JPH04305338A - Method for continuously casting billet for steel sheet - Google Patents

Method for continuously casting billet for steel sheet

Info

Publication number
JPH04305338A
JPH04305338A JP6858691A JP6858691A JPH04305338A JP H04305338 A JPH04305338 A JP H04305338A JP 6858691 A JP6858691 A JP 6858691A JP 6858691 A JP6858691 A JP 6858691A JP H04305338 A JPH04305338 A JP H04305338A
Authority
JP
Japan
Prior art keywords
slab
water
cooling
roll
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6858691A
Other languages
Japanese (ja)
Inventor
Mikio Suzuki
幹雄 鈴木
Shinobu Miyahara
忍 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP6858691A priority Critical patent/JPH04305338A/en
Publication of JPH04305338A publication Critical patent/JPH04305338A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To continuously cast billet for steel sheet. CONSTITUTION:On the continuous casting method to reduce the surface flaw of a hot rolling or cold rolling coil which is obtained with the direct rolling from billet of the continuous casting of low carbon aluminum killd steel, the roll cooling is executed in following to the water spray cooling in the range of 15m just under the casting mold, the temperature of the billet is reheated to over than 1,000 deg.C and then the rolling is executed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】連続鋳造スラブを直接圧延する場
合に発生する表面疵の防止に関する。
[Industrial Application Field] This invention relates to the prevention of surface defects that occur when continuous casting slabs are directly rolled.

【0002】0002

【従来の技術】薄板用連続鋳造鋳片の直接圧延(Hot
 Direct Rolling、以下HDRという)
は、連続鋳造機で鋳造された鋳片を冷却することなく、
そのまま保温またはオンライン加熱することにより、熱
間圧延機により圧延加工する方法である。このHDRプ
ロセスは工程の大幅な合理化、省エネルギー、歩留り向
上が期待でき、今後さらに開発が進むものと考えられて
いる。
[Prior art] Direct rolling of continuously cast slabs for thin plates (Hot
Direct Rolling (hereinafter referred to as HDR)
, without cooling the slab cast by a continuous casting machine,
In this method, the material is kept warm or heated on-line, and then rolled using a hot rolling mill. This HDR process is expected to significantly streamline the process, save energy, and improve yield, and is expected to be further developed in the future.

【0003】しかし、HDRで製造された鋳片は、従来
の製造方法すなわち連続鋳造鋳片の冷却後、再加熱して
から圧延加工する製造方法に比較して製品(例えば、冷
延コイル)の表面疵が多く、歩留りが低下するという問
題がある(図5参照、蜂谷ら:鉄と鋼68(1982)
S209、小谷野ら:鉄と鋼68(1982)S.15
6 )。図5は、冷延コイルの表面に見られた疵をカウ
ントし、個数が10個以上発生した場合のコイルを不可
とし、これを全調査コイルで割った値を表面疵発生率と
して、鋼中のMn/Sとの関係を示したグラフ図である
。図中、○、△はそれぞれ従来の製造方法および従来の
HDRによる製品を示す。なお、図中、HCRは連続鋳
造鋳片を一度冷却し、再加熱して熱間圧延する方法であ
る。
[0003] However, the slab produced by HDR has a lower quality as a product (for example, a cold-rolled coil) than the conventional manufacturing method, in which the continuously cast slab is cooled, reheated, and then rolled. There is a problem that there are many surface defects and the yield is reduced (see Figure 5, Hachiya et al.: Tetsu to Hagane 68 (1982)
S209, Koyano et al.: Tetsu to Hagane 68 (1982) S. 15
6). Figure 5 shows that the number of flaws found on the surface of cold-rolled coils is counted, coils with 10 or more defects are rejected, and the value divided by all investigated coils is defined as the surface flaw occurrence rate. FIG. 2 is a graph diagram showing the relationship between Mn/S and Mn/S. In the figure, ◯ and △ indicate products produced by the conventional manufacturing method and conventional HDR, respectively. In addition, in the figure, HCR is a method in which a continuously cast slab is cooled once, reheated, and then hot rolled.

【0004】一般に連続鋳造鋳片に発生する表面疵は縦
割れ、横割れまたは表層下介在物に起因する割れが良く
知られている。縦割れについてはモールド内で割れの起
点が形成され、その後の冷却過程で割れが発展すること
が明らかになっている。この防止対策としては、モール
ドパウダーの選択、モールドテーパーの適正化、湯面変
動の適正範囲内へのコントロールまたは二次冷却帯での
均一冷却などが重要な対策として実施されている(河野
ら:鉄と鋼 68(1982),P.1764)。
[0004] In general, surface defects that occur in continuously cast slabs are well known to include vertical cracks, transverse cracks, and cracks caused by subsurface inclusions. Regarding vertical cracks, it has been revealed that the starting point of the crack is formed within the mold, and the crack develops during the subsequent cooling process. Important countermeasures to prevent this include selecting mold powder, optimizing mold taper, controlling mold level fluctuations within an appropriate range, and uniform cooling in the secondary cooling zone (Kono et al.: Tetsu to Hagane 68 (1982), P. 1764).

