JPH04308442A - Controller for generator refrigrant of power generating facility - Google Patents

Controller for generator refrigrant of power generating facility

Info

Publication number
JPH04308442A
JPH04308442A JP7312291A JP7312291A JPH04308442A JP H04308442 A JPH04308442 A JP H04308442A JP 7312291 A JP7312291 A JP 7312291A JP 7312291 A JP7312291 A JP 7312291A JP H04308442 A JPH04308442 A JP H04308442A
Authority
JP
Japan
Prior art keywords
temperature
generator
rotor
refrigerant
rotor temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7312291A
Other languages
Japanese (ja)
Inventor
Kazuhiro Suzuki
一浩 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7312291A priority Critical patent/JPH04308442A/en
Publication of JPH04308442A publication Critical patent/JPH04308442A/en
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Temperature (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

PURPOSE:To increase an operating range of a generator by allowing the generator to operate over a reverse phase current allowable value. CONSTITUTION:A rotor temperature rising value due to a reverse phase current flowing to a generator 1 is obtained by a rotor temperature rising value predicting calculator 13, a predicting rotor temperature is obtained from various state amounts obtained from the generator and its cooling system by a rotor temperature predicting calculator 6, and they are input to a refrigerant controller 14. The controller 14 predicts an actual rotor temperature, compares the actual predicted temperature with a rotor allowable temperature value, calculates a refrigerant temperature refrigerant pressure and refrigerant flow rate of a generator cooling system so that the rotor temperature does not exceed the allowable value, and controls the system.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は発電機の運転範囲を広げ
ることが可能な発電設備の発電機冷媒制御装置に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a generator refrigerant control system for power generation equipment that is capable of widening the operating range of a generator.

【0002】0002

【従来の技術】タービンにより駆動される発電機を送電
系統に連系して運転しているとき、発電機に逆相電流が
流れると回転子に定格周波数の2倍の周波数の電気トル
クが働き、それが励振力となってタービンの軸と翼が互
いに影響しながら振動する所謂翼軸連成ねじり振動を発
生し、翼の寿命消費が進むという問題がある。
[Prior Art] When a generator driven by a turbine is operated in connection with a power transmission system, when a negative sequence current flows through the generator, an electric torque with a frequency twice the rated frequency acts on the rotor. This creates an excitation force that causes the turbine shaft and blades to vibrate while influencing each other, which is the so-called blade shaft-coupled torsional vibration, which leads to the problem of shortening the lifespan of the blades.

【0003】そこで、従来ではその対策としてタービン
軸と翼による固有振動数を定格周波数の2倍から離すこ
とが考えられ、各種の離調対策がとられている。一方、
発電機側としては逆相耐量の問題があるため、発電機に
対しては逆相電流の大きさによって逆相耐量が制限され
ている。
Conventionally, as a countermeasure to this problem, it has been considered to set the natural frequency of the turbine shaft and blades away from twice the rated frequency, and various detuning countermeasures have been taken. on the other hand,
On the generator side, there is a problem with negative sequence withstand capability, so the negative phase withstand capability of the generator is limited depending on the magnitude of the negative sequence current.

【0004】この逆相耐量としては、短時間の逆相電流
により回転子表面に蓄積される熱量で制限される短時間
耐量と、比較的長い又は連続的な逆相電流で回転子表面
温度が上昇することにより制限される連続耐量とがある
。近年のタービン発電機は単機容量の増加が著しくなっ
てきているが、この大容量化に対しては冷却技術の進歩
により冷却系の冷却効率を向上させることが可能なため
、回転子の熱容量が減少する傾向になっている。
[0004] This negative sequence withstand capacity is divided into a short-time withstand capacity that is limited by the amount of heat accumulated on the rotor surface due to a short-time negative sequence current, and a short-term withstand capacity that is limited by the amount of heat accumulated on the rotor surface due to a short-term negative sequence current, and a short-time withstand capacity that is limited by the amount of heat accumulated on the rotor surface due to a relatively long or continuous negative sequence current. There is a continuous tolerance limit that is limited by increasing the amount of water. In recent years, the capacity of a single unit of turbine generators has increased significantly, and advances in cooling technology have made it possible to improve the cooling efficiency of the cooling system. It is on a decreasing trend.

