JPH04308022A - Refractory for lining of ladle for producing high cleanness molten steel - Google Patents

Refractory for lining of ladle for producing high cleanness molten steel

Info

Publication number
JPH04308022A
JPH04308022A JP3096184A JP9618491A JPH04308022A JP H04308022 A JPH04308022 A JP H04308022A JP 3096184 A JP3096184 A JP 3096184A JP 9618491 A JP9618491 A JP 9618491A JP H04308022 A JPH04308022 A JP H04308022A
Authority
JP
Japan
Prior art keywords
refractory
weight
ladle
al2o3
lining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3096184A
Other languages
Japanese (ja)
Other versions
JP2510898B2 (en
Inventor
Koichi Yamaguchi
山口 紘一
Yukio Nakamura
中村 勇気男
Hiromi Takahashi
宏美 高橋
Kazuhiko Fujii
一彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Nippon Steel Corp filed Critical Kurosaki Refractories Co Ltd
Priority to JP3096184A priority Critical patent/JP2510898B2/en
Publication of JPH04308022A publication Critical patent/JPH04308022A/en
Application granted granted Critical
Publication of JP2510898B2 publication Critical patent/JP2510898B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To manufacture a refractory for the linking of a ladle for producing a high cleanness Si deoxidizing steel having <=0.002% sol.Al and requiring good wire drawability, fatigue strength or machinability. CONSTITUTION:In the refractory for lining of the ladle for producing the Si deoxidized steel having <=0.002% sol.Al, (1) Al2O3 content in the part being in contact with a molten steel is made to <=8wt.% (2) Al2O3 content in the refractory being in contact with the molten steel except bottom part in the ladle is made to <=4wt.% and (3) Al2O3 content in the slag line part of the refractory for lining of the ladle is made to <=2wt.%.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高清浄度鋼溶製用の耐
火物に関するものであって、特にsol.Al.0.0
02%以下の伸線加工性、疲労強度、あるいは被削性を
要求されるSi脱酸鋼溶製用の取鍋内張り用耐火物に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to refractories for high-cleanliness steel melting, and particularly to sol. Al. 0.0
The present invention relates to a refractory for lining a ladle for producing Si-deoxidized steel, which requires wire drawability, fatigue strength, or machinability of 0.02% or less.

【0002】0002

【従来の技術】今日の二次精練および連続鋳造を行なう
状況の下での取鍋は、出鋼温度の上昇、滞湯時間の延長
等を強いられるため耐火物にかかる負担が過酷なものに
なっている。そのために現在の取鍋内張り用耐火物は高
耐食性を指向したものが主流をしめている。例えば取鍋
の中で最も溶損の大きいスラグライン用の耐火物として
は、高アルミナ質またはAl2O3−MgO系及びジル
コン質耐火物が使用される場合が多く、最近ではカーボ
ン添加により耐スポーリング性を向上させた材質も使用
されている。また、溶鋼やスラグによる磨耗が大きい取
鍋一般壁用の耐火物としては、高アルミナ質、中アルミ
ナ質あるいはジルコン質のれんがが使用される場合が多
い。なお、一部では耐火物のコスト低減を目的に一般壁
の不定形化を進めるメーカーも増えている。主に流し込
み材が使用されるが、これについても高耐食性、高耐磨
耗性を目的に高アルミナ質、あるいはスピネル質が使用
されている。  敷耐火物については直接スラグに接す
る機会が少ないので、高耐スポーリング性指向によるジ
ルコン質、シャモット質、蝋石質耐火物が使用されてい
る。
[Prior Art] Under today's conditions of secondary smelting and continuous casting, ladles are forced to raise the tapping temperature and extend the residence time, which places a severe burden on the refractories. It has become. For this reason, the current mainstream of ladle lining refractories are those that are oriented toward high corrosion resistance. For example, high alumina, Al2O3-MgO, and zircon refractories are often used as refractories for slag lines, which have the largest erosion loss in ladles.Recently, carbon has been added to improve spalling resistance. Materials with improved properties are also used. In addition, high alumina, medium alumina, or zircon bricks are often used as refractories for general walls of ladle, which are subject to significant wear due to molten steel and slag. In addition, an increasing number of manufacturers are making regular walls amorphous in order to reduce the cost of refractories. Pouring materials are mainly used, and high alumina or spinel materials are also used for the purpose of high corrosion resistance and high wear resistance. Since there are few opportunities for direct contact with slag, zircon-based, chamotte-based, and rouseki-based refractories are used because of their high spalling resistance.