【0005】また、表層下の介在物に起因する割れは、
鋳型内の初期凝固シェルに介在物が捕捉されるかどうか
に関係があり、この対策として溶鋼の清浄化をはかり、
溶鋼中のアルミナ介在物を少なくすること、および鋳型
内湯面変動を適正にしてパウダ−の巻き込みを防ぐこと
が行われている(手嶋ら:鉄と鋼,72(1986),
S.1012)。
[0005] Furthermore, cracks caused by inclusions below the surface layer are
This is related to whether inclusions are trapped in the initial solidified shell in the mold, and as a countermeasure to this, cleaning of the molten steel is carried out.
Efforts are being made to reduce the amount of alumina inclusions in molten steel and to adjust the level fluctuations in the mold to prevent powder from being entrained (Teshima et al.: Tetsu-to-Hagane, 72 (1986),
S. 1012).

【0006】横割れは、鋼中の不純物元素(S,P)や
添加元素(例えば、V,Nb,B)が凝固、冷却中に析
出物を形成し、これが粒界に析出して鋼の高温粒界脆化
を引き起こして割れを形成する。横割れ防止の基本対策
は連続鋳造機内で曲げ変形(矯正)を加えた時、鋳片の
表面温度を高温脆化温度範囲を回避して矯正することで
ある。更に、析出物の成因であるS,P,Nなどの不純
物元素の低減を図り、高温脆化を極力少なくすることも
その対策のひとつとなっている(河野ら:鉄と鋼68(
1982), P .1792)。
[0006] Transverse cracking occurs when impurity elements (S, P) and additive elements (for example, V, Nb, B) in the steel form precipitates during solidification and cooling, which precipitate at the grain boundaries and cause damage to the steel. It causes high-temperature grain boundary embrittlement and forms cracks. The basic measure to prevent transverse cracking is to correct the surface temperature of the slab by avoiding the high temperature embrittlement temperature range when bending deformation (straightening) is applied in the continuous casting machine. Furthermore, one of the countermeasures is to reduce impurity elements such as S, P, and N, which are the causes of precipitates, and to minimize high-temperature embrittlement (Kono et al.: Tetsu to Hagane 68).
1982), P. 1792).

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来の
表面疵低減対策を実施しても、なおHDRプロセスで製
造した製品には表面疵の発生が多く、歩留りの低下が著
しいという問題がある。
However, even if conventional surface flaw reduction measures are implemented, products manufactured by the HDR process still have many surface flaws, resulting in a significant decrease in yield.

【0008】本発明はかかる事情に鑑みてされたもので
、HDRプロセスにより発生する特有の製品(冷延コイ
ル、熱延コイル)の高温脆化による表面疵発生を低減す
る方法を提供しようとするものである。
The present invention has been made in view of the above circumstances, and aims to provide a method for reducing the occurrence of surface flaws due to high temperature embrittlement of specific products (cold rolled coils, hot rolled coils) caused by the HDR process. It is something.

【0009】[0009]

【課題を解決するための手段、作用】本発明の薄鋼板用
鋼片の連続鋳造方法は、重量比で、C;0.08%以下
、Si;0.05%以下、Mn;0.10〜0.40%
、P;0.02%以下、S;0.01〜0.03%、s
olAl;0.01〜0.05%の鋼を連続鋳造後、直
ちに熱間圧延して製造する薄鋼板用鋼片の製造方法にお
いて、連続鋳造鋳型から引き出された鋳片を鋳型下端か
ら15m以内の2次冷却帯にロール径400〜500m
mの水冷ロールを一対以上配置し、この水冷ロールの直
前までの鋳片冷却は水スプレーを用いて行った後、上記
水冷ロールと鋳片の接触を利用するロール冷却を行って
、鋳片温度をA1 点直下まで冷却して鋳片表層部分で
フェライト(α相)とパーライトを析出させた後、鋳片
の顕熱および未凝固部分の潜熱を利用し、鋳片の冷却と
断熱を調整して鋼片の表面温度を1000°C以上の温
度(オーステナイトγ相)とした薄鋼板用鋳片を熱間圧
延することを特徴とする。
[Means and effects for solving the problems] The continuous casting method of steel slabs for thin steel sheets of the present invention has a weight ratio of C: 0.08% or less, Si: 0.05% or less, Mn: 0.10. ~0.40%
, P; 0.02% or less, S; 0.01-0.03%, s
olAl; In a method for producing steel slabs for thin steel plates, which involves continuous casting of 0.01 to 0.05% steel and immediately hot rolling, the slab pulled out of the continuous casting mold is placed within 15 m from the bottom end of the mold. Roll diameter 400-500m in the secondary cooling zone of
At least one pair of water-cooled rolls with a diameter of 50 m are arranged, and the slab is cooled by using water spray up to just before the water-cooled rolls, and then the slab is cooled by utilizing the contact between the water-cooled roll and the slab, and the temperature of the slab is adjusted. After cooling the slab to just below the A1 point to precipitate ferrite (α phase) and pearlite on the surface layer of the slab, the cooling and insulation of the slab are adjusted using the sensible heat of the slab and the latent heat of the unsolidified part. The method is characterized in that a slab for thin steel plate is hot-rolled so that the surface temperature of the steel slab is 1000°C or higher (austenite γ phase).

