JPH0430434A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPH0430434A
JPH0430434A JP13427990A JP13427990A JPH0430434A JP H0430434 A JPH0430434 A JP H0430434A JP 13427990 A JP13427990 A JP 13427990A JP 13427990 A JP13427990 A JP 13427990A JP H0430434 A JPH0430434 A JP H0430434A
Authority
JP
Japan
Prior art keywords
implanted
ion
active layer
hydrogen
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13427990A
Other languages
Japanese (ja)
Inventor
Kazuo Watanabe
和夫 渡辺
Hajime Yamazaki
肇 山崎
Koichi Nagata
公一 永田
Akira Ishida
暁 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP13427990A priority Critical patent/JPH0430434A/en
Publication of JPH0430434A publication Critical patent/JPH0430434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To actualize the increase in resistance and the restraint in deterioration in the characteristics of an active layer region by a method wherein an element having the high resistance effect is ion-implanted likewise another element having the passivation effect such as hydrogen etc. is also ion-implanted. CONSTITUTION:Oxygen ions 4 are implanted in the region in contact with an active layer region 3 on a multilayer film 2 in AlGaAs/GaAs base HBT structure on a GaAs substrate so as to form an ion-implanted layer 5a. Next, hydrogen ions 6 are implanted in the implanted layer 5a to form another implanted layer 5. Next, after finishing the ion implantation process, the whole surface coated with an SiN protective film 7 is annealed in an electric furnace 8 to separate the active layer region 3. In such a constitution, the annealing process after finishing the oxygen ion implantation process and successive hydrogen-ion-implantation process can increase the current amplification factor so as to effectively avoid the deterioration in the characteristics of the active layer region of an element.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、化合物半導体結晶上でペテロバイボーラトラ
ンジスタ(HBT)等の素子の能動層領域特性を劣化す
ることなく、イオン注入により能動層領域に隣接する領
域の高抵抗化が安定に実現でき、能動層領域分離ができ
る化合物半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention provides a method for forming an active layer region on a compound semiconductor crystal by ion implantation without deteriorating the characteristics of the active layer region of an element such as a petro-bibolar transistor (HBT). The present invention relates to a method for manufacturing a compound semiconductor device that can stably realize high resistance in a region adjacent to the semiconductor device and can separate active layer regions.

〔従来の技術〕[Conventional technology]

一般に、ガリウム砒素(G a A s )等の化合物
半導体結晶を用いたHBT等素子のイオン注入による能
動層領域分離は、成長した結晶多層膜の能動層領域に接
した領域に酸素あるいは窒素、硼素、あるいは不活性ガ
ス、水素または当該半導体結晶を高抵抗化する他のイオ
ンを注入し、各層当たりあるいは複数層当たり一種の注
入イオンの効果で高抵抗化し高抵抗領域を形成している
。その際、(1)注入層が十分高抵抗で能動層領域分離
が安定に実現できる。
In general, active layer region separation by ion implantation of elements such as HBTs using compound semiconductor crystals such as gallium arsenide (GaAs) is performed by injecting oxygen, nitrogen, or boron into the region in contact with the active layer region of the grown crystalline multilayer film. Alternatively, inert gas, hydrogen, or other ions that increase the resistance of the semiconductor crystal are implanted, and the resistance is increased by the effect of one type of implanted ion per layer or multiple layers to form a high-resistance region. In this case, (1) the injection layer has a sufficiently high resistance so that active layer region separation can be stably realized.

(2)注入により生じる注入層領域と能動層領域の境界
領域での再結合リーク電流が小さく、増幅率等の能動層
特性を劣化させない。
(2) Recombination leakage current in the boundary region between the injection layer region and the active layer region caused by injection is small, and does not deteriorate active layer characteristics such as amplification factor.

等の条件が高性能集積回路を実現する場合に極めて重要
である。
These conditions are extremely important when realizing high performance integrated circuits.