【0005】現在、発電機運転時に逆相電流が流れたと
きの対応としては一般的に発電機逆相保護装置により警
報又はトリップを行うようにしており、この発電機逆相
保護装置は発電機定格出力時に許容する逆相電流を定め
た規格に基づいて設定値を決めている。
[0005]Currently, as a countermeasure when a negative-sequence current flows during generator operation, a generator negative-phase protection device is generally used to issue an alarm or trip. Setting values are determined based on standards that specify the negative sequence current allowed at rated output.

【0006】[0006]

【発明が解決しようとする課題】ところで、発電機の連
続逆相耐量の実行値は発電機の回転子の定常状態におけ
る温度に逆相電流による温度上昇分を加えた温度が回転
子材料の許容する温度と等しくなるときの逆相電流値で
示される。したがって、発電機の逆相耐量は定常状態に
おける回転子温度を低くすることができれば、その分逆
相電流による耐量を上げることができる。
[Problem to be Solved by the Invention] By the way, the actual value of the continuous negative sequence withstand capability of a generator is the temperature that is the sum of the temperature of the generator rotor in a steady state and the temperature rise due to the negative sequence current. It is indicated by the negative sequence current value when the temperature becomes equal to the temperature. Therefore, if the rotor temperature in a steady state can be lowered, the generator's ability to withstand negative sequence current can be increased accordingly.

【0007】また、定常状態における回転子温度は発電
機損失と冷却能力との関係から決まるもので、発電機損
失が一定であれば、冷却能力を上げることにより可能で
ある。したがって、発電機の冷却系の冷媒温度、圧力、
流量等を制御することにより、逆相耐量を増やすことが
可能となる。言い換えれば、逆相電流の大きさにより発
電機の冷却系における冷媒温度、圧力、流量等を制御す
ることにより規定値である逆相電流許容値を越えての運
転が可能である。
Furthermore, the rotor temperature in a steady state is determined by the relationship between the generator loss and the cooling capacity, and if the generator loss is constant, the rotor temperature can be changed by increasing the cooling capacity. Therefore, the refrigerant temperature and pressure in the generator cooling system,
By controlling the flow rate, etc., it is possible to increase the reverse phase tolerance. In other words, by controlling the refrigerant temperature, pressure, flow rate, etc. in the cooling system of the generator based on the magnitude of the negative sequence current, it is possible to operate the generator beyond the specified negative sequence current allowable value.

【0008】本発明の目的は、発電機に流れる逆相電流
および諸状態量より回転子温度を予測演算し、回転子の
許容温度により発電機の冷却系における冷媒温度、圧力
、流量等を制御することにより、発電機の運転範囲を広
げることができる発電設備の発電機冷媒制御装置を提供
するにある。 [発明の構成]
An object of the present invention is to predict and calculate the rotor temperature from the negative sequence current flowing through the generator and various state quantities, and to control the refrigerant temperature, pressure, flow rate, etc. in the generator cooling system based on the allowable rotor temperature. It is an object of the present invention to provide a generator refrigerant control device for power generation equipment that can expand the operating range of the generator. [Structure of the invention]

【0009】[0009]