【0010】0010

【実施例】鋼を凝固、冷却させるとオーステナイト相(
以下、γ相)中のSはγ粒界に偏析する。そのため鋼中
のSとMnまたはFeとが反応して、硫化物が形成また
は析出してくる。連続鋳造で上述した成分の鋼を凝固さ
せた後、鋳片を連続的に冷却すると、微細な硫化物がγ
粒界に沿って析出してくる。また、連続的にゆっくり冷
却してくると粒成長が起こりγ粒界も大きくなるため、
γ粒界へのS偏析もより顕著になる。従って、γ粒界に
沿って析出した硫化物の組成は、Feリッチな硫化物と
なるため、硫化物自体の融点が非常に低く、1100℃
〜1200℃程度まで低下する。
[Example] When steel is solidified and cooled, the austenite phase (
S in the γ phase (hereinafter referred to as γ phase) segregates at the γ grain boundaries. Therefore, S in the steel reacts with Mn or Fe, and sulfides are formed or precipitated. After solidifying steel with the above-mentioned components by continuous casting, when the slab is continuously cooled, fine sulfides are
It precipitates along grain boundaries. In addition, continuous slow cooling causes grain growth and the γ grain boundaries also become larger.
S segregation to the γ grain boundaries also becomes more pronounced. Therefore, the composition of the sulfide precipitated along the γ grain boundaries is Fe-rich sulfide, so the melting point of the sulfide itself is very low, at 1100°C.
The temperature decreases to about 1200°C.

【0011】この状態の鋼の熱間強度は非常に脆く、熱
間圧延すると割れが発生し易い。そこで、次のようなこ
とが考えられる。鋳片の表面層を完全にフェライト+パ
ーライト相(以下、α+P相)にした後、鋳片内部の顕
熱や未凝固部分の潜熱を利用して表面層を復熱させて、
表層部分の温度を上げてAc3点以上(γ相)に戻すこ
とによって、新たなγ粒を析出させ、すでに析出してい
た硫化物を新たに析出したγ粒内に取りこまれるように
する。このような鋳片を1000 ℃以上の高温に保持
すると、硫化物周囲のMnの拡散の進行によって、Fe
リッチな硫化物はMnリッチな硫化物に変化していくと
同時に硫化物同士の凝集が起こり、粗大化する。このよ
うな硫化物析出形態をとる場合には鋼の高温脆化が著し
く改善できる。
[0011] The hot strength of the steel in this state is extremely brittle, and cracks are likely to occur when hot rolled. Therefore, the following can be considered. After the surface layer of the slab is completely made into a ferrite + pearlite phase (hereinafter referred to as α + P phase), the surface layer is reheated using the sensible heat inside the slab and the latent heat of the unsolidified part.
By raising the temperature of the surface layer to return it to Ac3 point or higher (γ phase), new γ grains are precipitated, and the sulfides that have already precipitated are incorporated into the newly precipitated γ grains. When such a slab is kept at a high temperature of 1000°C or higher, Fe is dissolved due to the progress of diffusion of Mn around the sulfide.
As the rich sulfide changes to Mn-rich sulfide, agglomeration of sulfides occurs and becomes coarse. When such a sulfide precipitation form is adopted, high-temperature embrittlement of steel can be significantly improved.

【0012】しかし、現実的な問題としては引き抜き速
度が2.0 m /minを超える高速鋳造において、
連続鋳造鋳型直下から15mの範囲で鋳片表層部をA1
点まで低下させることは極めて困難なことである。その
理由は、スプレーノズル(水滴を噴出させるノズル)や
ミストノズル(水と空気等のガスを混合して噴出させる
ノズル)の冷却特性によるものであり、スプレー水量や
ミスト量を上げても、表層部分の温度低下は困難でああ
る。また、さらに冷却能をあげるためには、スプレー水
量やミスト量を供給する配管やポンプ能力、圧縮空気の
ためのコンプレッサーの能力などの設備上の問題もある
。その上、鋳造−直接圧延を前提とした連続鋳造方法に
おいては、鋳片表面温度をできるだけ高温に保持するこ
とが熱間圧延上有利であることから、連続鋳造機内の二
次冷却は出来るだけ緩冷却法を採用しているのが一般的
である (例えば、特公昭58−30366号)。
However, as a practical problem, in high-speed casting where the drawing speed exceeds 2.0 m/min,
The surface layer of the slab is A1 within 15m from directly below the continuous casting mold.
It is extremely difficult to reduce this to a certain point. The reason for this is due to the cooling characteristics of spray nozzles (nozzles that eject water droplets) and mist nozzles (nozzles that eject a mixture of water and gas such as air), and even if the amount of spray water or mist is increased, the surface layer It is difficult to reduce the temperature of the part. Additionally, in order to further increase the cooling capacity, there are equipment issues such as piping and pump capacity for supplying the amount of spray water and mist, and the capacity of the compressor for compressed air. Furthermore, in continuous casting methods based on casting and direct rolling, it is advantageous for hot rolling to maintain the surface temperature of the slab as high as possible, so the secondary cooling in the continuous casting machine is as slow as possible. Generally, a cooling method is used (for example, Japanese Patent Publication No. 58-30366).