現在、上記(1)項のイオン注入による高抵抗化は、ア
モルファス化によるダメージや注入元素の形成するデイ
−プレベルによる補償効果によりなされている。
At present, the increase in resistance by ion implantation described in item (1) above is achieved by compensation effects due to damage caused by amorphization and deep levels formed by implanted elements.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前記(11項を満足するように大量にイオンを
注入すると、上記(2)項の、注入層境界領域での注入
ダメージが隣接する能動層まで広がり、それにより再結
合リーク電流が増し能動層特性が劣化するという欠点が
生じる。
However, when a large number of ions are implanted to satisfy the above (11), the implantation damage in the implanted layer boundary region described in (2) above spreads to the adjacent active layer, which increases the recombination leakage current and increases the active layer. The disadvantage is that the layer properties deteriorate.

本発明は以上の点に鑑みてなされたもので、その目的は
、安定な高抵抗化のため大量にイオン注入しても、注入
層境界領域からの注入ダメージの広がりによる再結合リ
ーク電流を防止して、隣接する能動層の特性を良好に保
つことができる化合物半導体装置の製造方法を提供する
ことにある。
The present invention has been made in view of the above points, and its purpose is to prevent recombination leakage current due to spread of implantation damage from the implanted layer boundary region even when a large amount of ions are implanted to achieve stable high resistance. Therefore, it is an object of the present invention to provide a method for manufacturing a compound semiconductor device that can maintain good characteristics of adjacent active layers.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明の化合物半導体装
置の製造方法は、GaAs等の化合物半導体結晶に高抵
抗化の作用が大きい酸素等の元素のイオン注入に加え、
その結晶のダメージに基づき生じる欠陥をバッシヘーシ
ョンする効果を持つ水素等の元素をイオン注入する工程
と、このイオン注入した結晶を熱処理し抵抗とパンシベ
ーション効果とをさらに高める工程とを有している。
In order to achieve the above object, the method for manufacturing a compound semiconductor device of the present invention includes, in addition to ion implantation of an element such as oxygen that has a large effect of increasing resistance into a compound semiconductor crystal such as GaAs,
The method includes a step of ion-implanting an element such as hydrogen that has the effect of bashing defects caused by damage to the crystal, and a step of heat-treating the ion-implanted crystal to further increase resistance and pansivation effect. There is.

〔作 用〕[For production]

本発明においては、化合物半導体結晶を用いてイオン注
入により能動層領域を分離し素子を形成する際、安定な
高抵抗化のために大量にイオン注入しても、注入層境界
領域からの注入ダメージの広がりによる再結合リーク電
流を防止でき、これによって隣接する能動層の特性を良
好に保つことができる。
In the present invention, when forming an element by separating the active layer region by ion implantation using a compound semiconductor crystal, even if a large amount of ions are implanted to achieve stable high resistance, implantation damage from the implanted layer boundary region occurs. It is possible to prevent recombination leakage current due to the spread of the active layer, thereby maintaining good characteristics of the adjacent active layer.

[実施例〕 以下、本発明の実施例を図に従って説明する。[Example〕 Embodiments of the present invention will be described below with reference to the drawings.

(実施例1) 第1図(a)〜(c)は本発明に係る一実施例を示した
化合物半導体装置の製造方法の断面図である。
(Example 1) FIGS. 1(a) to 1(c) are cross-sectional views of a method for manufacturing a compound semiconductor device showing an example of the present invention.

第1図において、本実施例の方法は、まず同図(a)に
示すように、GaAs1基板1上のAIGaA s /
 G a A s系HBT構造の多層膜2上に能動層領
域3に接した領域に酸素イオン4を注入する。
In FIG. 1, the method of this embodiment first involves forming an AIGaAs/AI layer on a GaAs1 substrate 1, as shown in FIG. 1(a).
Oxygen ions 4 are implanted into a region in contact with an active layer region 3 on a multilayer film 2 having a GaAs-based HBT structure.

