the magnitude thereof.

【0010】0010

【実施例】この発明の一実施例を以下説明する。図1は
シンクロトロン20の真空チャンバー22(図2)を電
極式ビーム位置モニタ30の位置で輪切にして示したも
のである。この真空チャンバー22は断面形状がレース
トラック型として形成されたもので、内部空間22aは
水平方向の幅が広く形成され、垂直方向の幅が狭く形成
されている。そして内周面44の上下両面は水平でかつ
互いに平行な平坦部44a,44bとして形成されてい
る。この真空チャンバー22は内部中心位置が電子ビー
ム34の設計軌道とされている。
[Embodiment] An embodiment of the present invention will be described below. FIG. 1 shows the vacuum chamber 22 (FIG. 2) of the synchrotron 20 cut into rings at the position of the electrode beam position monitor 30. The vacuum chamber 22 has a racetrack cross-sectional shape, and the internal space 22a has a wide width in the horizontal direction and a narrow width in the vertical direction. Both upper and lower surfaces of the inner circumferential surface 44 are formed as flat portions 44a and 44b that are horizontal and parallel to each other. The interior center of this vacuum chamber 22 is the designed trajectory of the electron beam 34.

【0011】真空チャンバー22の上側平坦部44aに
は、複数(3個以上。ここでは5個)の電極40a〜4
0eが周方向に同一ピッチで並べて配設されている。ま
た、その位置の下側平坦部44bにも複数の電極42a
〜42eが周方向に同一ピッチdで上側の電極40a〜
40eとそれぞれ対向して配設されている。これら各電
極40a〜40e、42a〜42eは、例えばボタン電
極で構成され、真空チャンバー内周面44の上下平坦部
44a,44bの凹部46に収容されて、電極面が平坦
部44a,44bと略々同一の高さでかつ真空チャンバ
ー22と絶縁された状態で真空チャンバー22の内部空
間22aに臨んでいる。
The upper flat part 44a of the vacuum chamber 22 is provided with a plurality of (three or more, here five) electrodes 40a to 4.
0e are arranged side by side at the same pitch in the circumferential direction. Further, a plurality of electrodes 42a are also provided on the lower flat part 44b at that position.
~42e is the upper electrode 40a~ with the same pitch d in the circumferential direction
40e, and are arranged opposite to each other. Each of these electrodes 40a to 40e, 42a to 42e is constituted by, for example, a button electrode, and is housed in a recess 46 of the upper and lower flat parts 44a, 44b of the vacuum chamber inner circumferential surface 44, so that the electrode surface is approximately the same as the flat part 44a, 44b. They face the internal space 22a of the vacuum chamber 22 at the same height and insulated from the vacuum chamber 22.

【0012】真空チャンバー22内を電子ビーム34(
図はベーム中心位置を示し、実際には電子ビーム34は
広がりを持っている。)が通過すると、各電極40a〜
40e、42a〜42eには、電子ビーム34の中心位
置との距離に応じた起電力が生じる。すなわち、距離が
短くなるほど起電力は大きくなり、距離が長くなるほど
起電力は小さくなる。ビーム位置演算回路48は、これ
ら起電力から水平方向および垂直方向のビーム位置を求
める。
An electron beam 34 (
The figure shows the Boehm center position, and in reality the electron beam 34 has a spread. ) passes, each electrode 40a~
An electromotive force is generated in 40e, 42a to 42e depending on the distance from the center position of the electron beam 34. That is, the shorter the distance, the greater the electromotive force, and the longer the distance, the smaller the electromotive force. The beam position calculation circuit 48 determines the horizontal and vertical beam positions from these electromotive forces.

【0013】ビーム位置演算回路48によるビーム位置
の演算方法について説明する。なお、真空チャンバー2
2に電極式位置モニタ30を組み込む場合、予め各電極
40a〜40e、42a〜42eの検出感度を試験して
おき、これに応じてビーム位置演算回路48における各
電極起電力検出値に対するゲインを設定しておき、全て
の電極40a〜40e、42a〜42eが同一感度とな
るように補正しておく。
The method of calculating the beam position by the beam position calculating circuit 48 will be explained. In addition, vacuum chamber 2
2, the detection sensitivity of each electrode 40a to 40e and 42a to 42e is tested in advance, and the gain for each electrode electromotive force detection value in the beam position calculation circuit 48 is set accordingly. Then, correction is made so that all the electrodes 40a to 40e and 42a to 42e have the same sensitivity.

