JPH04304285A - Wet friction material - Google Patents

Wet friction material

Info

Publication number
JPH04304285A
JPH04304285A JP9284891A JP9284891A JPH04304285A JP H04304285 A JPH04304285 A JP H04304285A JP 9284891 A JP9284891 A JP 9284891A JP 9284891 A JP9284891 A JP 9284891A JP H04304285 A JPH04304285 A JP H04304285A
Authority
JP
Japan
Prior art keywords
friction material
friction
phase
metal
porous body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9284891A
Other languages
Japanese (ja)
Inventor
Yoshikiyo Tanaka
義清 田中
Takemori Takayama
武盛 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP9284891A priority Critical patent/JPH04304285A/en
Publication of JPH04304285A publication Critical patent/JPH04304285A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high coefficient of friction by increasing the porosity without a decrease in the strength of a metallic friction material. CONSTITUTION:A metal-plated inorganic porous material 5 is dispersed in a metallic friction material 10 formed by dispersing a lubricant phase 2 comprising graphite, etc., a hard particle phase 3 comprising silica, etc., and a pore phase 4 in a matrix phase 1 comprising a copper alloy, etc. This material 5 serves to increase the porosity of the friction material, and it is also thermally stable. Since the plating metal has good compatibility with the matrix metal, the strength of the friction material can also be retained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、車両等の産業機械に使
用される湿式摩擦材料に関し、特に、金属系摩擦材料の
気孔率を増大させて摩擦係数を高めた湿式摩擦材料に関
するものである。
[Field of Industrial Application] The present invention relates to a wet friction material used in industrial machinery such as vehicles, and more particularly to a wet friction material in which the porosity of a metallic friction material is increased to increase the coefficient of friction. .

【0002】0002

【従来の技術】従来、摩擦材の材料としては、湿式にて
使用されるペーパー系摩擦材料、ゴム系摩擦材料、レジ
ングラファイト系摩擦材料、金属系摩擦材料等がある。 これらは、それぞれの特性に適応した荷重において使用
されている。ペーパー系摩擦材料は、セルロース繊維な
どから成る不織布にフェノール樹脂などの熱硬化性の樹
脂を含浸させて形成したものであり、摩擦係数は高いも
のの熱的に不安定である。このため、中・軽負荷の車両
に潤滑性を十分に持たせた条件で使用されている。ゴム
系摩擦材料は、ニトリルゴム、アクリルゴムなどのゴム
材料にガラス繊維などを加えたものを芯板に接合して得
られるものである。このゴム系摩擦材料はゴムの弾性に
よって摩擦係数を高くできるものの、その反面、有機材
料であるゴムの性質上、熱伝導性が悪く耐熱性に劣るな
どの欠点があるため、重負荷の条件では使えず、もっぱ
ら中・軽負荷のもとで使われている。レジングラファイ
ト系摩擦材料は、黒鉛系摩擦材料とも呼ばれ、黒鉛をフ
ェノール樹脂などの熱硬化性樹脂で接着させてから加熱
して固化させたものである。その摩擦係数は、ペーパー
系摩擦材料程高くはならないが、黒鉛の潤滑作用により
耐摩耗性に優れている。しかし、有機材料である熱硬化
性樹脂により形成されているため、耐熱性の点で十分で
ないという欠点を有している。金属系摩擦材料は、銅を
主体とする金属粉末に黒鉛、セラミック粒などを添加し
て焼結させた焼結体から構成され、耐熱性が優れている
反面、摩擦係数が低いという難点を有している。
BACKGROUND OF THE INVENTION Conventionally, materials for friction materials include paper-based friction materials, rubber-based friction materials, resin graphite-based friction materials, and metal-based friction materials used in wet systems. These are used with loads adapted to their respective characteristics. A paper-based friction material is formed by impregnating a nonwoven fabric made of cellulose fiber or the like with a thermosetting resin such as a phenol resin, and although it has a high coefficient of friction, it is thermally unstable. For this reason, it is used in medium- and light-load vehicles with sufficient lubricity. Rubber-based friction materials are obtained by bonding a rubber material such as nitrile rubber or acrylic rubber with glass fiber or the like to a core plate. Although this rubber-based friction material can have a high coefficient of friction due to the elasticity of the rubber, on the other hand, due to the nature of rubber, which is an organic material, it has drawbacks such as poor thermal conductivity and poor heat resistance, so it cannot be used under heavy load conditions. It cannot be used and is used exclusively under medium and light loads. A resin graphite friction material is also called a graphite friction material, and is made by bonding graphite with a thermosetting resin such as a phenol resin and then heating and solidifying it. Although its friction coefficient is not as high as that of paper-based friction materials, it has excellent wear resistance due to the lubricating action of graphite. However, since it is made of a thermosetting resin, which is an organic material, it has the disadvantage of insufficient heat resistance. Metallic friction materials are composed of a sintered body made by adding graphite, ceramic particles, etc. to metal powder, mainly copper, and have excellent heat resistance, but have the disadvantage of a low coefficient of friction. are doing.