【0003】0003

【発明が解決しようとする課題】従来から高清浄度Si
キルド鋼を製造するに当たっては耐火物の非アルミナ化
(純Al2O3を用いない)が望ましいと言われてきた
。 その理由は■介在物組成制御用の溶鋼酸素活量およびs
ol.Al.の微量コントロール(小山等:学振19委
員会第3分科会・神戸製鋼所資料;S62.9.30)
、■耐火物を構成する純Al2O3粒子の脱落防止(市
橋等;鉄と鋼Vol.71 No.2・85−A25)
であった。従って、従来技術で可能な取鍋内張り耐火物
の非アルミナ化、例えばジルコン系耐火物の使用、タン
ディッシュ内張り耐火物の非アルミナ化、例えばMgO
系耐火物の使用等、部分的には非アルミナ化が行なわれ
、それなりの改善効果も認められていた(斉藤等;神戸
製鋼技報Vol.34  No.2  p96)が、実
害介在物を皆無にし、実用上のトラブルを防止できるレ
ベルには至っていない(斉藤等;神戸製鋼技報Vol.
34  No.2  p96)。その理由は、溶鋼注入
系の耐火物を非アルミナ化することが技術的に困難であ
ったことと、部分的な非アルミナ化(純Al2O3粒子
を用いない)では、本発明者等が明らかにしたように溶
鋼中および耐火物中カーボンとの反応で耐火物中のSi
O2成分が還元されてAl2O3成分が濃化する結果、
後述する実害となるAl2O3粒子相及びスピネル(M
gO・Al2O3)相が生成することを防止できないか
らである。したがって溶鋼と接触する耐火物は、実害を
及ぼさないレベルにアルミナレス化する必要がある。S
iキルド鋼を溶製・鋳造した後のAl2O3成分を含有
した蝋石質等の取鍋耐火物稼働面は、反応付着生成物が
少ないため、従来無害であると考えられていたが、本発
明者らの最近の調査結果では、耐火物稼働面にAl2O
3が濃化して生成したアルミナ相、スピネル相が鋳造中
に脱落し、鋳片にトラップされて実害を生じる介在物に
なっていると推定される。
[Problem to be solved by the invention] Conventionally, high cleanliness Si
In producing killed steel, it has been said that it is desirable to use non-aluminated refractories (not using pure Al2O3). The reason is ■ Molten steel oxygen activity and s for inclusion composition control.
ol. Al. (Koyama et al.: JSPS 19 Committee Subcommittee 3/Kobe Steel Materials; S62.9.30)
, ■ Prevention of falling off of pure Al2O3 particles that constitute refractories (Ichihashi et al.; Tetsu to Hagane Vol. 71 No. 2/85-A25)
Met. Therefore, it is possible to use non-aluminated ladle lining refractories using conventional techniques, such as the use of zircon-based refractories, and non-aluminated tundish lining refractories, such as MgO.
Non-alumina was used in some areas, such as the use of refractories, and some improvement effects were recognized (Saito et al.; Kobe Steel Technical Report Vol. 34 No. 2 p. 96), but no actual harmful inclusions were present. However, it has not reached a level that can prevent practical problems (Saito et al., Kobe Steel Technical Report Vol.
34 No. 2 p96). The reason for this is that it was technically difficult to make the refractories of the molten steel injection system non-aluminated, and the inventors clearly found that partial non-aluminization (not using pure Al2O3 particles) As mentioned above, Si in the refractory is removed by reaction with carbon in molten steel and refractory.
As a result of the O2 component being reduced and the Al2O3 component being concentrated,
Al2O3 particle phase and spinel (M
This is because the formation of the gO.Al2O3) phase cannot be prevented. Therefore, refractories that come into contact with molten steel need to be alumina-free to a level that does not cause any actual damage. S
The working surface of ladle refractories made of rouseite containing Al2O3 components after melting and casting i-killed steel was conventionally thought to be harmless because there are few reaction products, but the present inventor According to recent research results, Al2O on the working surface of refractories
It is estimated that the alumina phase and spinel phase produced by the concentration of No. 3 fall off during casting, become trapped in the slab, and become inclusions that cause actual damage.

【0004】0004

【課題を解決するための手段】本発明は従来技術の課題
を有利に解決するものであってsol.Al.0.00
2%以下のSi脱酸鋼を溶製する取鍋の内張り用耐火物
において、(1)溶鋼と接触する部分のAl2O3含有
量を8重量%以下とし、望ましくはZrO2:35重量
%以上、SiO2:55重量%以下、およびその他の耐
火成分:0〜5重量%からなることを特徴とする高清浄
度鋼溶製用取鍋の内張り用耐火物。(2):(1)の取
鍋内張り用耐火物で、取鍋敷き部以外の溶鋼と接触する
耐火物中のAl2O3含有量を4重量%以下とし、望ま
しくはジルコン原料70重量%(ZrO2として45重
量%)以上を含有し、さらにSiO2:10〜25重量
%含有することを特徴とするセミジルコン質の高清浄度
鋼溶製用取鍋の内張り用耐火物。(3):(1)および
(2)の取鍋内張り耐火物で、スラグライン部の溶鋼と
接触する耐火物のAl2O3含有量を2重量%以下とし
、望ましくはZrO2として60〜80重量%を含有し
、さらにSiO2を20〜40重量%含有し、さらにそ
の他の耐火成分を0〜5重量%含有することを特徴とす
る高清浄度鋼溶製用取鍋の内張り用耐火物である。
SUMMARY OF THE INVENTION The present invention advantageously solves the problems of the prior art and solves the problems of the prior art. Al. 0.00
In a refractory for lining a ladle made of 2% or less Si deoxidized steel, (1) the Al2O3 content in the part that comes into contact with molten steel is 8% by weight or less, preferably ZrO2: 35% by weight or more, SiO2 : 55% by weight or less, and other refractory components: 0 to 5% by weight. (2): In the ladle lining refractory of (1), the Al2O3 content in the refractory that comes into contact with molten steel other than the ladle lining is 4% by weight or less, and preferably 70% by weight of the zircon raw material (as ZrO2). 45% by weight) and further contains 10 to 25% by weight of SiO. (3): In the ladle lining refractories of (1) and (2), the Al2O3 content of the refractory that comes into contact with the molten steel in the slag line is 2% by weight or less, and preferably 60 to 80% by weight as ZrO2. A refractory for lining a ladle for high-cleanliness steel melting, characterized by containing 20 to 40% by weight of SiO2, and 0 to 5% by weight of other refractory components.