【0014】水平方向のビーム位置検出は、上下平坦部
44a,44bのうちの少なくとも一方の電極の起電力
検出値に基づいて行なうことができる。図4は下側平坦
部44bの電極42a〜42eを用いて検出を行なう例
で、電子ビーム34の中心位置が真空チャンバー22内
の中心軌道(設計軌道)を通っている状態である。この
時の各電極42a〜42eの起電力は、同図下に示すよ
うに、中央位置の電極42cで最も高く、そこから左右
にずれるに従い低くなる。ビーム位置演算回路48は内
部の比較器でこれら各起電力の値を比較して、そのピー
クの起電力が生じる電極42cの位置を水平方向のビー
ム中心位置として演算出力する。電子ビーム34の中心
位置が図5のように中心軌道から右方向にずれると、各
電極42a〜42eの起電力は同図下に示すように変化
する。したがって、ビーム位置演算回路48はピークの
起電力が生じる電極42dの位置を水平方向のビーム中
心位置として演算出力する。
The beam position in the horizontal direction can be detected based on the detected electromotive force of at least one electrode of the upper and lower flat portions 44a and 44b. FIG. 4 shows an example in which detection is performed using the electrodes 42a to 42e on the lower flat portion 44b, in which the center position of the electron beam 34 passes through the center orbit (designed orbit) within the vacuum chamber 22. At this time, the electromotive force of each of the electrodes 42a to 42e is highest at the central electrode 42c, and decreases as the electrodes 42c shift from there to the left and right, as shown in the lower part of the figure. The beam position calculation circuit 48 compares the values of each of these electromotive forces using an internal comparator, and calculates and outputs the position of the electrode 42c where the peak electromotive force occurs as the beam center position in the horizontal direction. When the center position of the electron beam 34 shifts to the right from the center orbit as shown in FIG. 5, the electromotive force of each electrode 42a to 42e changes as shown at the bottom of the figure. Therefore, the beam position calculation circuit 48 calculates and outputs the position of the electrode 42d where the peak electromotive force occurs as the beam center position in the horizontal direction.

【0015】なお、より正確に水平方向位置を求めるに
は、ビーム位置演算回路36でピークの起電力が得られ
る上下の電極(図5の例では40d,42d)と、その
次に大きな起電力が得られる上下の電極(同40c,4
2c)を比較演算により求めるとともに、これら4つの
電極40の起電力を用いて例えば、 から電極40c,40d間(42c,42d間)の正確
なビーム水平方向中心位置を求めることができる。また
、電極を配置するピッチdをより狭めて、より多くの電
極を配置することによってもビーム位置検出の分解能が
向上する。なお、各電極の起電力の値によりビーム分布
(図4、図5参照)を測定することもできる。
In order to more accurately determine the horizontal position, the beam position calculation circuit 36 selects the upper and lower electrodes (40d and 42d in the example of FIG. 5) from which the peak electromotive force is obtained, and the next largest electromotive force. Upper and lower electrodes (40c, 4
2c) is determined by a comparison calculation, and by using the electromotive force of these four electrodes 40, for example, it is possible to determine the accurate horizontal beam center position between the electrodes 40c and 40d (between 42c and 42d). Furthermore, the resolution of beam position detection can also be improved by narrowing the pitch d of arranging the electrodes and arranging more electrodes. Note that the beam distribution (see FIGS. 4 and 5) can also be measured based on the value of the electromotive force of each electrode.

【0016】次に、垂直方向のビーム位置は、ピークの
起電力が得られる位置の上下の電極(図5の例では40
d,42d)の起電力の比 から求めることができる。また、ピークの起電力が得ら
れる上下の電極(40d,42d)と、その次大きな起
電力が得られる上下の電極(40c,42c)の4つの
電極の起電力から により垂直方向の起電力を求めることもできる。
Next, the beam position in the vertical direction is set at the electrodes above and below the position where the peak electromotive force is obtained (in the example of FIG.
It can be determined from the ratio of the electromotive forces of d and 42d). In addition, the vertical electromotive force can be calculated from the electromotive force of the four electrodes: the upper and lower electrodes (40d, 42d) where the peak electromotive force is obtained, and the upper and lower electrodes (40c, 42c) where the next largest electromotive force is obtained. You can also ask for it.