【0003】0003

【発明が解決しようとする課題】湿式用の摩擦材料とは
、適宜油を摩擦面に供給し移動、循環させることにより
この摩擦材に負荷がかかった際に摩擦によって発生した
熱を外部に放出させるとともに、摩擦材の摩擦面に滑動
性を持たせる方式において用いられる摩擦材料である。 このように摩擦材の摩擦面に油を循環させて摩擦材の温
度上昇を抑え、同時に摩擦面に滑動性を付与することに
より、焼き付きが防止され、摩擦面における摩耗の進行
が食い止められる。その一方、摩擦面には供給される油
によって油膜が形成され、この油膜は摩擦係数を低下さ
せる方向に働くため、湿式用の各摩擦材料では、焼き付
き防止と摩擦係数の確保との兼ね合いが重要な課題とな
っている。この2つを両立させるためには、摩擦材の摩
擦抵抗力として働く力について検討してみる必要がある
[Problem to be Solved by the Invention] Wet type friction materials are designed to release heat generated by friction to the outside when a load is applied to this friction material by supplying oil to the friction surface as appropriate and moving and circulating it. This is a friction material that is used in a method where the friction surface of the friction material is made to have sliding properties. In this way, by circulating oil over the friction surface of the friction material to suppress the temperature rise of the friction material and at the same time impart sliding properties to the friction surface, seizure is prevented and the progress of wear on the friction surface is stopped. On the other hand, an oil film is formed on the friction surface by the supplied oil, and this oil film works in the direction of lowering the friction coefficient, so it is important for each friction material for wet type to strike a balance between preventing seizing and securing the friction coefficient. This has become a major issue. In order to make these two things compatible, it is necessary to consider the force that acts as the frictional resistance force of the friction material.