【0013】本発明の方法はスプレー水とロールによる
冷却を組み合わせた方法をとっている。すなわち、ロー
ル冷却に用いる水冷ロールは内部に冷却水を通してロー
ル表面を冷却する構造のものである。
The method of the present invention employs a combination of spray water and cooling using rolls. That is, the water-cooled roll used for roll cooling has a structure in which cooling water is passed inside to cool the roll surface.

【0014】水膜を鋳片と水冷ロ−ルとの間に挟み込ん
で鋳片を冷却すると、鋳片が水冷ロ−ルに挟まれている
間、鋳片表層の温度は急激に低下して、一時的にA1点
以下に冷却され、ロ−ルから鋳片が離れると表層部の温
度は直ちに回復する。ロール冷却の前後の表層部の温度
差について検討した結果を図1に示す。
[0014] When the slab is cooled by sandwiching a water film between the slab and the water-cooled rolls, the temperature of the surface layer of the slab decreases rapidly while the slab is sandwiched between the water-cooled rolls. , the slab is temporarily cooled to below the A1 point, and when the slab is separated from the roll, the temperature of the surface layer immediately recovers. Figure 1 shows the results of a study on the temperature difference in the surface layer before and after the roll was cooled.

【0015】図2(A)はスプレー水、図2(B)はエ
アーミストにより、鋳片を冷却したときの、鋳片表層部
の温度を示すグラフ図で、横軸は鋳型下からの鋳片長さ
である。いずれも、熱電対を鋳片表面に溶着させて測定
した結果である。図中、下方に向かうピ−クはロ−ル直
下の抜熱を示す。スプレー水を使った時には、水冷ロー
ル直下と水冷ロールから離れた位置とでは温度差が約2
00 ℃となって、A1点以下になる。A1点は前記炭
素鋼成分においては約730 ℃である。本発明の目的
に対して、この温度差が大きい程有利である。本発明で
は、このスプレー水による冷却とロール冷却を組合わせ
た冷却方法を採用して、HDRの時の二次冷却法を採用
する。
FIG. 2(A) is a graph showing the temperature of the surface layer of the slab when the slab is cooled by spray water and FIG. 2(B) is by air mist, and the horizontal axis is the temperature of the slab from below the mold. It is one length. Both results were measured by welding a thermocouple to the surface of the slab. In the figure, the downward peak indicates heat removal directly below the roll. When using spray water, there is a temperature difference of approximately 2 between directly below the water cooling roll and at a location away from the water cooling roll.
00°C, which is below the A1 point. Point A1 is approximately 730°C in the carbon steel composition. For the purposes of the present invention, the larger this temperature difference is, the more advantageous it is. In the present invention, a cooling method that combines cooling using spray water and roll cooling is employed, and a secondary cooling method during HDR is employed.

【0016】ロール冷却の条件について種々検討した結
果、冷却をより強化するには水冷ロールと鋳片の接触時
間が極めて重要であることを知見するに至った。一般に
、鋳片とロールとの接触時間tC は次式で表すことが
できる。
As a result of various studies on roll cooling conditions, it has been found that the contact time between the water-cooled roll and the slab is extremely important in order to further strengthen the cooling. Generally, the contact time tC between the slab and the roll can be expressed by the following equation.

【0017】[0017]

【数1】[Math 1]

【0018】ここで、WO;鋳片未凝固巾、W;鋳片と
ロールの接触巾、ν;鋳片のポアソン比、ES、ER;
それぞれ鋳片、ロールのヤング率、P;溶鋼静圧、L;
ロールピッチ、VC;引き抜き速度、k;定数である。
Here, WO: unsolidified width of slab, W: contact width between slab and roll, ν: Poisson's ratio of slab, ES, ER;
Young's modulus of slab and roll, P; Static pressure of molten steel, L;
Roll pitch, VC; drawing speed, k: constant.

【0019】数1からわかる通り、ロール径が大きい程
,接触時間は長くなり,水冷ロールによる鋳片からの抜
熱を大きくできる。また、水冷ロール径を大きくすると
必然的に水冷ロールピッチが大きくなるため、接触時間
はより長くなる。しかし、水冷ロールピッチを大きくす
るとロール間での鋳片バルジングが大きくなり、鋳片内
部割れが発生する虞がある。
As can be seen from Equation 1, the larger the roll diameter, the longer the contact time, and the greater the heat removal from the slab by the water-cooled roll. Furthermore, when the diameter of the water-cooled roll is increased, the pitch of the water-cooled roll is inevitably increased, so the contact time becomes longer. However, when the pitch of the water-cooled rolls is increased, bulging of the slab between the rolls becomes large, and there is a possibility that internal cracks in the slab may occur.