これにより、イオン注入層5aを形成する。次に、この
注入層5a内に水素イオン6を注入し、注入層5を形成
する(同図(b))。そして、上記イオン注入が完了し
た後、同図(c)に示すように、SiN保護膜7を被せ
たのち電気炉8でアニールを行うことにより、能動層領
域の分離を行うものとなっている。
This forms the ion implantation layer 5a. Next, hydrogen ions 6 are injected into this injection layer 5a to form an injection layer 5 (FIG. 4(b)). After the ion implantation is completed, the active layer region is separated by covering it with a SiN protective film 7 and annealing it in an electric furnace 8, as shown in FIG. 2(c). .

次に、この製造方法を実際に素子製作に適用した場合の
作用効果を第2図を用いて説明する。
Next, the effects when this manufacturing method is actually applied to device manufacturing will be explained using FIG. 2.

第2図は、HBT構造構造多層能動層領域周囲に酸素の
みをイオン注入しアニールした場合と、酸素に加え水素
を1対1の密度比率でイオン注入した後アニールした場
合について、注入領域と能動層領域の境界線長当たりの
再結合リーク電流をエミッタ・ベース接合の■−V特性
から求め接合電圧依存性を比較したものであり、同図中
符号aの特性は酸素のみをイオン注入した場合を、符号
すの特性は酸素と水素を1対工でイオン注入した場合を
それぞれ示す。
Figure 2 shows the implanted region and the active layer region of the HBT structure when only oxygen is ion-implanted and annealed around the multilayer active layer region, and when hydrogen is ion-implanted in addition to oxygen at a density ratio of 1:1 and then annealed. The recombination leakage current per boundary line length of the layer region is calculated from the ■-V characteristics of the emitter-base junction and the junction voltage dependence is compared. The characteristic marked with symbol a in the figure is when only oxygen is ion-implanted. The characteristics shown in the graphs below are for the case where oxygen and hydrogen are ion-implanted as a pair.

第2図から明らかなように、酸素と水素をイオン注入後
アニールした場合の再結合リーク電流は、酸素のみを注
入後アニールした場合の再結合リーク電流と同様に、再
結合リーク電流の特徴であるアイデアリティファクタ約
2の傾きを示し、また酸素と水素をイオン注入後アニー
ルした場合の再結合リーク電流は、酸素のみを注入後ア
ニールした場合の再結合リーク電流よりも明らかに小さ
い。
As is clear from Figure 2, the recombination leakage current when annealing is performed after ion implantation of oxygen and hydrogen is similar to the recombination leakage current when annealing is performed after implantation of oxygen only. It shows a slope with a certain ideality factor of about 2, and the recombination leakage current when annealing is performed after ion implantation of oxygen and hydrogen is clearly smaller than the recombination leakage current when annealing is performed after implantation of oxygen only.

このことは、酸素のイオン注入に加え水素をイオン注入
した後アニールする方法がHBTの電流増幅率の増加改
善することを意味し、素子の能動層領域の特性劣化防止
に有効であることを示している。しかも、注入領域即ち
高抵抗領域の抵抗値はシート抵抗で107Ω/口より高
抵抗であり、酸素のみをイオン注入後アニールした場合
に比べて遜色ない。
This means that the method of annealing after hydrogen ion implantation in addition to oxygen ion implantation improves the current amplification factor of the HBT, indicating that it is effective in preventing characteristic deterioration of the active layer region of the device. ing. Furthermore, the resistance value of the implanted region, that is, the high resistance region is higher than 10 7 Ω/hole in terms of sheet resistance, which is comparable to the case where only oxygen is ion-implanted and then annealed.

これらの特性は、次のように説明することができる。即
ち、酸素のイオン注入に加え水素をイオン注入すると、
この注入により生じたダメージは、アニール時に水素の
効果で回復が促進される。ここで、水素は注入ダメージ
に基づき生じる空孔やダングリングボンド等の欠陥をパ
ッシベーションする効果があることは良く知られている
。その結果、能動層領域中へのダメージの広がりは小さ
くなり、再結合リーク電流は少なくなる。一方、抵抗値
は、主にアニール時に形成された注入酸素等によるデイ
−プレベルにもとづく電気的補償効果で安定に高く保た
れることになる。
These characteristics can be explained as follows. That is, if hydrogen ions are implanted in addition to oxygen ions,
The damage caused by this implantation is promoted by the effect of hydrogen during annealing. Here, it is well known that hydrogen has the effect of passivating defects such as vacancies and dangling bonds that occur due to implantation damage. As a result, the spread of damage into the active layer region is reduced, and recombination leakage current is reduced. On the other hand, the resistance value is kept stably high mainly due to the electrical compensation effect based on the deep level caused by implanted oxygen and the like formed during annealing.