【0005】以下本発明を図表を用いて説明する。表1
は本発明に適用する鋼種であって、特に低Alに特徴が
ある。Alは強脱酸元素で脱酸・酸素コントロール用に
有用であるが、sol.Al.が0.002%以上にな
ると非延性硬質のAl2O3系介在物を生じて、疲労特
性、伸線加工特性および被削性等を害するので、低Al
とする必要がある。Cは材質強度コントロ−ルに必要で
あり、用途によって必然的にその成分範囲が決定される
が、0.05%未満では後述する本発明で問題にしてい
る耐火物稼働面のAl2O3成分濃化も問題とならない
。 SiはCと共に脱酸・酸素コントロール上必要であり、
また靱性をあまり低下せずに強度を増加させる効果が有
り、 0.03〜2.50%が実用化されている。Mn
は強度を増加させる効果が有り、また介在物の軟質化に
も効果が有り0.15〜2.00%程度が実用化されて
いる。P,Sは偏析を悪化させ、材料特性を悪化させる
ので0.03%以下が望ましい。Oは介在物組成コント
ロール上重要な成分でありC,Si含有量に対して適当
な範囲が有るが安定して鋳造できるのは80ppm以下
である。これ以上では鋳片にブローホールが発生したり
して鋳造が不安定になる。その他Cr,Nb,V等材質
特性上有効で脱酸および介在物組成にあまり影響を及ぼ
さない元素は含有してもかまわない。
The present invention will be explained below using diagrams. Table 1
is a steel type applicable to the present invention, and is particularly characterized by low Al content. Al is a strong deoxidizing element and is useful for deoxidizing and oxygen control, but sol. Al. If it exceeds 0.002%, non-ductile hard Al2O3 inclusions will occur, which will impair fatigue properties, wire drawing properties, machinability, etc.
It is necessary to do so. C is necessary for material strength control, and its component range is inevitably determined depending on the application, but if it is less than 0.05%, it will cause concentration of Al2O3 components in the operation of refractories, which will be discussed later in the present invention. is not a problem either. Si is necessary together with C for deoxidation and oxygen control,
It also has the effect of increasing strength without significantly reducing toughness, and 0.03 to 2.50% is in practical use. Mn
has the effect of increasing strength and also softening inclusions, and is in practical use at a content of about 0.15 to 2.00%. Since P and S worsen segregation and material properties, their content is preferably 0.03% or less. O is an important component for controlling inclusion composition, and there is an appropriate range for the C and Si contents, but stable casting is possible at 80 ppm or less. If it exceeds this range, blowholes may occur in the slab, making casting unstable. Other elements such as Cr, Nb, and V that are effective in terms of material properties and do not significantly affect deoxidation and inclusion composition may be included.

【0006】[0006]

【表1】[Table 1]

【0007】〈耐火物をアルミナレス化する必要性〉伸
線加工中の破断面、および疲労破面に認められる実害と
なる介在物は、殆どが純アルミナ、およびスピネル(A
l2O3・MgO)である。Siキルド鋼を溶製、鋳造
した後の中アルミナ質および蝋石質の取鍋内張り耐火物
稼働面には耐火物基材の粒子とは形態が異なる数十μm
〜150μmサイズのアルミナ相、およびスピネル相が
析出していることが検鏡調査、EPMA調査で確認され
た。その稼働面断面の模式図を図1に示す。図で1は溶
鋼と反応生成したアルミナ相であり、2は(Al,Si
,Mn)O系主体のマトリックスである。3は耐火物基
材である。これらAl2O3成分含有耐火物の稼働面に
アルミナ、スピネル相が生成する機構をAl2O3−S
iO2系耐火物の場合を例にして述べる。この例は連鋳
タンディッシュ堰(52%Al2O3,48%SiO2
)の場合であるが、取鍋内張り耐火物の場合も同じ反応
である。
<Need to make refractories alumina-free> Inclusions that cause actual damage observed on fracture surfaces during wire drawing and fatigue fracture surfaces are mostly pure alumina and spinel (A
12O3・MgO). After melting and casting Si-killed steel, the working surface of the ladle lining refractory made of medium alumina and waxite contains particles several tens of μm in size that are different in shape from the particles of the refractory base material.
It was confirmed by microscopic examination and EPMA examination that an alumina phase and a spinel phase with a size of ~150 μm were precipitated. A schematic cross-sectional view of its operating surface is shown in Figure 1. In the figure, 1 is the alumina phase produced by reaction with molten steel, and 2 is (Al, Si).
, Mn) is an O-based matrix. 3 is a refractory base material. Al2O3-S
The case of iO2-based refractories will be described as an example. This example is a continuous casting tundish weir (52% Al2O3, 48% SiO2
), but the same reaction occurs in the case of ladle lining refractories.

【0008】カーボンを含まないAl2O3−SiO2
系耐火物にアルミナ相が生成する機構について、 溶鋼
と耐火物との反応を熱力学的に検討した。その結果を表
2に示す(熱力学データは学振・製鋼第19委員会「製
鋼反応の推奨平衡値」を使用した)。1500℃の溶鋼
50Tと耐火物1kgが平衡に達するまで反応した結果
を反応後の欄に示してある。溶鋼50Tはタンディッシ
ュ内の溶鋼、耐火物1kgは堰表面の反応層の量を想定
している。表で水準■は高炭素鋼との反応の例である。 耐火物中のSiO2が還元されて消失し、アルミナが1
00%つまり純アルミナ相が生成することを示している
。 さらにアルミナの一部も還元されてsol.Al.とし
て溶鋼に入っていることが分かる。水準■は溶鋼中カー
ボンが0.2%の場合であるが、この場合でも純アルミ
ナ相が生成する。水準■および■は溶鋼中Mn含有量を
変更した場合であるが、あまり変化は認められない。こ
の結果から、耐火物中のSiO2成分は溶鋼中のカーボ
ンで還元されて、Al2O3成分が濃化し純アルミナ相
が生成することがわかる。従来溶鋼中のMnでSiO2
が還元されると言う文献が多く見られる(成田:耐火物
,30〔14〕,p14(1978)等)が、本発明の
場合にはカーボンの方が還元力が大きいことが分かる。 この全体の反応をムライト組成の例で示すと(3)式で
表わされる。 〈3Al2O3・2SiO2〉 + 4〔C〕 = 3
Al2O3 + 2〔Si〕 + 4{CO}    
  (3)この場合、耐火物中のAl2O3成分が濃化
してアルミナ相が生成するので、実害となるアルミナ相
の生成を防止するためには、Al2O3成分を極力含有
しない耐火物を使用する必要がある。取鍋内張り耐火物
がジルコン系の場合も、ジルコン(SiO2・ZrO2
)が高温の稼働面でSiO2とZrO2に解離したSi
O2が溶鋼カーボンで還元され、耐火物に含まれるAl
2O3成分が濃化するため、Al2O3含有量を少なく
する必要がある。
[0008] Carbon-free Al2O3-SiO2
Regarding the mechanism by which alumina phase is formed in refractories, we thermodynamically investigated the reaction between molten steel and refractories. The results are shown in Table 2 (the thermodynamic data used was the ``Recommended Equilibrium Values for Steelmaking Reactions'' by the 19th JSPS Steelmaking Committee). The results of a reaction between 50T of molten steel at 1500° C. and 1 kg of refractory until reaching equilibrium are shown in the column after the reaction. 50T of molten steel is assumed to be the molten steel in the tundish, and 1kg of refractory is assumed to be the amount of reaction layer on the weir surface. In the table, level ■ is an example of reaction with high carbon steel. SiO2 in the refractory is reduced and disappears, and alumina becomes 1
00%, that is, pure alumina phase is generated. Furthermore, some of the alumina is reduced to sol. Al. It can be seen that it is contained in the molten steel. Level (3) is a case where the carbon content in the molten steel is 0.2%, but even in this case, a pure alumina phase is generated. Levels ■ and ■ are cases where the Mn content in the molten steel was changed, but no significant change was observed. This result shows that the SiO2 component in the refractory is reduced by the carbon in the molten steel, the Al2O3 component is concentrated, and a pure alumina phase is produced. Conventionally, Mn in molten steel is used as SiO2
There are many documents that say that carbon is reduced (Narita: Refractories, 30 [14], p. 14 (1978), etc.), but in the case of the present invention, it is found that carbon has a greater reducing power. This overall reaction is expressed by equation (3) using an example of mullite composition. <3Al2O3・2SiO2> + 4[C] = 3
Al2O3 + 2[Si] + 4{CO}
(3) In this case, the Al2O3 component in the refractory will be concentrated and an alumina phase will be produced, so in order to prevent the formation of the alumina phase which can cause actual damage, it is necessary to use a refractory that contains as little Al2O3 component as possible. be. Even if the ladle lining refractory is zircon-based, zircon (SiO2/ZrO2
) is dissociated into SiO2 and ZrO2 on the high-temperature operating surface.
O2 is reduced with molten steel carbon, and Al contained in the refractory is reduced.
Since the 2O3 component is concentrated, it is necessary to reduce the Al2O3 content.