【0020】試験は後述するように、鋳型直下数mの位
置に種々の径のロ−ルを設置して、水冷ロールによる鋳
片冷却について行った。その結果、鋳型直下を水冷ロー
ルで強冷却し、その後復熱させてHDRを可能とする条
件は次の通りであることが知見された。 ■水冷ロール径は400mm乃至500mmである。 ■水冷ロールの設置位置は、鋳型直下15mまでである
。 ■鋳片冷却としては、水スプレ−冷却が望ましい。
As will be described later, the test was conducted by installing rolls of various diameters several meters directly below the mold, and cooling the slab with water-cooled rolls. As a result, it was found that the conditions for enabling HDR by strongly cooling the area immediately below the mold with a water-cooled roll and then regenerating it were as follows. ■The diameter of the water-cooled roll is 400 mm to 500 mm. ■The installation position of the water-cooled roll is up to 15m directly below the mold. ■Water spray cooling is preferable for cooling slabs.

【0021】次に、上記の条件が必要な理由について、
試験例に基づいて詳細に述べる。図1に本実施例の試験
に用いた連続鋳造機、圧延機を示す。図中、21は溶鋼
23を保持するタンディッシュ、22は浸漬ノズル、1
3は鋳片を保持するガイドロールで、簡明のためとくに
図示しないが、ガイドロール13の間にスプレーノズル
が設けられている。12は水冷ロール、14は湾曲して
いる鋳片を真線状にする矯正ロールである。15、16
は直接、連続鋳造機10から搬送されてきた鋳片18を
圧延するタンデム式熱間圧延機の圧延ロールで、それぞ
れ初段、最終段の圧延ロールを示す。19は上記熱間圧
延機によって圧延された薄板用鋼片である。鋳型11の
断面サイズは、例えば220mmx1800mmである
Next, the reason why the above conditions are necessary is as follows.
This will be described in detail based on test examples. FIG. 1 shows the continuous casting machine and rolling mill used in the test of this example. In the figure, 21 is a tundish that holds molten steel 23, 22 is an immersion nozzle, 1
Reference numeral 3 denotes guide rolls that hold the slab, and a spray nozzle is provided between the guide rolls 13, although not particularly shown for the sake of clarity. 12 is a water-cooled roll, and 14 is a straightening roll that straightens the curved slab. 15, 16
1 and 2 are rolls of a tandem hot rolling mill that directly rolls the slab 18 conveyed from the continuous casting machine 10, and indicate the first and last rolls, respectively. 19 is a steel piece for a thin plate rolled by the above-mentioned hot rolling mill. The cross-sectional size of the mold 11 is, for example, 220 mm x 1800 mm.

【0022】(試験例1)鋳型下端からから10mの位
置に冷却用の一対の水冷ロ−ル12を設置した。水冷ロ
−ル12は直径300、400、500、550mmの
4種類を用いた。水冷ロールの直前に、スプレ−水量密
度、450l/m2・minのスプレー冷却ノズルを取
り付けた。また、軽圧下を行うためこの水冷ロ−ル12
を含むロ−ルギャップは0.50mm/mとして、ロー
ルアライメントにテーパーをつけた。そして、鋳型下端
から6mの位置で熱電対を鋳片18の表面に溶着させて
、鋳片18の移動とともに流して温度測定を行った。 この方法によって、ロ−ル12、13の直下またはロ−
ル12、13から離れたときの鋳片表層温度を測定する
ことができる。また、連続鋳造機10出口(メニスカス
から43m)での鋳片表面温度を輻射温度計を用いて測
定してHDR可否の判定を行った。この温度が1000
℃以上であればHDRが可能である。鋳造鋼種は、低M
n/S比(Mn/S=8〜16)の低炭素Alキルド鋼
である。引抜速度は、2.4m/minであった。
(Test Example 1) A pair of water-cooled rolls 12 for cooling were installed at a position 10 m from the lower end of the mold. Four types of water-cooled rolls 12 with diameters of 300, 400, 500, and 550 mm were used. A spray cooling nozzle with a spray water density of 450 l/m 2 ·min was installed just before the water cooling roll. In addition, this water-cooled roll 12 is used to perform light reduction.
The roll gap including the roll gap was 0.50 mm/m, and the roll alignment was tapered. Then, a thermocouple was welded to the surface of the slab 18 at a position 6 m from the lower end of the mold, and the temperature was measured by flowing it as the slab 18 moved. By this method, the
It is possible to measure the surface temperature of the cast slab when it is separated from the bars 12 and 13. Further, the surface temperature of the slab at the exit of the continuous casting machine 10 (43 m from the meniscus) was measured using a radiation thermometer to determine whether HDR was possible. This temperature is 1000
HDR is possible if the temperature is above ℃. Cast steel type is low M
It is a low carbon Al-killed steel with an n/S ratio (Mn/S=8 to 16). The drawing speed was 2.4 m/min.