【0004】従来の金属系摩擦材料10’ の組織は図
2に図解式断面図として示すようにマトリックス相1、
潤滑相2、硬質粒子相3および主としてマトリックス相
1と潤滑相2との境目に形成される気孔相4から成り、
その摩擦抵抗力はそれぞれの相において生ずる。まず焼
結金属の要部を占めるマトリックス相1では摩擦し合う
相手材との凝着過程を経て凝着部分が剪断され、この剪
断過程において剪断力に対する応力としての摩擦抵抗力
が生ずる。潤滑相2は、固体潤滑材から成り摩擦によっ
て固体潤滑材が金属系摩擦材料10表面に延出し、その
際に摩擦抵抗力が生ずるとともに、延出した潤滑材はす
べりを良くして摩耗を防止するが、ある程度摩擦係数を
下げる機能を有する。そのため摩擦力調整材としてムラ
イト、シリカ等が添加されていて、これらが硬質粒子相
3を形成する。硬質粒子相3は相手材に直接働いて摩擦
抵抗力を生み出して潤滑相2による摩擦係数の低下を食
い止め、また潤滑相3を補強することにもなる。
The structure of the conventional metallic friction material 10' is shown as a schematic cross-sectional view in FIG.
It consists of a lubricating phase 2, a hard particle phase 3, and a pore phase 4 mainly formed at the boundary between the matrix phase 1 and the lubricating phase 2,
The frictional resistance force occurs in each phase. First, the matrix phase 1, which occupies the main part of the sintered metal, undergoes an adhesion process with a mating material that rubs against each other, and the adhesion part is sheared, and in this shearing process, a frictional resistance force is generated as a stress against the shearing force. The lubricant phase 2 is made of a solid lubricant, and the solid lubricant extends onto the surface of the metal friction material 10 due to friction, and at this time, a frictional resistance force is generated, and the extended lubricant improves sliding and prevents wear. However, it has the function of lowering the coefficient of friction to some extent. Therefore, mullite, silica, etc. are added as friction force adjusting materials, and these form the hard particle phase 3. The hard particle phase 3 acts directly on the mating material to generate a frictional resistance force, thereby preventing the decrease in the coefficient of friction caused by the lubricant phase 2 and also reinforcing the lubricant phase 3.

【0005】気孔相4は、摩擦材の成形の段階でのマト
リックス相1と潤滑相3とのスプリングバック量の差に
起因してマトリックス相1と潤滑相3との境界に形成さ
れるものであり、このような気孔相4のほかに焼結の段
階で金属粉末の緻密化に起因してマトリックス相1内に
気孔相4が形成される場合も予想される。摩擦面付近に
おいて、これらの気孔相4は負荷がかかった際に相手材
との間で圧縮された油が流れ込む、いわば油の逃げ場を
提供することになる。この時、摩擦材の摩擦面に油膜が
存在すれば、この油膜は気孔相4のヘリで相手材によっ
て剪断されることとなり、その剪断力が摩擦抵抗力とし
て発現される。油膜の剪断により油の潤滑作用が、摩擦
面全体に及ぶ連続的な流動による流体潤滑から気孔と気
孔との間において流動する境界潤滑となる。したがって
、気孔相4の量は多ければ多い程、油の移動をスムーズ
にし、境界潤滑化を促進させ流体潤滑による摩擦係数の
落ち込みを防ぐことができる。
The pore phase 4 is formed at the boundary between the matrix phase 1 and the lubricant phase 3 due to the difference in the amount of springback between the matrix phase 1 and the lubricant phase 3 during the molding stage of the friction material. In addition to such a pore phase 4, it is also expected that a pore phase 4 may be formed within the matrix phase 1 due to the densification of the metal powder during the sintering stage. In the vicinity of the friction surface, these pore phases 4 provide an escape area for oil, into which oil compressed with the mating material flows when a load is applied. At this time, if an oil film exists on the friction surface of the friction material, this oil film will be sheared by the other material at the edge of the pore phase 4, and the shearing force will be expressed as frictional resistance force. Due to the shearing of the oil film, the lubricating action of the oil changes from fluid lubrication due to continuous flow over the entire friction surface to boundary lubrication where the oil flows between pores. Therefore, the larger the amount of the pore phase 4, the smoother the oil movement, promoting boundary lubrication, and preventing a drop in the coefficient of friction due to fluid lubrication.

【0006】しかし、その一方で気孔相4量の増加は摩
擦材組織の脆弱化を招くため、従来重負荷に用いられて
いる摩擦材に適用される金属系摩擦材料では気孔率は多
くとも15%以下に押さえられていた。このことが金属
系摩擦材料において高い摩擦係数が得られない原因とな
っており、解決が望まれる問題点となっていたのである
。 本発明は、金属系摩擦材の強度を維持しつつ、しかも気
孔率を増加させることにより油の移動を円滑に行い、そ
れによって摩擦係数が向上した湿式摩擦材料の提供を目
的とするものである。
However, on the other hand, an increase in the amount of pore phase 4 leads to weakening of the structure of the friction material. Therefore, in the case of metallic friction materials applied to friction materials conventionally used for heavy loads, the porosity is at most 15. It was kept below %. This is the cause of not being able to obtain a high coefficient of friction in metallic friction materials, and has become a problem that needs to be solved. An object of the present invention is to provide a wet friction material that maintains the strength of a metallic friction material while increasing porosity to allow oil to move smoothly, thereby improving the coefficient of friction. .