【0009】[0009]

【表2】[Table 2]

【0010】一方、耐火物中にカーボンを含有した耐火
物の場合も、例えばSiキルド鋼を鋳造したアルミナ−
黒鉛質の浸漬ノズル稼働面には、ノズル基材に用いられ
ているアルミナ粒子とは形態が異なる数十〜数百μmサ
イズのアルミナ相、およびスピネル相が生成しているこ
とが検鏡調査・EPMA分析で確認された。耐火物を構
成する純アルミナ粒子が脱落して硬質の実害介在物にな
るのは当然として、アルミナ相およびAl2O3成分を
含有し、かつカーボンを含有する浸漬ノズル等の耐火物
稼働面にAl2O3相及びスピネル(MgO・Al2O
3)相が生成するのは次の機構によると考えられる。ア
ルミナ−黒鉛質の浸漬ノズルの様に耐火物中にカーボン
を含有する場合は、浸漬ノズル内のAl2O3およびS
iO2成分がCおよびCOガスで還元されてAl2Oガ
ス、SiOガスとして稼働面に移動してAl2Oガスは
溶鋼側から酸素を得てAl2O3として析出し、SiO
はさらにカーボン,およびCOガスで還元されてSiと
してメタル中へ移行する(福田等:鉄と鋼′86−S2
80等)。 全体の反応式は次の様に表わされる。 〈Al2O3〉 + 4〈C〉 + 2〈SiO2〉 
→ (Al2O3) + 2〔Si〕 + 4{CO}
  (1)SiO2を含まないカーボン含有耐火物の反
応式も同様に(2)式(Hauckら:Eisenhu
ttenwes.53(1982)Nr.4April
,P127)で表わされる。 3〈Al2O3〉 + 6〈C〉 → 4〔Al〕 +
 (Al2O3) + 6{CO}        (
2)従ってSiO2を含まない場合でもカーボンを含有
していれば稼働面にAl2O3が生成することになる。 稼働面にアルミナ相の生成を防止するには、Al2O3
成分を極力含有しない耐火物、すなわちアルミナレス耐
火物とする必要がある。また、耐火物稼働面にスピネル
(MgO・Al2O3)相の生成がしばしば認められる
のは、転炉スラグ、およびMgO系耐火物成分や脱酸生
成物中のMgO成分と耐火物稼働面に生成したAl2O
3が反応してスピネルが生成するためであると推定され
る。
[0010] On the other hand, in the case of refractories containing carbon, for example, Si-killed steel is cast into alumina.
Microscopic investigation revealed that on the graphite immersion nozzle operating surface, an alumina phase with a size of several tens to hundreds of micrometers and a spinel phase were formed, which had a different morphology from the alumina particles used in the nozzle base material. Confirmed by EPMA analysis. It goes without saying that the pure alumina particles constituting the refractory fall off and become hard harmful inclusions, but the Al2O3 phase and the Al2O3 phase and the carbon-containing refractory working surface, such as a submerged nozzle, contain an alumina phase and an Al2O3 component. Spinel (MgO・Al2O
3) The formation of phases is thought to be due to the following mechanism. When the refractory contains carbon, such as an alumina-graphite immersion nozzle, Al2O3 and S in the immersion nozzle
The iO2 component is reduced with C and CO gas and moves to the working surface as Al2O gas and SiO gas, and the Al2O gas obtains oxygen from the molten steel side and precipitates as Al2O3, forming SiO.
is further reduced with carbon and CO gas and migrates into the metal as Si (Fukuda et al.: Tetsu-to-Hagane '86-S2
80 etc.). The overall reaction formula is expressed as follows. 〈Al2O3〉 + 4〈C〉 + 2〈SiO2〉
→ (Al2O3) + 2[Si] + 4{CO}
(1) The reaction equation of a carbon-containing refractory that does not contain SiO2 is also the same as equation (2) (Hauck et al.: Eisenhu
ttenwes. 53 (1982) Nr. 4April
, P127). 3〈Al2O3〉 + 6〈C〉 → 4〔Al〕 +
(Al2O3) + 6{CO} (
2) Therefore, even if SiO2 is not contained, Al2O3 will be generated on the working surface if carbon is contained. To prevent the formation of alumina phase on the working surface, Al2O3
It is necessary to create a refractory that contains as few components as possible, that is, an alumina-free refractory. In addition, the formation of a spinel (MgO/Al2O3) phase on the working surface of the refractory is often observed due to the formation of the spinel (MgO/Al2O3) phase on the working surface of the refractory and the MgO components in the converter slag, MgO-based refractory components, and deoxidized products. Al2O
It is presumed that this is because 3 reacts to produce spinel.