(実施例2) 第3図は、上記実施例1と同様のHBT構造多層膜の能
動層領域部りにイオン注入しアニールした場合について
、酸素に加え水素をイオン注入した場合の注入領域と能
動層領域の境界線長当たりの再結合リーク電流の酸素に
対する水素の注入密度比依存性を示し、酸素のみをイオ
ン注入しアニールした場合と比較したものである。ただ
し、同図において符号aの特性は酸素のみをイオン注入
した場合を、符号すは酸素のイオン注入に加え水素をイ
オン注入した場合をそれぞれ示す。ここで、注入酸素に
対し注入水素の密度が約10倍の比率以下で、酸素のみ
をイオン注入しアニールした場合よりも再結合リーク電
流が小さい。また、注入水素の比率が高くなると、水素
のパッシベーション効果よりも大量の水素注入によるダ
メージ生成の効果が大きくなり、そのイオン注入の効果
が減少あるいは現れなくなっていると思われる。
(Example 2) Figure 3 shows the implanted area and the active layer when ions were implanted and annealed in the active layer region of the HBT structure multilayer film similar to Example 1 above. This figure shows the dependence of the recombination leakage current per boundary line length of the layer region on the implantation density ratio of hydrogen to oxygen, and compares it with the case where only oxygen is ion-implanted and annealed. However, in the figure, the characteristic indicated by symbol a indicates the case where only oxygen ions were implanted, and the characteristic indicated by symbol a indicate the case where hydrogen ions were implanted in addition to oxygen ion implantation. Here, when the density of implanted hydrogen is about 10 times or less that of implanted oxygen, the recombination leakage current is smaller than when only oxygen is ion-implanted and annealed. Furthermore, as the ratio of implanted hydrogen increases, the damage generation effect due to large amounts of hydrogen implantation becomes greater than the passivation effect of hydrogen, and it is thought that the effect of the ion implantation decreases or disappears.

(実施例3) また、InP基板上のInP/InGaAs系HBT構
造の多層膜の能動層領域部りに鉄のみをイオン注入しア
ニールした場合と、鉄のイオン注入に加え水素をイオン
注入した後アニールした場合のエミッタ・ベース接合の
I −V特性から求めた注入領域と能動層領域の境界線
長当たりの再結合リーク電流を比較した。この場合も、
鉄と水素をイオン注入後アニールした場合の再結合リー
ク電流は、鉄のみをイオン注入後アニールした場合の再
結合リーク電流の約1/2であった。このことから、A
 i’ G a A s / G a A s基以外の
結晶でも、また酸素以外の高抵抗化作用を有する元素で
も水素を注入する効果が明らかである。
(Example 3) Also, a case where only iron was ion-implanted into the active layer region of a multilayer film with an InP/InGaAs-based HBT structure on an InP substrate and annealed, and a case where hydrogen ions were implanted in addition to iron ion-implantation. The recombination leakage current per boundary line length between the injection region and the active layer region, which was determined from the I-V characteristics of the emitter-base junction when annealed, was compared. In this case too,
The recombination leakage current when annealing was performed after ion implantation of iron and hydrogen was approximately 1/2 of the recombination leakage current when annealing was performed after ion implantation of iron only. From this, A
The effect of hydrogen implantation is obvious even in crystals other than i' Ga As / Ga As groups, and also in elements other than oxygen that have a high resistance effect.