【0007】[0007]

【課題を解決するための手段】前述したような目的を達
成するために本発明では、金属系摩擦材料の気孔相量を
増加させて気孔率を上げる手段として、多量の気孔を含
む多孔質体を摩擦材中に分散させることとした。また気
孔率向上による摩擦材の強度低下を防止して高い強度を
確保する手段として、多孔質体に予め金属メッキを施す
ことによって多孔質体自身の強度を上げるとともに、マ
トリックス相を形成する金属部との接合強度を良好なも
のとすることとした。したがって、本発明は金属メッキ
を施した多孔質体が含有された金属系摩擦材料の焼結に
より構成されることを特徴とする湿式摩擦材料を要旨と
する。
[Means for Solving the Problems] In order to achieve the above-mentioned objects, the present invention provides a porous body containing a large amount of pores as a means for increasing the amount of pores in a metallic friction material and increasing the porosity. We decided to disperse it into the friction material. In addition, as a means to prevent the strength of the friction material from decreasing due to increased porosity and ensure high strength, metal plating is applied to the porous body in advance to increase the strength of the porous body itself, and the metal parts forming the matrix phase We decided to improve the bonding strength between the two. Therefore, the gist of the present invention is a wet friction material characterized by being constructed by sintering a metal-based friction material containing a metal-plated porous body.

【0008】本発明における金属系摩擦材料10の組織
を図解式断面図として示した一例が図1である。図1に
したがって説明すると、マトリックス相1は青銅、黄銅
等の銅合金を主体とするものであって通常、前記の銅合
金粉末あるいは銅粉末とスズ、亜鉛等の銅と合金を生成
する金属の粉末との混合粉末を焼結させて得られる焼結
金属により形成されている。このマトリックス相1中に
は、潤滑相2、硬質粒子相3、気孔相4が分布存在し、
さらに本発明における金属メッキを施した多孔質体5も
分散されている。
FIG. 1 is an example of a schematic cross-sectional view showing the structure of the metallic friction material 10 according to the present invention. To explain according to FIG. 1, the matrix phase 1 is mainly composed of a copper alloy such as bronze or brass, and is usually made of the above-mentioned copper alloy powder or a metal that forms an alloy with copper such as copper powder and tin or zinc. It is made of sintered metal obtained by sintering a mixed powder with powder. In this matrix phase 1, a lubricating phase 2, a hard particle phase 3, and a pore phase 4 are distributed,
Further, the metal-plated porous body 5 according to the present invention is also dispersed.