【0023】図3に水冷ロール径と水冷ロ−ル直下の最
低温度との関係を○で示した。また同図には水冷ロール
に入る直前の鋳片表面温度も●で示してある。この結果
、水冷ロール径が400mm以上の場合に鋳片表層部の
温度がA1点以下に下がることが分かる。表1に、各水
冷ロール12を用いて、水冷ロール12に入る直前の鋳
片表面温度、水冷ロール12直下の鋳片表層温度、連続
鋳造機10出口の表面温度、および内部割れの有無を示
した。いづれのロ−ルを用いてもHDR可能な温度は確
保できる。しかし、ロ−ル径が300mmの場合には、
鋳片表層温度が780℃であり、A1点まで低下しない
。また、水冷ロ−ル径が550mmの場合には内部割れ
の発生が多く問題があった。この結果、水冷ロ−ル径と
しては400〜500mmが適当である。
In FIG. 3, the relationship between the diameter of the water-cooled roll and the lowest temperature directly below the water-cooled roll is indicated by a circle. The figure also shows the surface temperature of the slab immediately before entering the water-cooled roll. As a result, it can be seen that when the water-cooled roll diameter is 400 mm or more, the temperature of the surface layer of the slab falls below the A1 point. Table 1 shows the surface temperature of the slab immediately before entering the water-cooled roll 12, the surface temperature of the slab immediately below the water-cooled roll 12, the surface temperature at the exit of the continuous casting machine 10, and the presence or absence of internal cracks using each water-cooled roll 12. Ta. Regardless of which roll is used, a temperature that allows HDR can be ensured. However, when the roll diameter is 300mm,
The slab surface temperature is 780°C and does not drop to the A1 point. Further, when the diameter of the water-cooled roll was 550 mm, there was a problem in that many internal cracks occurred. As a result, a suitable water-cooled roll diameter is 400 to 500 mm.

【0024】[0024]

【表1】[Table 1]

【0025】(試験例2)ロ−ル冷却のための水冷ロ−
ル12径を400mmに選んで、水冷ロ−ル12の設置
位置を変えて、水冷ロ−ル直下でA1 点以下になるか
どうか、または連続鋳造機10出口での鋳片18表面温
度を輻射温度計で測定してHDR可能な温度かどうかを
判定した。その他の試験条件は試験例1に示した条件と
同じである。
(Test Example 2) Water-cooled roll for cooling the roll
Select the diameter of the roll 12 to be 400 mm, change the installation position of the water-cooled roll 12, and check whether the surface temperature of the slab 18 at the outlet of the continuous casting machine 10 is radiated or not. It was determined whether the temperature was high enough for HDR by measuring with a thermometer. Other test conditions were the same as those shown in Test Example 1.

【0026】表2に水冷ロール12直前の鋳片表面温度
、水冷ロール直下温度の最低値および連続鋳造機出口の
表面温度の測定結果を示した。表中、水冷ロール12設
置位置は鋳型11下端からの長さである。鋳型下端から
15m以上離れた位置で冷却を強化すると連続鋳造機出
口での表面温度が1000℃以下となりHDRが困難と
なる。
Table 2 shows the measurement results of the slab surface temperature immediately before the water-cooled roll 12, the lowest temperature immediately below the water-cooled roll, and the surface temperature at the outlet of the continuous casting machine. In the table, the installation position of the water-cooled roll 12 is the length from the lower end of the mold 11. If cooling is strengthened at a position 15 m or more away from the lower end of the mold, the surface temperature at the outlet of the continuous casting machine will be 1000°C or less, making HDR difficult.

【0027】[0027]

【表2】[Table 2]

【0028】(試験例3)径400mmの水冷ロール1
2を鋳型11下端から10mの位置に設置して、この水
冷ロール12の直前の鋳片冷却方法を水スプレ−の場合
とエァーミストの場合とで水冷ロ−ル12直下の鋳片表
層温度の最低値を測定した。その他の試験条件は試験例
1に示した条件と同じである。得られた結果を図4に示
す。縦軸は鋳片18の表面温度、横軸は熱伝達係数であ
る。図中、〇、△は水冷ロール12直下の最低温度、●
、▲は水冷ロール直前の温度を示す。また、〇、●は水
スプレー、△、▲はエアーミストによる冷却を示す。
(Test Example 3) Water-cooled roll 1 with a diameter of 400 mm
2 is installed at a position 10 m from the bottom end of the mold 11, and the method of cooling the slab immediately before the water-cooled roll 12 is determined to determine the lowest temperature of the surface layer of the slab immediately below the water-cooled roll 12, depending on whether water spray or air mist is used. The value was measured. Other test conditions were the same as those shown in Test Example 1. The results obtained are shown in FIG. The vertical axis represents the surface temperature of the slab 18, and the horizontal axis represents the heat transfer coefficient. In the figure, 〇 and △ are the lowest temperatures directly below the water-cooled roll 12, ●
, ▲ indicates the temperature immediately before the water-cooled roll. In addition, 〇 and ● indicate cooling by water spray, and △ and ▲ indicate cooling by air mist.