【0017】[0017]

【変更例】この発明は電子シンクロトロンのほか、陽子
その他各種荷電粒子のリング型、直線型等各種加速器に
適用することができる。
[Modifications] In addition to electron synchrotrons, the present invention can be applied to various types of accelerators, such as ring type and linear type, for protons and other charged particles.

【0018】[0018]

【発明の効果】以上説明したように、この発明によれば
、真空チャンバー内の水平方向の平坦部に略々同一ピッ
チで略々周方向に複数の電極を並べて配設したので、こ
れら各電極の起電力はビーム位置に近いところでは大き
く、ビーム位置から遠いところでは小さくなり、これら
各電極の起電力を比較することにより、その大小から粒
子ビームの中心位置を正確に検出することができる。
As explained above, according to the present invention, a plurality of electrodes are arranged in parallel in the circumferential direction at substantially the same pitch on the horizontal flat part in the vacuum chamber, so that each of these electrodes The electromotive force is large near the beam position, and small when far from the beam position.By comparing the electromotive forces of these electrodes, it is possible to accurately detect the center position of the particle beam from the magnitude of the electromotive force.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  この発明の一実施例を示す電極の配置例お
よびビーム位置演算系統を示すブロック図である。
FIG. 1 is a block diagram showing an example of electrode arrangement and a beam position calculation system according to an embodiment of the present invention.

【図2】  シンクロトロンの概要を示す平面図である
FIG. 2 is a plan view showing an outline of a synchrotron.

【図3】  従来の電極式位置モニタを示す電極の配置
例およびビーム位置演算系統を示すブロック図である。
FIG. 3 is a block diagram showing an example of electrode arrangement and a beam position calculation system of a conventional electrode-type position monitor.

【図4】  図1の装置において電子ビーム34の中心
が中心軌道上にある場合の動作を示す図である。
4 is a diagram showing the operation when the center of the electron beam 34 is on the central orbit in the apparatus of FIG. 1. FIG.

【図5】  図1の装置において電子ビーム34がの中
心が中心軌道上から外れている場合の動作を示す図であ
る。
5 is a diagram showing the operation of the apparatus shown in FIG. 1 when the center of the electron beam 34 is off the center orbit.

【符号の説明】[Explanation of symbols]

20  シンクロトロン(粒子加速器)22  真空チ
ャンバー 30  電極式ビーム位置モニタ 34  電子ビーム(粒子ビーム) 40a〜40e,42a〜42e  電極44  内周
20 synchrotron (particle accelerator) 22 vacuum chamber 30 electrode type beam position monitor 34 electron beam (particle beam) 40a to 40e, 42a to 42e electrode 44 inner peripheral surface

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内周面に水平方向の平坦部を有する真空チ
ャンバーを具えた粒子加速器において、前記平坦部に略
々同一ピッチで略々周方向に並べて配設された複数の電
極と、これら各電極の起電力を比較して、粒子ビームの
径中心方向位置を求める演算部と  を具備してなる粒
子加速器のビーム位置モニタ。
1. A particle accelerator comprising a vacuum chamber having a flat portion in the horizontal direction on an inner circumferential surface, comprising: a plurality of electrodes disposed on the flat portion at substantially the same pitch in a substantially circumferential direction; A beam position monitor for a particle accelerator, comprising: an arithmetic unit that compares the electromotive force of each electrode and calculates the position in the radial center direction of the particle beam.
JP9960091A 1991-04-04 1991-04-04 Beam position monitor for particle accelerator Pending JPH04308696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9960091A JPH04308696A (en) 1991-04-04 1991-04-04 Beam position monitor for particle accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9960091A JPH04308696A (en) 1991-04-04 1991-04-04 Beam position monitor for particle accelerator

Publications (1)