【0009】潤滑相2は通常、黒鉛、BN、WS2 等
の固体潤滑材により形成され、また硬質粒子相3はアル
ミナ、シリカ、ムライト等のセラミック粒子により形成
される。金属メッキを施された後、配合される多孔質体
5は、その材料として、例えば金属、セラミック、カー
ボン等のファイバー、フィラメント、ウイスカより成る
無機繊維質材料が好適に用いられる。この無機繊維質材
料を集合および圧縮させてフェルト状の圧縮体とした後
、板状あるいはブロック状に細かく細断して好ましい大
きさの多孔質体5に形成される。多孔質体5の大きさは
、差渡し長さ、例えば一辺の長さ(円形の場合は径)が
大体0.5 〜3mmの範囲内にあるものが有用である
。多孔質体5に金属メッキを施す方法は、無機繊維質材
料に予め銅メッキ等の金属メッキを施したものを用いる
か、あるいはまず無機繊維質材料を集合、圧縮させて圧
縮体を形成してから金属メッキを施すという2つの方法
の何れによってもよい。後者の場合には多孔質体5とな
る圧縮体の内部までメッキされる必要はなく、少なくと
も圧縮体の外側表層部域がメッキされていればよい。
The lubricating phase 2 is usually formed of a solid lubricant such as graphite, BN, WS2, etc., and the hard particle phase 3 is formed of ceramic particles such as alumina, silica, mullite, etc. The material of the porous body 5 mixed after metal plating is preferably an inorganic fibrous material made of fibers, filaments, whiskers, etc. of metals, ceramics, carbon, etc. This inorganic fibrous material is aggregated and compressed to form a felt-like compressed body, and then finely shredded into plate-like or block-like shapes to form a porous body 5 of a preferred size. It is useful for the size of the porous body 5 to be within the range of approximately 0.5 to 3 mm in length, for example, the length of one side (in the case of a circle, the diameter). The method of applying metal plating to the porous body 5 is to use an inorganic fibrous material that has been previously plated with metal such as copper plating, or to first aggregate and compress the inorganic fibrous material to form a compressed body. Either of the two methods of applying metal plating may be used. In the latter case, it is not necessary to plate the inside of the compressed body that will become the porous body 5, and it is sufficient that at least the outer surface layer region of the compressed body is plated.

【0010】本発明における湿式摩擦材料10の気孔率
は、気孔相4と多孔質体5との気孔量の総和が金属系摩
擦材料全体の容積に占める割合となる。この気孔率は2
0〜40%の範囲内にあるのが好ましい。気孔率が20
%より小さいと摩擦係数を増大させる効果が得られず、
また40%を超すと金属系摩擦材料の強度が低下する。 前記範囲内の適宜な値を気孔率がとるようにするには、
無機多孔質体5の摩擦材料への含有量或いは無機多孔質
体5の特性または大きさを調整する等の方法によって前
記気孔率の制御を容易に行うことが可能である。
The porosity of the wet friction material 10 in the present invention is the ratio of the total amount of pores in the pore phase 4 and the porous body 5 to the total volume of the metal friction material. This porosity is 2
It is preferably within the range of 0 to 40%. Porosity is 20
If it is smaller than %, the effect of increasing the friction coefficient cannot be obtained,
Moreover, when it exceeds 40%, the strength of the metallic friction material decreases. In order for the porosity to take an appropriate value within the above range,
The porosity can be easily controlled by adjusting the content of the inorganic porous body 5 in the friction material or the characteristics or size of the inorganic porous body 5.

【0011】[0011]