【0011】本発明による取鍋内張り耐火物は(1)溶
鋼と接触する部分のAl2O3含有量を8重量%以下と
し、望ましくはZrO2:35重量%以上、SiO2:
55重量%以下、およびその他の耐火成分:0〜5重量
%からなり、また(2)取鍋敷き部以外の溶鋼と接触す
る耐火物中のAl2O3含有量を4重量%以下とし、望
ましくはジルコン原料70重量%(ZrO2として45
重量%)以上を含有し、さらにSiO2:10〜25重
量%含有するセミジルコン質用の耐火物、さらに(3)
スラグライン部の溶鋼と接触する耐火物のAl2O3含
有量を2重量%以下とし、望ましくはZrO2として6
0〜80重量%を含有し、さらにSiO2を20〜40
重量%含有し、さらにその他の耐火成分を0〜5重量%
含有する耐火物であるために、溶鋼との反応で耐火物稼
働面に実害となるアルミナ相やスピネル相が生成するこ
とがない。アルミナを含有しない耐火性原料としてはジ
ルコン、 ジルコニア、溶融シリカ、珪石等がある。本
発明の耐火物はこれらの耐火原料を主に使用してなる。 耐火物が上記耐火原料で構成される場合、SiO2含有
量が65%を超えると耐食性の低下が著しくなるので5
5%以下が望ましい。また10%未満では耐スポーリン
グ性が低下する。残部は主としてZrO2成分で、35
〜90%となる。上記耐火性原料のみで耐火物を製造す
ることも可能であるが、定形耐火物はその製造時に作業
性が安定せず、混練、成形に熟練を要する。また、不定
形耐火物の場合には、主として炉前で混練、養生されて
使用されるため、特にその作業性の不安定さが問題とな
る。 この難点を解決するために、耐火粘土を使用することが
出来る。しかしこの場合耐火物中のAl2O3含有量が
10%を超えるほどに多くなると、(Al,Si,Zr
)O系の低融点生成物が多くなり耐食性の低下をもたら
すので少ない方が望ましい。以上述べたように、本発明
成分系による取鍋内張り用耐火物は、耐食性や、耐スポ
ーリング性の点で従来の耐火物と同等以上の耐用性があ
り、しかもSiキルド鋼の鋳造に於いてアルミナ相やス
ピネル相等の実害となる高融点・硬質介在物を生成しな
いため、鋼材品質向上の上で大きな利点がある。
The ladle lining refractory according to the present invention has (1) an Al2O3 content of 8% by weight or less in the portion that comes into contact with molten steel, preferably 35% by weight or more of ZrO2, and SiO2:
55% by weight or less, and other refractory components: 0 to 5% by weight, and (2) the Al2O3 content in the refractory that comes into contact with molten steel other than the ladle bedding part is 4% by weight or less, and preferably zircon. Raw material 70% by weight (45% as ZrO2
(wt%) or more, and further contains SiO2: 10 to 25 wt%, a refractory for semizircon, and (3)
The Al2O3 content of the refractory that comes into contact with the molten steel in the slag line should be 2% by weight or less, preferably 6% as ZrO2.
0 to 80% by weight, and further contains 20 to 40% SiO2.
Contains 0 to 5% by weight of other fire-resistant components.
Because it is a refractory containing refractories, alumina and spinel phases that cause actual damage to the working surfaces of refractories are not generated due to reaction with molten steel. Examples of refractory raw materials that do not contain alumina include zircon, zirconia, fused silica, and silica. The refractory of the present invention is mainly made of these refractory raw materials. When the refractory is composed of the above-mentioned refractory raw materials, if the SiO2 content exceeds 65%, the corrosion resistance will be significantly reduced.
5% or less is desirable. Moreover, if it is less than 10%, spalling resistance decreases. The remainder is mainly ZrO2 component, 35
~90%. Although it is possible to manufacture refractories using only the above-mentioned refractory raw materials, the workability of shaped refractories is unstable during manufacture, and skill is required for kneading and shaping. Moreover, in the case of monolithic refractories, since they are mainly kneaded and cured before use in a furnace, instability in their workability is a particular problem. To overcome this difficulty, fireclay can be used. However, in this case, if the Al2O3 content in the refractory increases to more than 10%, (Al, Si, Zr
) Since the amount of O-based low-melting point products increases, resulting in a decrease in corrosion resistance, it is desirable that the amount is less. As described above, the refractory for ladle lining made of the composition system of the present invention has durability equivalent to or higher than conventional refractories in terms of corrosion resistance and spalling resistance, and is also effective in casting Si-killed steel. Since it does not produce harmful high-melting-point, hard inclusions such as alumina phase or spinel phase, it has a great advantage in improving the quality of steel materials.