【課題を解決するための手段】本発明は上記の目的を達
成するため、冷却系により冷却可能な発電機を送電系統
に連系して運転する発電設備において、前記発電機の出
力回路に流れる電流が入力されこの電流から逆相電流を
算出する逆相電流算出手段と、この逆相電流算出手段に
より算出された逆相電流に基いて回転子温度上昇値を予
測演算する回転子温度上昇値予測演算手段と、前記発電
機およびその冷却系から得られる諸状態量が入力されこ
の諸状態量に基いて定常状態時の回転子温度を予測演算
する回転子温度予測演算手段と、この回転子温度予測演
算手段により求められた回転子予測温度と前記回転子温
度上昇値予測演算手段により求められた逆相電流による
予測回転子温度上昇値に基いて実際の回転子温度を予測
すると共に、この実際の回転子温度と回転子許容温度値
とを比較して回転子温度が回転子許容温度値を越えない
前記発電機冷却系の冷媒温度、冷媒圧力、冷媒流量を求
めて前記発電機冷却系を制御する冷媒制御手段とを備え
たものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention provides a power generation facility in which a generator that can be cooled by a cooling system is operated in connection with a power transmission system. A negative-sequence current calculation means that receives a current and calculates a negative-sequence current from this current, and a rotor temperature rise value that predicts and calculates a rotor temperature rise value based on the negative-sequence current calculated by the negative-sequence current calculation means. a prediction calculation means; a rotor temperature prediction calculation means which receives various state quantities obtained from the generator and its cooling system and predicts and calculates a rotor temperature in a steady state based on the state quantities; and this rotor. The actual rotor temperature is predicted based on the predicted rotor temperature obtained by the temperature prediction calculation means and the predicted rotor temperature rise value due to the negative sequence current obtained by the rotor temperature rise value prediction calculation means. The actual rotor temperature and the rotor allowable temperature value are compared to determine the refrigerant temperature, refrigerant pressure, and refrigerant flow rate of the generator cooling system in which the rotor temperature does not exceed the rotor allowable temperature value. and a refrigerant control means for controlling the refrigerant.

【0010】0010

【作用】このような構成の発電設備の発電機冷媒制御装
置にあっては、発電機に流れる逆相電流による回転子温
度上昇値と発電機およびその冷却系から得られる諸状態
量に基いて求められる予測回転子温度により実際の回転
子温度を予測し、この実際の予測回転子温度と回転子許
容温度値とを比較して回転子温度が回転子許容温度値を
越えない前記発電機冷却系の冷媒温度、冷媒圧力、冷媒
流量を求めて発電機冷却系を制御することにより、発電
機を逆相電流許容値を越えての運転が可能となり、発電
機の運転範囲を広げることができる。
[Operation] In the generator refrigerant control device of the power generation equipment with such a configuration, the temperature rise value of the rotor due to the reverse sequence current flowing through the generator and the various state quantities obtained from the generator and its cooling system are used. The actual rotor temperature is predicted based on the required predicted rotor temperature, and the actual predicted rotor temperature is compared with the rotor allowable temperature value to ensure that the rotor temperature does not exceed the rotor allowable temperature value. By controlling the generator cooling system by determining the system refrigerant temperature, refrigerant pressure, and refrigerant flow rate, it is possible to operate the generator beyond the permissible negative sequence current value, and the operating range of the generator can be expanded. .

【0011】[0011]

【実施例】以下本発明の一実施例を図面を参照して説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0012】図1は本発明による発電設備の発電機冷媒
制御装置の構成例を示す回路図である。図1において、
1は図示しないタービンに直結されて駆動され、且つ図
示しない冷却系により冷却可能な発電機で、この発電機
1は主変圧器2およびしゃ断器3を介して送電線4に接
続されている。また、5は発電機1の回転子側の界磁巻
線1Fに流れる電流を検出する電流検出器である。
FIG. 1 is a circuit diagram showing an example of the configuration of a generator refrigerant control device for a power generation facility according to the present invention. In Figure 1,
Reference numeral 1 denotes a generator that is directly connected to and driven by a turbine (not shown) and can be cooled by a cooling system (not shown).This generator 1 is connected to a power transmission line 4 via a main transformer 2 and a breaker 3. Further, 5 is a current detector that detects the current flowing through the field winding 1F on the rotor side of the generator 1.

【0013】6はこの電流検出器5で検出された界磁電
流検出信号が入力回路7を通して入力されると共に、発
電機1の図示しない冷却系に設けられた各種センサによ
り検出される冷却ガス温度、圧力冷却水温度、流量等の
諸状態量が入力回路8を通して入力される回転子温度予
測演算回路で、この演算回路6はこれらの入力信号に基
づいて定常状態時の回転子予測温度を算出するものであ
る。
A field current detection signal detected by the current detector 5 is inputted through an input circuit 7, and a cooling gas temperature 6 is detected by various sensors installed in the cooling system (not shown) of the generator 1. , is a rotor temperature prediction calculation circuit into which various state variables such as pressure cooling water temperature and flow rate are input through an input circuit 8, and this calculation circuit 6 calculates a predicted rotor temperature in a steady state based on these input signals. It is something to do.