【作用】気孔を多量に含む無機多孔質体5を含有させる
ことにより摩擦材料10の気孔量が相対的に増し、気孔
率が増大する。摩擦材料の気孔は、前述したように摩擦
負荷がかかった際の油の移動ルートとなるため、気孔率
が高い程、摩擦面を流動する油が無機多孔質体5を経て
移動し易くなって摩擦面上から油が排除される結果、摩
擦係数が増大する。一旦多孔質体5に捕捉された油は摩
擦負荷が軽減されると再び摩擦面上に出て次の無機多孔
質体5を経て移動するまで流動する。このような断続的
な油膜剪断抵抗力が働く結果、油による摩擦係数の低減
は最小に抑えられる。また、油の流動が断続的な流動で
あっても油は摩擦面上を移動して、その途次において発
生する熱を運び外部に放出するという機能を十分に果た
す。その結果、無機多孔質体5の分布による多量の気孔
の存在は油の移動をスムーズに行い、相手材に対して著
しい摩耗を生じさせることなく、相手材に対する摩擦材
料の移着や凝着の発生も回避されるのである。また、本
発明で使用される多孔質体5は金属メッキを施したもの
であるから、多孔質体はメッキによって保護され、それ
自体の耐用度が増す。また、マトリックスが金属組織で
あるから、この金属組織に親和し易いメッキを施すこと
によってマトリックスとのなじみが良くなる。すなわち
、製造工程で印加される熱と圧力によってメッキの金属
は一部が溶融してマトリックスの金属組織と強固に接着
する。その結果、摩擦材料10からの無機多孔質体5の
脱離が防止でき、摩擦材料10全体の強度も増大する。
[Function] By including the inorganic porous body 5 containing a large amount of pores, the amount of pores in the friction material 10 is relatively increased, and the porosity is increased. As mentioned above, the pores of the friction material serve as a route for oil to move when a frictional load is applied, so the higher the porosity, the easier it is for the oil flowing on the friction surface to move through the inorganic porous body 5. As a result of oil being removed from the friction surface, the coefficient of friction increases. Once the oil is trapped in the porous body 5, when the frictional load is reduced, it flows again until it comes out onto the friction surface and moves through the next inorganic porous body 5. As a result of such intermittent oil film shear resistance acting, the reduction in the coefficient of friction due to oil is suppressed to a minimum. Further, even if the flow of oil is intermittent, the oil moves on the friction surface and fully fulfills the function of carrying the heat generated during the movement and discharging it to the outside. As a result, the presence of a large number of pores due to the distribution of the inorganic porous material 5 allows oil to move smoothly, without causing significant wear on the mating material, and preventing the friction material from transferring or adhering to the mating material. Occurrence can also be avoided. Furthermore, since the porous body 5 used in the present invention is plated with metal, the porous body is protected by the plating and its durability increases. Furthermore, since the matrix is a metal structure, plating that is easily compatible with this metal structure improves compatibility with the matrix. That is, a portion of the plating metal melts due to the heat and pressure applied during the manufacturing process, and is firmly adhered to the matrix metal structure. As a result, detachment of the inorganic porous body 5 from the friction material 10 can be prevented, and the strength of the entire friction material 10 is also increased.

【0012】0012

【実施例】次に、本発明の具体的な実施例について図面
を参照しつつ説明する。 (実施例1〜3)図1の図解式断面図に示されるように
、所定性状の、マトリックス相1を形成する銅粉末、ス
ズ粉末、亜鉛粉末と硬質粒子相3を形成するシリカ粉末
と、潤滑相2を形成する粒状黒鉛粉末および無機多孔質
体5を形成する銅メッキしたカーボンフィラーを集合、
圧縮した後、細断して得られた無機多孔質体を表1に示
す割合で混合した。粒状黒鉛粉末としては粒度150 
〜350 メッシュの大きさのものを用い、また銅メッ
キを施した無機多孔質体は銅メッキしたカーボンファイ
バーをフェルト状に圧縮した後、0.5 〜3mmの大
きさに細断したものである。次いで、これらの組成分を
混合した粉末を3t/cm2 の圧力で一軸圧縮成形し
た後、20kg/c m2 の圧力下、窒素雰囲気中に
おいて750 ℃の温度で60分間保持して焼結し、本
発明の湿式摩擦材料10を得た。4は気孔相である。
Embodiments Next, specific embodiments of the present invention will be described with reference to the drawings. (Examples 1 to 3) As shown in the schematic cross-sectional view of FIG. 1, copper powder, tin powder, and zinc powder forming the matrix phase 1 and silica powder forming the hard particle phase 3 have predetermined properties; granular graphite powder forming the lubricating phase 2 and copper-plated carbon filler forming the inorganic porous body 5 are assembled;
After compressing, the inorganic porous bodies obtained by shredding were mixed in the proportions shown in Table 1. Particle size 150 for granular graphite powder
~350 mesh size was used, and the copper-plated inorganic porous body was made by compressing copper-plated carbon fiber into a felt shape and then cutting it into pieces of 0.5 to 3 mm in size. . Next, the powder obtained by mixing these components was uniaxially compression molded at a pressure of 3t/cm2, and then sintered by holding at a temperature of 750°C for 60 minutes in a nitrogen atmosphere under a pressure of 20kg/cm2. A wet friction material 10 of the invention was obtained. 4 is a pore phase.