【0029】冷却強度を上げると鋳片表面温度は低下す
る。水スプレ−の場合には、水冷ロ−ル直下での鋳片温
度低下が大きいが、エァ−ミストの場合には水冷ロール
直下の最低温度の低下率が水スプレーに比べて小さい。 したがって、水冷ロ−ル直前の冷却には,水スプレ−の
方が望ましい。
[0029] When the cooling intensity is increased, the slab surface temperature decreases. In the case of water spray, the drop in temperature of the slab directly under the water-cooled roll is large, but in the case of air mist, the rate of decrease in the lowest temperature directly under the water-cooled roll is smaller than that in water spray. Therefore, water spray is preferable for cooling immediately before the water-cooled roll.

【0030】次に、この方法で鋳片18表層温度をA1
 点以下に調整した後、復熱させて、鋳片表面温度を1
000℃以上としてHDRを行い、得られた製品(冷延
コイル)の表面疵の発生率は、通常のロールを用いた従
来例と比較すると1/3になる。
Next, using this method, the surface temperature of the slab 18 is adjusted to A1.
After adjusting the temperature to below the temperature, reheating is performed to bring the surface temperature of the slab to 1.
HDR is performed at a temperature of 000° C. or higher, and the incidence of surface flaws on the obtained product (cold rolled coil) is 1/3 compared to a conventional example using a normal roll.

【0031】[0031]

【発明の効果】本発明は、連続鋳造による鋳片を、鋳型
直下15mの範囲で水スプレー冷却の直後にロール冷却
を行い、鋳片の表面温度を1000°C以上に復熱させ
てから直接圧延を行うので、低炭素Alキルド鋼の直接
圧延による製品の表面欠陥が低減され、歩留まりが向上
される。
Effects of the Invention The present invention cools slabs produced by continuous casting immediately after water spray cooling in a range of 15 m directly below the mold, reheats the surface temperature of the slabs to 1000°C or higher, and then directly casts the slabs. Since rolling is performed, surface defects of the product due to direct rolling of the low carbon Al-killed steel are reduced and the yield is improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本実施例の連続鋳造機、圧延機を示す説明図で
ある。
FIG. 1 is an explanatory diagram showing a continuous casting machine and a rolling mill of this embodiment.

【図2】スラブ表面温度の引抜き方向の変化を示したグ
ラフ図である。
FIG. 2 is a graph showing changes in slab surface temperature in the drawing direction.

【図3】水冷ロール径と水冷ロ−ル直下の最低温度との
関係を示を示すグラフ図である。
FIG. 3 is a graph showing the relationship between the diameter of the water-cooled roll and the lowest temperature directly below the water-cooled roll.

【図4】鋳片の表面温度と熱伝達係数との関係を示すグ
ラフ図である。
FIG. 4 is a graph showing the relationship between the surface temperature of a slab and the heat transfer coefficient.

【図5】製品の表面疵発生率と鋼中Mn/Sとの関係を
示すグラフ図である。
FIG. 5 is a graph showing the relationship between the surface flaw occurrence rate of a product and Mn/S in steel.

【符号の説明】[Explanation of symbols]

10  連続鋳造機 11  鋳型 12  水冷ロール 13  ガイドロール 15、16  熱間圧延機のロール 10 Continuous casting machine 11 Mold 12 Water cooling roll 13 Guide roll 15, 16 Hot rolling mill rolls

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  重量比で、C;0.08%以下、Si
;0.05%以下、Mn;0.10〜0.40%、P;
0.02%以下、S;0.01〜0.03%、solA
l;0.01〜0.05%の鋼を連続鋳造後、直ちに熱
間圧延して製造する薄鋼板用鋼片の製造方法において、
連続鋳造鋳型から引き出された鋳片を鋳型下端から15
m以内の2次冷却帯にロール径400〜500mmの水
冷ロールを一対以上配置し、この水冷ロールの直前まで
の鋳片冷却を水スプレーを用いて行った後、上記水冷ロ
ールと鋳片の接触を利用するロール冷却を行って、鋳片
温度をA1 点直下まで冷却して鋳片表層部分でフェラ
イト(α相)とパーライトを析出させた後、鋳片の顕熱
および未凝固部分の潜熱を利用し、鋳片の冷却と断熱を
調整して鋼片の表面温度を1000°C以上の温度(オ
ーステナイトγ相)とした鋳片を熱間圧延することを特
徴とする薄鋼板用鋼片の連続鋳造方法。
Claim 1: In terms of weight ratio, C: 0.08% or less, Si
; 0.05% or less, Mn; 0.10 to 0.40%, P;
0.02% or less, S; 0.01-0.03%, solA
l; In a method for producing a steel billet for thin steel plate, which is produced by continuous casting of 0.01 to 0.05% steel and immediately hot rolling,
The slab pulled out from the continuous casting mold is 15 mm from the bottom of the mold.
A pair or more of water-cooled rolls with a roll diameter of 400 to 500 mm are placed in a secondary cooling zone within 300 m, and after cooling the slab immediately before the water-cooling roll using water spray, the water-cooled roll and the slab are brought into contact with each other. After cooling the slab to just below the A1 point and precipitating ferrite (α phase) and pearlite on the surface layer of the slab, the sensible heat of the slab and the latent heat of the unsolidified part are A steel billet for thin steel plate, characterized in that the billet is hot-rolled to have a surface temperature of 1000°C or more (austenite γ phase) by adjusting the cooling and insulation of the billet. Continuous casting method.
JP6858691A 1991-04-01 1991-04-01 Method for continuously casting billet for steel sheet Pending JPH04305338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6858691A JPH04305338A (en) 1991-04-01 1991-04-01 Method for continuously casting billet for steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6858691A JPH04305338A (en) 1991-04-01 1991-04-01 Method for continuously casting billet for steel sheet