【0014】9は入力回路8を通して諸状態量が入力さ
れる冷媒状態監視回路で、この冷媒状態監視回路9は発
電機冷却系の冷媒圧力、温度、流量を監視すると共に、
各冷媒の余裕がどれくらいあるか等を監視するものであ
る。
Reference numeral 9 denotes a refrigerant condition monitoring circuit to which various state quantities are input through the input circuit 8. This refrigerant condition monitoring circuit 9 monitors the refrigerant pressure, temperature, and flow rate of the generator cooling system, and
This monitors how much room each refrigerant has.

【0015】10は発電機1の出力回路に設けられた変
流器11により検出される発電機電流が入力回路12を
通して入力される逆相電流算出回路で、この逆相電流算
出回路10は逆相電流を算出するものである。また、1
3はこの逆相電流算出回路10により求められた逆相電
流が入力される回転子温度上昇値予測演算回路で、この
演算回路13は逆相電流による回転子温度上昇値を算出
するものである。
Reference numeral 10 denotes a negative sequence current calculation circuit to which a generator current detected by a current transformer 11 provided in the output circuit of the generator 1 is inputted through an input circuit 12; This calculates the phase current. Also, 1
Reference numeral 3 denotes a rotor temperature rise value prediction calculation circuit into which the negative sequence current calculated by this negative sequence current calculation circuit 10 is input, and this calculation circuit 13 calculates the rotor temperature rise value due to the negative sequence current. .

【0016】一方、14は回転子温度予測演算回路6に
より求められた定常状態時の回転子温度、冷媒状態監視
回路9により監視された各冷媒状態および回転子温度上
昇値予測演算回路13で求められた逆相電流による回転
子温度上昇値が入力される冷媒制御回路で、この冷媒制
御回路14はこれらの入力信号をもとに回転子許容温度
との関係より回転子が許容値を越えない発電機冷却系の
冷媒温度、圧力、流量を算出して発電機冷却系に制御信
号を出力するものである。次にこのように構成された発
電設備の発電機冷媒制御装置の作用を図2に示すフロー
チャートを参照しながら説明する。
On the other hand, 14 indicates the rotor temperature in a steady state determined by the rotor temperature prediction calculation circuit 6, each refrigerant condition monitored by the refrigerant condition monitoring circuit 9, and the rotor temperature rise value calculated by the rotor temperature rise value prediction calculation circuit 13. This refrigerant control circuit 14 receives the rotor temperature rise value due to the negative sequence current that is input, and this refrigerant control circuit 14 uses these input signals to ensure that the rotor does not exceed the permissible temperature in relation to the rotor permissible temperature. It calculates the refrigerant temperature, pressure, and flow rate of the generator cooling system and outputs a control signal to the generator cooling system. Next, the operation of the generator refrigerant control device for the power generating equipment configured as described above will be explained with reference to the flowchart shown in FIG. 2.

【0017】いま、発電機1が送電線4に接続された状
態で運転されているものとすれば、このとき回転子温度
予測演算回路6には検出器5により検出された界磁巻線
1Fに流れる電流が入力回路7を通して入力されると共
に、入力回路8を通して発電機冷却系の諸状態量が入力
され、また冷媒状態監視回路9には入力回路8を通して
発電機冷却系の諸状態量が入力され、さらに回転子温度
上昇値予測演算回路13には逆相電流算出回路10で算
出された逆相電流が入力される。
Assuming that the generator 1 is currently operating while connected to the power transmission line 4, the rotor temperature prediction calculation circuit 6 receives the field winding 1F detected by the detector 5. At the same time, the current flowing through the input circuit 7 is inputted, various state quantities of the generator cooling system are inputted through the input circuit 8, and various state quantities of the generator cooling system are inputted to the refrigerant condition monitoring circuit 9 through the input circuit 8. Furthermore, the negative sequence current calculated by the negative sequence current calculation circuit 10 is input to the rotor temperature rise value prediction calculation circuit 13.