なお、上記実施例ではアニールの保護膜としてSiNを
用いたが、5ift、Sin、AIN等の保護膜を用い
ても良く、また保護膜を用いなくてもよい。
In the above embodiment, SiN was used as the protective film for annealing, but a protective film such as 5ift, Sin, AIN, etc. may also be used, or no protective film may be used.

また、上記実施例ではアニールに電気炉を使用したが、
赤外線或いはレーザ光等を用いてもよい。
In addition, in the above example, an electric furnace was used for annealing, but
Infrared rays, laser light, etc. may also be used.

また、上記実施例ではHBT構造の多層膜について述べ
たが、レーザ構造のへテロ接合多層膜でもよく、その際
再結合リーク電流の減少により発光効率等の能動層特性
劣化が抑制される。
Further, in the above embodiment, a multilayer film having an HBT structure has been described, but a heterojunction multilayer film having a laser structure may also be used. In this case, deterioration of active layer characteristics such as luminous efficiency is suppressed due to a reduction in recombination leakage current.

さらに、上記実施例では酸素、鉄の高抵抗化の作用が大
きい元素のイオン注入に加え水素をイオン注入したが、
高抵抗特性が失われない注入密度範囲内で硫黄、セレン
等のパッシベーション効果を有する水素以外の元素でも
よい。
Furthermore, in the above example, hydrogen ions were implanted in addition to the ion implantation of elements that have a strong effect of increasing the resistance of oxygen and iron.
Elements other than hydrogen having a passivation effect, such as sulfur and selenium, may be used within the implantation density range in which high resistance characteristics are not lost.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、化合物半導体結晶に高抵
抗化効果を有する元素のイオン注入に加え、さらに水素
等のパッシベーション効果を有する元素をイオン注入す
ることにより、高抵抗化と注入領域に接する能動層領域
の特性の劣化抑制とを同時に実現できる利点を奏する。
As explained above, in addition to ion implantation of an element that has a high resistance effect into a compound semiconductor crystal, the present invention also implants an element that has a passivation effect such as hydrogen, thereby increasing the resistance and contacting the implanted region. This has the advantage of simultaneously suppressing deterioration of the characteristics of the active layer region.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(c)は本発明に係る一実施例を示した
化合物半導体装置の製造方法の断面図、第2図はHBT
構造多層膜の能動層領域部りに酸素のみをイオン注入し
アニールした場合と、酸素のイオン注入に加え水素をイ
オン注入した後アニールした場合について、注入領域と
能動層領域の境界線長当たりの再結合リーク電流のエミ
ッタ・ベース接合電圧依存性を比較した図、第3図は酸
素のイオン注入に加え水素をイオン注入した場合の注入
領域と能動層領域の境界線長当たりの再結合リーク電流
の酸素に対する水素の注入密度比依存性を、酸素のみを
イオン注入しアニールした場合と比較した図である。 1・・・GaAs基板、2・・・ 層膜、3・・・能動層領域、4・・ 5.5a・・・イオン注入層、6・ ン、7・・・SiN保護膜、8・・ HBT構造多 ・酸素イオン、 ・・水素イオ ・電気炉。
FIGS. 1(a) to (c) are cross-sectional views of a method for manufacturing a compound semiconductor device showing one embodiment of the present invention, and FIG.
For the case where only oxygen was ion-implanted into the active layer region of a structural multilayer film and annealed, and when the oxygen ion implantation and hydrogen ion implantation were performed and then annealed, the difference per boundary line length between the implanted region and the active layer region was A diagram comparing the dependence of recombination leakage current on emitter-base junction voltage. Figure 3 shows the recombination leakage current per boundary line length between the implanted region and the active layer region when hydrogen ions are implanted in addition to oxygen ion implantation. FIG. 3 is a diagram comparing the dependence of hydrogen on oxygen on the implantation density ratio with that in the case where only oxygen is ion-implanted and annealed. DESCRIPTION OF SYMBOLS 1... GaAs substrate, 2... Layer film, 3... Active layer region, 4... 5.5a... Ion implantation layer, 6... N, 7... SiN protective film, 8... HBT structure polyoxygen ion, hydrogen ion, electric furnace.