【0013】(比較例1〜4 )図2の図解式断面図に
示されるように、無機多孔質体5をを除いた以外は実施
例1〜3の場合と同じく各相を形成させるのに同じ材料
を表1に示す割合で用い、実施例1〜3の場合と同様に
して従来の湿式摩擦材料10を得た。
(Comparative Examples 1 to 4) As shown in the schematic cross-sectional view of FIG. 2, each phase was formed in the same manner as in Examples 1 to 3 except that the inorganic porous body 5 was removed A conventional wet friction material 10 was obtained in the same manner as in Examples 1 to 3 using the same materials in the proportions shown in Table 1.

【0014】次に、実施例1〜3および比較例1〜4で
得た各摩擦材料について摩擦摩耗試験を行った。この試
験では供試ディスクと相手ディスクとの擦り合わせテス
トによるものでS43C材を用い、また試験条件として
周速10m/sec 、荷重20kg/cm2、試験時
間60分をそれぞれ採用した。この試験結果もまた表1
に併せ示されている。表1の試験結果から、無機多孔質
体を含有し、気孔量の多い本発明による実施例の摩擦材
は、比較例材の摩擦材よりも摩擦係数が高く、金属系摩
擦材料としては画期的な摩擦係数が得られた。また、摩
耗量が少ないことから強度が優れ耐用性も十分であるこ
ととが確認された。
Next, friction and wear tests were conducted on each of the friction materials obtained in Examples 1 to 3 and Comparative Examples 1 to 4. This test was based on a rubbing test between the test disc and the mating disc, and S43C material was used, and the test conditions were a circumferential speed of 10 m/sec, a load of 20 kg/cm2, and a test time of 60 minutes. The test results are also shown in Table 1.
are also shown. From the test results in Table 1, the friction material of the example according to the present invention, which contains an inorganic porous material and has a large amount of pores, has a higher friction coefficient than the friction material of the comparative example, which is revolutionary as a metal-based friction material. The friction coefficient was obtained. In addition, it was confirmed that the strength was excellent and the durability was sufficient because the amount of wear was small.

【表1】[Table 1]

【0015】[0015]

【発明の効果】金属メッキを施した無機多孔質体を含有
させることによって金属系摩擦材料の強度を低下させる
ことなく、気孔率を増大させて、従来の金属系摩擦材料
においては0.07〜0.08が限度であった摩擦係数
を0.1 前後まで向上させることが可能となった。ま
た、この無機多孔質体の含有量の増減によって摩擦係数
を制御できる上、多孔質体が無機質であるから熱的に安
定で、金属系摩擦材料の耐熱性を損なうこともない。し
たがって、本発明により、重負荷で高い摩擦係数が要求
される各種機械部品に適用可能な摩擦材料が提供され、
装置の小型化が実現可能となった。
Effects of the Invention: By including an inorganic porous body plated with metal, the porosity is increased without reducing the strength of the metal friction material, which is 0.07 to 0.07 in conventional metal friction materials. It has become possible to improve the coefficient of friction, which was limited to 0.08, to around 0.1. Furthermore, the coefficient of friction can be controlled by increasing or decreasing the content of the inorganic porous material, and since the porous material is inorganic, it is thermally stable and does not impair the heat resistance of the metallic friction material. Therefore, the present invention provides a friction material that can be applied to various mechanical parts that require a high coefficient of friction under heavy loads.
It has become possible to downsize the device.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の湿式摩擦材料の組織を示す図解式断面
図。
FIG. 1 is a schematic cross-sectional view showing the structure of the wet friction material of the present invention.

【図2】従来の摩擦材料の組織を示す図解式断面図。FIG. 2 is a schematic cross-sectional view showing the structure of a conventional friction material.