【0012】0012

【実施例】以下、本発明例を実施例に基ずいて説明する
。表3に定形耐火物の例を示す。実施例Aは、ジルコニ
ア原料17重量%、溶融シリカ8重量%、ジルコン原料
75重量%からなる配合を、バインダーとしてフェノー
ル樹脂を添加して混練・成形・焼成して得られるもので
ある。化学成分はZrO2が67%、SiO2が32%
であり、不可避的なAl2O3含有量は0.3%である
。 実施例Bはジルコン原料60重量%、珪石25重量%、
可塑材としての粘土15%からなるものである。化学成
分はZrO2が40%、SiO2が53%であり、粘土
によるAl2O3含有量は6%である。実施例A,Bは
耐食性、耐スポーリング性も良好であり、鋼材品質への
影響も問題がなかった。比較例Cは化学成分としてSi
O2が過剰な材質であり、ジルコン原料45%、溶融シ
リカ50重量%、珪石5重量%からなる配合をバインダ
ーとしてフェノール樹脂を添加して混練・成形・焼成し
て得られるものである。 化学成分はZrO2が30%
、SiO2が70%であり、不可避的Al2O3含有量
は0.4%である。この比較例Cは、本発明を適用した
実施例と比較して耐食性に劣り、溶鋼を汚染し鋼材の品
質を低下せしめる。比較例Dは化学成分としてSiO2
が不足している材質であり、ジルコニア原料77重量%
、珪石3重量%、ジルコン原料20重量%からなるもの
である。 化学成分はZrO2が90%、SiO2が9%であり、
不可避的成分としてのAl2O3含有量が0.3%であ
る。 この比較例Dは、本発明を適用した実施例と比較して、
耐スポーリング性に劣り寿命が短い。比較例Eは化学成
分としてのAl2O3含有量が過剰な材質であり、粘土
を35重量%使用している。この比較例Eは本発明を適
用した実施例と比較して、耐スポーリング性に劣り、ま
た稼働面に品質上有害なアルミナ相、スピネル相の生成
が認められた。比較例Fは高アルミナ質煉瓦であり、バ
ンケツ80重量%、アルミナ原料10重量%、粘土10
重量%からなる。本発明を適用した実施例と比較して、
耐スポーリング性が劣り、 有害なアルミナ、スピネル
相の生成も多数認められた。
[Examples] The present invention will be explained below based on Examples. Table 3 shows examples of shaped refractories. Example A is obtained by kneading, molding, and firing a composition consisting of 17% by weight of zirconia raw material, 8% by weight of fused silica, and 75% by weight of zircon raw material, with the addition of a phenol resin as a binder. Chemical composition: 67% ZrO2, 32% SiO2
and the unavoidable Al2O3 content is 0.3%. Example B includes 60% by weight of zircon raw material, 25% by weight of silica stone,
It consists of 15% clay as a plasticizer. The chemical components are 40% ZrO2, 53% SiO2, and the Al2O3 content due to clay is 6%. Examples A and B had good corrosion resistance and spalling resistance, and there was no problem in affecting the quality of the steel material. Comparative example C contains Si as a chemical component.
It is a material with an excess of O2, and is obtained by kneading, molding, and firing a mixture of 45% zircon raw material, 50% fused silica, and 5% silica stone by adding phenolic resin as a binder. Chemical composition is 30% ZrO2
, SiO2 is 70% and the inevitable Al2O3 content is 0.4%. Comparative Example C is inferior in corrosion resistance compared to Examples to which the present invention is applied, contaminating the molten steel and degrading the quality of the steel material. Comparative example D uses SiO2 as a chemical component.
is a material in short supply, and 77% by weight of zirconia raw material
, 3% by weight of silica stone, and 20% by weight of zircon raw material. The chemical composition is 90% ZrO2 and 9% SiO2,
The content of Al2O3 as an inevitable component is 0.3%. This comparative example D is compared with the example to which the present invention is applied,
Poor spalling resistance and short lifespan. Comparative Example E is a material with excessive Al2O3 content as a chemical component, and uses 35% by weight of clay. Comparative Example E was inferior in spalling resistance compared to Examples to which the present invention was applied, and formation of alumina phase and spinel phase, which were detrimental to operational quality, was observed. Comparative Example F is a high alumina brick, containing 80% by weight of banquette, 10% by weight of alumina raw material, and 10% by weight of clay.
It consists of % by weight. Compared to the embodiment to which the present invention is applied,
The spalling resistance was poor, and many harmful alumina and spinel phases were observed.

【0013】[0013]

【表3】[Table 3]

【0014】表4.には不定形耐火物の例を示す。実施
例Gはジルコニア原料17重量%、溶融シリカ8重量%
、ジルコン原料75%からなる配合を、水を添加して混
練・施工・養生して使用されるものである。化学成分は
ZrO2が67%、SiO2が32%であり、不可避的
なAl2O3含有量は0.3%である。実施例Hはジル
コン原料63重量%、珪石27重量%、可塑材としての
粘土10重量%からなるものである。化学成分はZrO
2が42%、SiO2が54%であり、粘土によるAl
2O3含有量は4%である。実施例G、Hは耐食性が良
好であり、特にHは作業性も良好である。比較例Iは化
学成分としてのSiO2が過剰な材質であり、ジルコン
原料45重量%、珪石55重量%、から成るものである
。化学成分はZrO2が30%、SiO2が69%であ
り、不可避的なAl2O3含有量は0.6%である。こ
の比較例Iは、本発明を適用した実施例と比較して耐食
性に劣り、 溶鋼を汚染して品質を低下させた。 比較
例Jは化学成分としてSiO2が不足している材質であ
り、ジルコニア原料77重量%、珪石3重量%、ジルコ
ン原料20重量%からなるものである。化学成分はZr
O2が90%、SiO2が9%であり、不可避成分とし
てのAl2O3含有量が0.3%である。この比較例J
は、本発明を適用した実施例と比較して耐スポーリング
性に劣り、寿命が著しく短くなる。比較例Kは化学成分
としてAl2O3が過剰な材質であり、粘土を35重量
%使用している。この比較例Kは本発明を適用した実施
例と比較して、耐スポーリング性に劣り、また稼働面に
有害なアルミナ相、スピネル相の生成も認められた。比
較例Lは従来の蝋石タイプの流し込み材であり、 蝋石
80重量%、アルミナ原料10重量%、粘土10重量%
からなる。化学成分はSiO2が62重量%、Al2O
3が31重量%であり、稼働面に有害なアルミナ相、ス
ピネル相が多数生成した。
Table 4. shows an example of monolithic refractories. Example G contains 17% by weight of zirconia raw material and 8% by weight of fused silica.
, a formulation consisting of 75% zircon raw material is used by adding water, kneading, applying, and curing. The chemical components are 67% ZrO2, 32% SiO2, and the inevitable Al2O3 content is 0.3%. Example H consists of 63% by weight of zircon raw material, 27% by weight of silica stone, and 10% by weight of clay as a plasticizer. Chemical composition is ZrO
2 is 42%, SiO2 is 54%, and Al due to clay
The 2O3 content is 4%. Examples G and H have good corrosion resistance, and H in particular has good workability. Comparative Example I is a material containing excessive SiO2 as a chemical component, and is composed of 45% by weight of zircon raw material and 55% by weight of silica stone. The chemical components are 30% ZrO2, 69% SiO2, and the inevitable Al2O3 content is 0.6%. Comparative Example I was inferior in corrosion resistance compared to Examples to which the present invention was applied, and contaminated the molten steel, degrading its quality. Comparative Example J is a material lacking SiO2 as a chemical component, and consists of 77% by weight of zirconia raw material, 3% by weight of silica stone, and 20% by weight of zircon raw material. Chemical component is Zr
O2 is 90%, SiO2 is 9%, and the content of Al2O3 as an inevitable component is 0.3%. This comparative example J
Compared to the examples to which the present invention is applied, the spalling resistance is inferior and the life span is significantly shortened. Comparative Example K is a material containing excessive Al2O3 as a chemical component, and uses 35% by weight of clay. Comparative Example K was inferior in spalling resistance as compared to Examples to which the present invention was applied, and formation of alumina and spinel phases, which were harmful to operation, was also observed. Comparative example L is a conventional Rouseki type pouring material, which contains 80% by weight Rouseki, 10% by weight alumina raw material, and 10% by weight clay.
Consisting of Chemical composition is 62% by weight of SiO2, Al2O
3 was 31% by weight, and a large amount of alumina phase and spinel phase, which were harmful to the operating surface, were generated.