【0018】回転子温度予測演算回路6では、界磁巻線
1Fに流れる電流と発電機冷却系の諸状態量に基いて定
常状態時の回転子温度を求めて冷媒制御回路14に入力
し、冷媒状態監視回路9では発電機冷却系の諸状態量か
ら冷媒圧力、温度、流量を監視すると同時に、各冷媒の
余裕がどの程度あるかを監視し、その冷却媒体状態を冷
媒制御回路14に入力し、回転子温度上昇値予測演算回
路13では逆相電流による回転子温度を算出すると共に
、定常状態時の回転子温度上昇値を算出して冷媒制御回
路14に入力する。
The rotor temperature prediction calculation circuit 6 calculates the rotor temperature in a steady state based on the current flowing through the field winding 1F and various state variables of the generator cooling system, and inputs it to the refrigerant control circuit 14. The refrigerant condition monitoring circuit 9 monitors the refrigerant pressure, temperature, and flow rate from various state quantities of the generator cooling system, and at the same time monitors how much margin each refrigerant has, and inputs the refrigerant condition to the refrigerant control circuit 14. However, the rotor temperature rise value prediction calculation circuit 13 calculates the rotor temperature based on the negative phase current, and also calculates the rotor temperature rise value in a steady state and inputs it to the refrigerant control circuit 14.

【0019】この冷媒温度制御回路14にこれら定常状
態時の回転子温度、冷却媒体状態および定常状態時の回
転子温度上昇値が入力されると図2に示すフローチャー
トによる制御がスタートする。まず、ステップS1では
定常状態時の予測回転子温度と逆相電流による予測回転
子温度上昇値より実際の回転子温度を予測してステップ
S2に進む。ステップS2では実際の回転子温度が回転
子許容温度値に対する余裕が小さいか否かを判定し、小
さければ現状維持としてステップS4に進む。また、実
際の回転子温度が回転子許容温度値に対する余裕が小さ
くないと判定されると、ステップS3により実際の回転
子温度が回転子許容温度値より大きいか否かを判定し、
大きければ冷却能力下げとしてステップS4に進み、逆
に実際の回転子温度が回転子許容温度値より小さければ
冷却能力上げとしてステップS4に進む。
When the rotor temperature in the steady state, the coolant state, and the rotor temperature rise value in the steady state are input to the coolant temperature control circuit 14, control according to the flowchart shown in FIG. 2 starts. First, in step S1, the actual rotor temperature is predicted from the predicted rotor temperature in a steady state and the predicted rotor temperature increase value due to the negative sequence current, and the process proceeds to step S2. In step S2, it is determined whether the actual rotor temperature has a small margin with respect to the rotor permissible temperature value, and if it is small, the current status is maintained and the process proceeds to step S4. Further, if it is determined that the actual rotor temperature has a small margin with respect to the rotor allowable temperature value, it is determined in step S3 whether the actual rotor temperature is greater than the rotor allowable temperature value,
If the actual rotor temperature is smaller than the allowable rotor temperature value, the process proceeds to step S4 to reduce the cooling capacity, and conversely, if the actual rotor temperature is smaller than the rotor allowable temperature value, the process proceeds to step S4 to increase the cooling capacity.

【0020】次にステップS4では、現状維持の場合に
は発電機冷却系の冷媒温度、冷媒圧力、冷媒流量を現状
のままの状態で制御し、また冷却能力下げの場合又は冷
却能力上げの場合には回転子温度が許容値を越えない発
電機冷却系の冷媒温度、冷媒圧力、冷媒流量を求め、そ
のときの演算結果に基いて発電機冷却系の冷媒温度、冷
媒圧力、冷媒流量を制御する。
Next, in step S4, the refrigerant temperature, refrigerant pressure, and refrigerant flow rate of the generator cooling system are controlled as they are in the case of maintaining the current state, and in the case of decreasing the cooling capacity or increasing the cooling capacity. The refrigerant temperature, refrigerant pressure, and refrigerant flow rate of the generator cooling system are determined so that the rotor temperature does not exceed the allowable value, and the refrigerant temperature, refrigerant pressure, and refrigerant flow rate of the generator cooling system are controlled based on the calculated results. do.