Publications (1)

Publication Number Publication Date
JPH04305338A true JPH04305338A (en) 1992-10-28

Family

ID=13378049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6858691A Pending JPH04305338A (en) 1991-04-01 1991-04-01 Method for continuously casting billet for steel sheet

Country Status (1)

Country Link
JP (1) JPH04305338A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102764869A (en) * 2012-07-16 2012-11-07 莱芜钢铁集团有限公司 Continuous casting billet strengthening device and strengthening method in continuous casting process
JP2017100180A (en) * 2015-12-04 2017-06-08 株式会社神戸製鋼所 Continuous casting method
CN109093084A (en) * 2018-09-29 2018-12-28 东北大学 A kind of production method of continuous-casting sheet billet
JP2019022911A (en) * 2018-09-03 2019-02-14 株式会社神戸製鋼所 Method for steel continuous casting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852443A (en) * 1981-09-19 1983-03-28 Chugai Ro Kogyo Kaisha Ltd Method and installation for continuous bright annealing of steel wire rod
JPS6167549A (en) * 1984-09-11 1986-04-07 Nippon Kokan Kk <Nkk> Direct hot rolling method in continuous casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852443A (en) * 1981-09-19 1983-03-28 Chugai Ro Kogyo Kaisha Ltd Method and installation for continuous bright annealing of steel wire rod
JPS6167549A (en) * 1984-09-11 1986-04-07 Nippon Kokan Kk <Nkk> Direct hot rolling method in continuous casting

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102764869A (en) * 2012-07-16 2012-11-07 莱芜钢铁集团有限公司 Continuous casting billet strengthening device and strengthening method in continuous casting process
CN102764869B (en) * 2012-07-16 2014-12-10 莱芜钢铁集团有限公司 Continuous casting billet strengthening device and strengthening method in continuous casting process
JP2017100180A (en) * 2015-12-04 2017-06-08 株式会社神戸製鋼所 Continuous casting method
JP2019022911A (en) * 2018-09-03 2019-02-14 株式会社神戸製鋼所 Method for steel continuous casting
CN109093084A (en) * 2018-09-29 2018-12-28 东北大学 A kind of production method of continuous-casting sheet billet

Similar Documents

Publication Publication Date Title
US10995387B2 (en) Weathering steel
JP3276151B2 (en) Twin roll continuous casting method
CA2583295C (en) Process and apparatus for the continuous production of a thin metal strip
WO1996032507A1 (en) Equipment for manufacturing stainless steel strip
WO2020030040A1 (en) Production of twin-roll cast and hot rolled steel strip
JP4834223B2 (en) Cold rolled steel
US5657814A (en) Direct rolling method for continuously cast slabs and apparatus thereof
JP5444807B2 (en) Method for preventing surface cracks in continuous cast slabs
WO2022057925A1 (en) Improving surface quality of twin roll cast and hot rolled thin strip steel
WO1995013155A1 (en) In-line heat treatment of continuously cast steel strip
JP2003062647A (en) Direct rolling method for continuous cast steel piece
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JP4923650B2 (en) Method for preventing surface cracks in continuous cast slabs
JPH04305338A (en) Method for continuously casting billet for steel sheet
JP3190319B2 (en) Twin roll continuous casting machine
WO2021175242A1 (en) Boron-added steel and production method thereof
US11542567B2 (en) High friction rolling of thin metal strip
JP3575400B2 (en) Direct-feed rolling method of continuous cast slab
JP3555538B2 (en) Direct-feed rolling method of continuous cast slab
JP2001137901A (en) Rolling method in hot-charge of continuously cast slab
JP2910180B2 (en) Direct rolling method of steel
JPH10109150A (en) Secondary cooling device for cast slab
WO2023174404A1 (en) Electrical steels
JP7355285B1 (en) Continuous steel casting method
TWI784570B (en) continuous casting method