【0015】[0015]

【表4】[Table 4]

【0016】図2は、本発明対象成分の鋼材を、約20
0ミクロンまで伸線加工をしたときの介在物性断線指数
と耐火物改善経過との関連を調査した結果を示す。従来
品は鍋から、タンディッシュ、および注入系耐火物とし
て、Al2O3含有耐火物を使用したものである。比較
例1は鍋注入系ノズル、ロングノズル、タンディッシュ
内壁、タンディッシュ上ノズル、ストッパー、浸漬ノズ
ル、タンディッシュカバー等の耐火物をAl2O3含有
量10%以下に少なくし、取鍋内張り耐火物のみを従来
の蝋石質主体の物を用いた場合である。鍋耐火物の稼働
面に生成したアルミナ、スピネル相が溶損脱落して断線
を生じた実害介在物になったことを示している。 本発
明1は、本発明の取鍋内張り耐火物を従来品に替えて使
用した例である。その他は従来耐火物であるが若干の改
善効果が認められる。本発明2は本発明の考えを発展さ
せ、取鍋から浸漬ノズルまでの溶鋼と接触する全ての耐
火物のAl2O3含有量を10%以下にした例で大幅に
改善されている。これは溶鋼と耐火物の反応で生じるア
ルミナ、スピネルの実害介在物を無くすることが出来た
からである。本発明2でも極僅かに介在物性の断線が認
められるが、これは脱酸生成物系、及びスラグ系の大型
介在物起因によるものである。このレベルになると表面
欠陥起因、 及び中心偏析起因の断線の方が圧倒的に多
く、従来問題となっていた介在物性起因の断線トラブル
は殆ど生じなくなった。同様に、硬質介在物が大幅に減
少した結果疲労限が向上し、また硬質介在物に起因する
伸線時のダイスの寿命が延長し、切削時の工具刃先の傷
みが減少した結果、被削性も向上した。なお、図3に取
鍋およびタンディッシュ耐火物の構造例を示す。
FIG. 2 shows the steel material containing the target components of the present invention in approximately 20%
The results of an investigation into the relationship between the inclusion breakage index and the progress of refractory improvement when wire-drawing down to 0 microns are shown. Conventional products use Al2O3-containing refractories for pots, tundishes, and injection refractories. In Comparative Example 1, the refractories such as the ladle injection nozzle, long nozzle, tundish inner wall, tundish upper nozzle, stopper, immersion nozzle, and tundish cover were reduced to less than 10% Al2O3 content, and only the ladle lining refractory was used. This is the case when a conventional material mainly composed of Roiseki is used. This indicates that the alumina and spinel phases that formed on the working surface of the pot refractory were melted and fell off, becoming the actual damaging inclusions that caused the disconnection. Present invention 1 is an example in which the ladle lining refractory of the present invention is used in place of a conventional product. The rest are conventional refractories, but some improvements can be seen. Present invention 2 develops the idea of the present invention and is greatly improved in an example in which the Al2O3 content of all refractories that come into contact with molten steel from the ladle to the immersion nozzle is reduced to 10% or less. This is because harmful inclusions of alumina and spinel produced by the reaction between molten steel and refractories can be eliminated. Even in Invention 2, a very slight inclusion-related disconnection is observed, but this is due to large inclusions of the deoxidation product system and the slag system. At this level, the number of wire breaks caused by surface defects and center segregation is overwhelmingly higher, and the problem of wire breaks caused by inclusions, which was a problem in the past, almost no longer occurs. Similarly, the fatigue limit is improved as a result of a significant reduction in hard inclusions, the life of the die during wire drawing due to hard inclusions is extended, and damage to the tool edge during cutting is reduced, resulting in Sexuality also improved. Note that FIG. 3 shows an example of the structure of the ladle and tundish refractories.

【0017】[0017]

【発明の効果】本発明によって、耐火物稼働面に実害を
及ぼす硬質のアルミナ相やスピネル相が生成しなくなり
、鋳片内の硬質介在物が減少した結果、伸線加工中の断
線トラブルが減少し、また疲労限が向上し、さらに被削
性も向上させることが出来た。
[Effects of the invention] The present invention prevents the formation of hard alumina and spinel phases that cause actual damage to the working surfaces of refractories, and reduces the number of hard inclusions in the slab, resulting in fewer wire breakage problems during wire drawing. In addition, the fatigue limit was improved, and machinability was also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】高アルミナ質稼働面における断面模式図、[Figure 1] Schematic cross-sectional diagram of high alumina operating surface,

【図
2】本発明と比較例との介在物性の断線指数を示す図、
FIG. 2 is a diagram showing the breakage index of inclusion properties between the present invention and a comparative example;

【図3】取鍋およびタンデッシュ耐火物の構造例を示す
FIG. 3 shows an example of the structure of a ladle and a tundish refractory.