【0021】したがって、発電機冷却系は発電機1に流
れる逆相電流の大きさにより自動的に冷媒温度、冷媒圧
力、冷媒流量が制御されるので、発電機の運転範囲を広
めることができる。特に発電機1の出力変化に応じて冷
却ガスの圧力を変化させている発電機の場合には出力が
小さいときの冷却ガス圧力は低いので、冷却能力には十
分余裕があり、逆相電流が大きくなっても運転を続ける
ことが可能となる。
[0021] Therefore, in the generator cooling system, the refrigerant temperature, refrigerant pressure, and refrigerant flow rate are automatically controlled according to the magnitude of the negative sequence current flowing through the generator 1, so that the operating range of the generator can be expanded. In particular, in the case of a generator that changes the pressure of the cooling gas according to changes in the output of generator 1, the cooling gas pressure is low when the output is small, so there is sufficient cooling capacity and the negative sequence current is low. You can continue to drive it even if it grows larger.

【0022】なお、上記実施例では回転子温度予測演算
回路6に電流検出器5により検出された界磁電流と冷媒
圧力、温度、流量等の諸状態量を入力するようにしたが
、図3に示すように回転子温度予測演算回路6に入力さ
れる諸状態量としてさらに固定子冷却水温度と流量を追
加し、また界磁電流に加えて発電機電流および発電機電
圧を追加して通常状態時の回転子温度を求めることによ
り、その算出精度を上げることができる。
In the above embodiment, the field current detected by the current detector 5 and various state variables such as refrigerant pressure, temperature, and flow rate are input to the rotor temperature prediction calculation circuit 6. As shown in the figure, the stator cooling water temperature and flow rate are further added as various state variables input to the rotor temperature prediction calculation circuit 6, and the generator current and generator voltage are added in addition to the field current to obtain the normal By determining the rotor temperature in the state, the calculation accuracy can be improved.

【0023】[0023]

【発明の効果】以上述べたように本発明によれば、発電
機に流れる逆相電流および諸状態量より回転子温度を予
測演算し、回転子の許容温度により発電機の冷却系にお
ける冷媒温度、圧力、流量等を制御するようにしたので
、発電機の運転範囲を広げることができる発電設備の発
電機冷媒制御装置を提供できる。
As described above, according to the present invention, the rotor temperature is predicted and calculated from the negative sequence current flowing through the generator and various state quantities, and the refrigerant temperature in the generator cooling system is calculated based on the allowable rotor temperature. , pressure, flow rate, etc., it is possible to provide a generator refrigerant control device for power generation equipment that can expand the operating range of the generator.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明よる発電設備の発電機冷媒制御装置の一
実施例を示す回路構成図。
FIG. 1 is a circuit configuration diagram showing an embodiment of a generator refrigerant control device for power generation equipment according to the present invention.

【図2】同実施例の作用を説明するためのフローチャー
ト。
FIG. 2 is a flowchart for explaining the operation of the embodiment.