Publication Number Publication Date
JPH04308696A true JPH04308696A (en) 1992-10-30

Family

ID=14251590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9960091A Pending JPH04308696A (en) 1991-04-04 1991-04-04 Beam position monitor for particle accelerator

Country Status (1)

Country Link
JP (1) JPH04308696A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009089443A1 (en) 2008-01-09 2009-07-16 Passport Systems, Inc. Diagnostic methods and apparatus for an accelerator using induction to generate an electric field with a localized curl
WO2010065702A3 (en) * 2008-12-05 2010-08-26 Cornell University Electric field-guided particle accelerator, method, and applications
IT201800003379A1 (en) * 2018-03-08 2019-09-08 Enea Agenzia Naz Per Le Nuove Tecnologie Lenergia E Lo Sviluppo Economico Sostenibile Device and method for determining the center of mass of a beam of electric charges

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009089443A1 (en) 2008-01-09 2009-07-16 Passport Systems, Inc. Diagnostic methods and apparatus for an accelerator using induction to generate an electric field with a localized curl
EP2232959A4 (en) * 2008-01-09 2015-04-08 Passport Systems Inc Diagnostic methods and apparatus for an accelerator using induction to generate an electric field with a localized curl
WO2010065702A3 (en) * 2008-12-05 2010-08-26 Cornell University Electric field-guided particle accelerator, method, and applications
US8575867B2 (en) 2008-12-05 2013-11-05 Cornell University Electric field-guided particle accelerator, method, and applications
IT201800003379A1 (en) * 2018-03-08 2019-09-08 Enea Agenzia Naz Per Le Nuove Tecnologie Lenergia E Lo Sviluppo Economico Sostenibile Device and method for determining the center of mass of a beam of electric charges
WO2019170721A1 (en) 2018-03-08 2019-09-12 ENEA - Agenzia nazionale per le nuove tecnologie, l'energia e lo sviluppo economico sostenibile Device and method for detecting the mass centre of a beam of electric charges
US11360125B2 (en) 2018-03-08 2022-06-14 Enea—Agenzia Nazionale Per Le Nuove Tecnologie, L'energia E Lo Sviluppo Economico Device and method for detecting the mass center of a beam of electric charges

Similar Documents

Publication Publication Date Title
US4803368A (en) Assembly and method for monitoring the lateral position of a beam of ionizing radiation
CN111077561B (en) Residual gas charged particle beam monitoring device and method thereof
Bonvicini et al. First observation of beamstrahlung
JPH04308696A (en) Beam position monitor for particle accelerator
US4762993A (en) Directional sensor for neutral particle beams
Ekdahl et al. Noninvasive beam-size measurements for linear induction accelerators
CN111551881B (en) Nuclear magnetic resonance magnetic field measurement method and system based on particle accelerator
JP6263132B2 (en) Method for determining maximum mass peak in mass spectrometry
JPH05159898A (en) Beam position monitor of particle accelerator
Dubbers et al. Generation of narrow peaks in spectroscopy of charged particles
JPH03225800A (en) Beam current value measurement for synchrotron
Connor et al. The ATF heavy ion beam probe
RU2603231C1 (en) Device for diagnostics of pulsed beams of ionizing particles
Carolipio et al. Array of neutral particle analyzers at DIII-D
Hawkes et al. The design of a proton recoil telescope for 14 MeV neutron spectrometry
Stone et al. CLEO III, a detector to measure rare B decays and CP violation
Pentella et al. Alignment of a Solenoid System by Means of a Translating-Coil Magnetometer
Smith et al. Correcting Diamagnetic-Loop Measurements for Beam Corkscrew Motion
Anashkin et al. Calibration of CMD-2 drift chamber
Lebed et al. Field reconstruction technique for testing magnetic quadrupole lenses
Jablonka et al. Beam diagnostics using transition radiation produced by a 100 MeV electron beam
Oving Development of a miniature 3 axis magnetic field sensor to predict the magnetic stray field influence on electron beams
Bheesette et al. Electron Gun-Based Magnetic Probe
Darrow et al. Measurements of beam ion loss from the Compact Helical System
JPH03103794A (en) Beam position monitor device for particle accelerator