【符号の説明】[Explanation of symbols]

1  溶鋼と反応生成したアルミナ相、2  (Al,
Si,Mn)O系主体のマトリックス、3  耐火物基
材。
1 Alumina phase produced by reaction with molten steel, 2 (Al,
Si, Mn) O-based matrix, 3. Refractory base material.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  sol.Al.0.002%以下のS
i脱酸鋼を溶製する取鍋の内張り用耐火物において、溶
鋼と接触する部分のAl2O3含有量を8重量%以下と
し、望ましくはZrO2:35重量%以上、SiO2:
55重量%以下、およびその他の耐火成分:0〜5重量
%からなることを特徴とする高清浄度鋼溶製用取鍋の内
張り用耐火物。
[Claim 1] sol. Al. S less than 0.002%
i In a refractory for lining a ladle for melting deoxidized steel, the Al2O3 content in the part that comes into contact with molten steel is 8% by weight or less, preferably ZrO2: 35% by weight or more, SiO2:
55% by weight or less, and other refractory components: 0 to 5% by weight. A refractory for lining a ladle for high-cleanliness steel melting.
【請求項2】  請求項1記載の取鍋内張り用耐火物で
、取鍋敷き部以外の溶鋼と接触する耐火物中のAl2O
3含有量を4重量%以下とし、望ましくはジルコン原料
70重量%(ZrO2として45重量%)以上を含有し
、さらにSiO2:10〜25重量%含有することを特
徴とするセミジルコン質の高清浄度鋼溶製用取鍋の内張
り用耐火物。
2. In the ladle lining refractory according to claim 1, Al2O in the refractory that comes into contact with molten steel other than the ladle lining part.
3 content is 4% by weight or less, desirably contains 70% by weight or more of zircon raw material (45% by weight as ZrO2), and further contains 10 to 25% by weight of SiO2. Refractory for lining ladle for steel melting.
【請求項3】  請求項1及び2記載の取鍋内張り耐火
物で、スラグライン部耐火物のAl2O3含有量を2重
量%以下とし、望ましくはZrO2として60〜80重
量%を含有し、さらにSiO2を20〜40重量%含有
し、さらにその他の耐火成分を0〜5重量%含有するこ
とを特徴とする高清浄度鋼溶製用取鍋の内張り用耐火物
3. In the ladle lining refractory according to claims 1 and 2, the Al2O3 content of the slag line refractory is 2% by weight or less, preferably 60 to 80% by weight as ZrO2, and further contains SiO2. A refractory for lining a ladle for high-cleanliness steel melting, characterized by containing 20 to 40% by weight of , and further containing 0 to 5% by weight of other refractory components.
JP3096184A 1991-04-03 1991-04-03 Refractory for lining of ladle for melting high-cleanliness molten steel Expired - Lifetime JP2510898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3096184A JP2510898B2 (en) 1991-04-03 1991-04-03 Refractory for lining of ladle for melting high-cleanliness molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3096184A JP2510898B2 (en) 1991-04-03 1991-04-03 Refractory for lining of ladle for melting high-cleanliness molten steel

Publications (2)

Publication Number Publication Date
JPH04308022A true JPH04308022A (en) 1992-10-30
JP2510898B2 JP2510898B2 (en) 1996-06-26

Family

ID=14158232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3096184A Expired - Lifetime JP2510898B2 (en) 1991-04-03 1991-04-03 Refractory for lining of ladle for melting high-cleanliness molten steel

Country Status (1)

Country Link
JP (1) JP2510898B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1018565A4 (en) * 1998-06-23 2003-07-23 Sumitomo Metal Ind Steel wire rod and method of manufacturing steel for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1018565A4 (en) * 1998-06-23 2003-07-23 Sumitomo Metal Ind Steel wire rod and method of manufacturing steel for the same

Also Published As

Publication number Publication date
JP2510898B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
US5185300A (en) Erosion, thermal shock and oxidation resistant refractory compositions
KR20080048019A (en) Assembly of a refractory nozzle and sealing element
US4870037A (en) Prevention of Al2 O3 formation in pouring nozzles and the like
US4210264A (en) Immersion nozzle for continuous casting of molten steel
US5028257A (en) Metallurgical flux compositions
JP2001353561A (en) Method for continuously casting steel
JPH04308022A (en) Refractory for lining of ladle for producing high cleanness molten steel
GB2081702A (en) Immersion Nozzle for Continuous Casting of Molten Steel
JP5920412B2 (en) Continuous casting nozzle
Biswas et al. Modern refractory practice for clean steel
JPH10305355A (en) Nozzle for continuous casting steel
JP2015096266A (en) Immersion nozzle
GB2056430A (en) Immersion Nozzle for Continuous Casting of Molten Steel
KR100239938B1 (en) Immersion nozzle for continuous casting
Biswas et al. Refractory for Secondary Refining of Steel
JP6856878B2 (en) Immersion nozzle for continuous casting of steel
JPH04274852A (en) Continuous casting tundish gate for casting molten steel having high cleanliness
JPS6115777B2 (en)
JP3328803B2 (en) Nozzle for continuous casting of steel
JPS6352986B2 (en)
JP2816585B2 (en) Method for producing refractory material containing magnesia
JPH05138338A (en) Ladle lower nozzle for casting molten steel having high cleanliness
JPH08132200A (en) Casting method of molten metal
JPH06102249B2 (en) High-cleanliness steel manufacturing method
JPH0632652A (en) Plate refractory for sliding nozzle

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960206

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110416

Year of fee payment: 15

EXPY Cancellation because of completion of term