【図3】本発明の他の実施例における回転子温度予測演
算回路部分の回路図。
FIG. 3 is a circuit diagram of a rotor temperature prediction calculation circuit portion in another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1……発電機、2……主変圧器、3……しゃ断器、4…
…送電線、5……電流検出器、6……回転子温度予測演
算回路、7,8,12……入力回路、9……冷媒状態監
視回路、10……逆相電流算出回路、13……回転子温
度上昇値予測演算回路、14……冷媒制御回路。
1... Generator, 2... Main transformer, 3... Breaker, 4...
...Power transmission line, 5...Current detector, 6...Rotor temperature prediction calculation circuit, 7, 8, 12...Input circuit, 9...Refrigerant condition monitoring circuit, 10...Negative sequence current calculation circuit, 13... ... Rotor temperature rise value prediction calculation circuit, 14 ... Refrigerant control circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  冷却系により冷却可能な発電機を送電
系統に連系して運転する発電設備において、前記発電機
の出力回路に流れる電流が入力されこの電流から逆相電
流を算出する逆相電流算出手段と、この逆相電流算出手
段により算出された逆相電流に基いて回転子温度上昇値
を予測演算する回転子温度上昇値予測演算手段と、前記
発電機およびその冷却系から得られる諸状態量が入力さ
れこの諸状態量に基いて定常状態時の回転子温度を予測
演算する回転子温度予測演算手段と、この回転子温度予
測演算手段により求められた回転子予測温度と前記回転
子温度上昇値予測演算手段により求められた逆相電流に
よる予測回転子温度上昇値に基いて実際の回転子温度を
予測すると共に、この実際の回転子温度と回転子許容温
度値とを比較して回転子温度が回転子許容温度値を越え
ない前記発電機冷却系の冷媒温度、冷媒圧力、冷媒流量
を求めて前記発電機冷却系を制御する冷媒制御手段とを
備えたことを特徴とする発電設備の発電機冷媒制御装置
Claim 1: In a power generation facility in which a generator that can be cooled by a cooling system is operated in connection with a power transmission system, a current flowing in the output circuit of the generator is input and a negative sequence current is calculated from this current. current calculation means; rotor temperature rise value prediction calculation means for predicting and calculating a rotor temperature rise value based on the negative sequence current calculated by the negative sequence current calculation means; A rotor temperature prediction calculating means receives various state quantities and predicts and calculates the rotor temperature in a steady state based on the various state quantities, and a rotor predicted temperature obtained by this rotor temperature prediction calculation means and the rotation The actual rotor temperature is predicted based on the predicted rotor temperature increase value due to the negative sequence current obtained by the child temperature increase value prediction calculation means, and this actual rotor temperature is compared with the rotor allowable temperature value. and a refrigerant control means for controlling the generator cooling system by determining refrigerant temperature, refrigerant pressure, and refrigerant flow rate of the generator cooling system so that the rotor temperature does not exceed a rotor allowable temperature value. Generator refrigerant control device for power generation equipment.
JP7312291A 1991-04-05 1991-04-05 Controller for generator refrigrant of power generating facility Pending JPH04308442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7312291A JPH04308442A (en) 1991-04-05 1991-04-05 Controller for generator refrigrant of power generating facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7312291A JPH04308442A (en) 1991-04-05 1991-04-05 Controller for generator refrigrant of power generating facility

Publications (1)

Publication Number Publication Date
JPH04308442A true JPH04308442A (en) 1992-10-30

Family

ID=13509121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7312291A Pending JPH04308442A (en) 1991-04-05 1991-04-05 Controller for generator refrigrant of power generating facility

Country Status (1)

Country Link
JP (1) JPH04308442A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526826A (en) * 2010-05-19 2013-06-24 シーレイト リミテッド ライアビリティー カンパニー Heat removal from motor
US9397591B2 (en) 2010-05-19 2016-07-19 Deep Science Llc Motor with rotor-mounted control circuitry

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013526826A (en) * 2010-05-19 2013-06-24 シーレイト リミテッド ライアビリティー カンパニー Heat removal from motor
US9397591B2 (en) 2010-05-19 2016-07-19 Deep Science Llc Motor with rotor-mounted control circuitry

Similar Documents

Publication Publication Date Title
US6465978B2 (en) Dynamic motor drive torque control based on power switching device temperature feedback
JP4685715B2 (en) Power system stabilization method and power system stabilization system using the method
JPH04308442A (en) Controller for generator refrigrant of power generating facility
JPH10299664A (en) Operation controlling device for pump
JP4564192B2 (en) Variable speed controller
JPH0446596A (en) Generator output controller
JPH05316797A (en) Output controller for generator
JP2894978B2 (en) Tank level control device for hydroelectric power plant
JP2005006421A (en) Generating set
JP3345773B2 (en) Plant automatic controller
JPS59150982A (en) Generator protecting device for wind power plant
JPS59170912A (en) Flow rate control device
JP2523520B2 (en) Control device for variable speed turbine generator
JP3915085B2 (en) Variable speed pumped storage power generation controller
JP3292612B2 (en) Operation control device for nuclear power plant
JPH0559903A (en) Automatic run back device
JPH10184316A (en) Power generation control device utilizing exhaust heat
JPS6153559B2 (en)
JPS60204241A (en) Coolant supplying device of rotary electric machine
JP2753253B2 (en) Variable speed power plant
KR100206657B1 (en) Cooling device of a generator
JP2004279221A (en) Nuclear reactor output control system
JPH05172034A (en) Governor control device
JP2644748B2 (en) Variable speed pumped storage power generation system
JPS59211206A (en) Operating apparatus of transformer cooler