Claims (3)

【特許請求の範囲】[Claims] (1)化合物半導体結晶を用いてイオン注入により能動
層領域を分離し素子を形成する際、当該半導体結晶を高
抵抗化する領域にその領域を高抵抗化するイオンとその
結晶のダメージを回復するイオンを注入し、さらに前記
イオン注入した結晶を熱処理して高抵抗層を形成する工
程を有することを特徴とする化合物半導体装置の製造方
法。
(1) When forming an element by separating the active layer region by ion implantation using a compound semiconductor crystal, the damage to the ions that make the region high resistance and the crystal are recovered in the region where the semiconductor crystal becomes high resistance. 1. A method for manufacturing a compound semiconductor device, comprising the steps of implanting ions and heat-treating the ion-implanted crystal to form a high-resistance layer.
(2)請求項1において、高抵抗化するイオンは酸素で
、結晶のダメージを回復するイオンは水素であり、この
注入酸素に対し注入水素の密度あるいは量の比が、10
倍以下であることを特徴とする化合物半導体装置の製造
方法。
(2) In claim 1, the ions that increase the resistance are oxygen, the ions that restore damage to the crystal are hydrogen, and the ratio of the density or amount of the implanted hydrogen to the implanted oxygen is 10.
A method for manufacturing a compound semiconductor device, characterized in that:
(3)請求項1または2において、パッシベーションす
る効果をもつ元素は水素、硫黄、セレンのいずれかであ
ることを特徴とする化合物半導体装置の製造方法。
(3) A method for manufacturing a compound semiconductor device according to claim 1 or 2, wherein the element having a passivating effect is hydrogen, sulfur, or selenium.
JP13427990A 1990-05-25 1990-05-25 Manufacture of compound semiconductor device Pending JPH0430434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13427990A JPH0430434A (en) 1990-05-25 1990-05-25 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13427990A JPH0430434A (en) 1990-05-25 1990-05-25 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPH0430434A true JPH0430434A (en) 1992-02-03

Family

ID=15124569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13427990A Pending JPH0430434A (en) 1990-05-25 1990-05-25 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPH0430434A (en)

Similar Documents

Publication Publication Date Title
EP0183562A2 (en) Polysilicon diodes
US5668388A (en) Bipolar transistor with optimized structure
JPH1174286A (en) Stabilized bipolar transistor with electrically insulating element
JPS62189762A (en) Manufacture of semiconductor device on iii-v group compound substrate
CN102104074A (en) Semiconductor device and manufacturing method thereof
US6423990B1 (en) Vertical heterojunction bipolar transistor
JPH05347313A (en) Manufacture of extremely thin active region of high-speed semiconductor device
CN111613531A (en) Method for improving switching speed of diode
JPS61248470A (en) Iii-v group semiconductor device and manufacture thereof
JPH0430434A (en) Manufacture of compound semiconductor device
JPH07169709A (en) Manufacture of semiconductor device
JP2963120B2 (en) Semiconductor device and manufacturing method thereof
JPS63248168A (en) Hetero-junction bipolar transistor and manufacture thereof
JP2659721B2 (en) Method for manufacturing group III-V compound semiconductor device
KR950008254B1 (en) Algaas/gaas hetero-junction bipolar tr. and its making method
JPH01251660A (en) Hetero junction bipolar transistor and its manufacture
Krautle et al. Lateral PNP GaAs bipolar transistor with minimized substrate current
JPH09306853A (en) Doping method
JPH0373540A (en) Hetero-junction bipolar transistor and manufacture thereof
JPH02158169A (en) Manufacture of semiconductor device
Parrillo et al. Deleterious effects of an oxidizing drive‐in ambient on implanted arsenic emitters in< 111> silicon
JPH0454387B2 (en)
JPH05267318A (en) Manufacture of heterojunction bipolar transistor
JPH05335327A (en) Heterojunction bipolar transistor
JPH0629543A (en) Manufacture of semiconductor device