【符号の説明】 1  マトリックス相 2  潤滑相 3  硬質粒子相 4  気孔相 5  無機多孔質体 10,10’  湿式摩擦材料[Explanation of symbols] 1 Matrix phase 2 Lubrication phase 3 Hard particle phase 4. Pore phase 5 Inorganic porous material 10,10' Wet friction material

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】  金属メッキを施した無機多孔質体が含
有された金属系摩擦材料の焼結により構成されることを
特徴とする湿式摩擦材料。
1. A wet friction material characterized by being constructed by sintering a metallic friction material containing an inorganic porous body plated with metal.
【請求項2】  無機多孔質体が無機繊維質材料の圧縮
体より成ることを特徴とする請求項1に記載の湿式摩擦
材料。
2. The wet friction material according to claim 1, wherein the inorganic porous body is a compressed body of an inorganic fibrous material.
【請求項3】  無機多孔質体が含有されることによる
湿式摩擦材料全体の気孔率が20〜40%であることを
特徴とする請求項1に記載の湿式摩擦材料。
3. The wet friction material according to claim 1, wherein the wet friction material as a whole has a porosity of 20 to 40% due to the inclusion of an inorganic porous material.
【請求項4】  無機多孔質体の差渡し長さが0.5 
〜3mmの範囲内にあることを特徴とする請求項3に記
載の湿式摩擦材料。
[Claim 4] The length across the inorganic porous body is 0.5.
Wet friction material according to claim 3, characterized in that it is in the range of ~3 mm.
【請求項5】  無機多孔質体が、無機繊維質材料に金
属メッキを施してから圧縮させたものであることを特徴
とする請求項3に記載の湿式摩擦材料。
5. The wet friction material according to claim 3, wherein the inorganic porous body is an inorganic fibrous material plated with metal and then compressed.
【請求項6】  無機多孔質体が、無機繊維質材料を圧
縮させてから金属メッキを施したものであることを特徴
とする請求項3に記載の湿式摩擦材料。
6. The wet friction material according to claim 3, wherein the inorganic porous body is formed by compressing an inorganic fibrous material and then applying metal plating to the compressed inorganic fibrous material.
【請求項7】  無機繊維質材料が炭素繊維であること
を特徴とする請求項3に記載の湿式摩擦材料。
7. The wet friction material according to claim 3, wherein the inorganic fibrous material is carbon fiber.
【請求項8】  無機繊維質材料に施される金属メッキ
が銅メッキであることを特徴とする請求項5または6に
記載の湿式摩擦材料。
8. The wet friction material according to claim 5 or 6, wherein the metal plating applied to the inorganic fibrous material is copper plating.
JP9284891A 1991-03-29 1991-03-29 Wet friction material Withdrawn JPH04304285A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9284891A JPH04304285A (en) 1991-03-29 1991-03-29 Wet friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9284891A JPH04304285A (en) 1991-03-29 1991-03-29 Wet friction material

Publications (1)

Publication Number Publication Date
JPH04304285A true JPH04304285A (en) 1992-10-27

Family

ID=14065851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9284891A Withdrawn JPH04304285A (en) 1991-03-29 1991-03-29 Wet friction material

Country Status (1)

Country Link
JP (1) JPH04304285A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036169A1 (en) * 1998-12-16 2000-06-22 Victorian Rail Track Low resistivity materials with improved wear performance for electrical current transfer and methods for preparing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000036169A1 (en) * 1998-12-16 2000-06-22 Victorian Rail Track Low resistivity materials with improved wear performance for electrical current transfer and methods for preparing same

Similar Documents

Publication Publication Date Title
CN109469697B (en) Fiber reinforced copper-based brake pad for high-speed train and preparation and friction braking performance thereof
KR100918511B1 (en) Friction material with nanoparticles of friction modifying layer
EP0703382B1 (en) Sintered contact component
CN106085356B (en) Friction material composition, friction material and manufacturing method thereof
KR20040019827A (en) Friction material with friction modifying layer
JP2006038226A (en) Porous friction material including nano particle of friction adjusting material
CN101300297A (en) Carbon friction materials
JPH01261514A (en) Sliding material
CA1266626A (en) Resin-reinforced, nodular plated wet friction materials
US4409298A (en) Castable metal composite friction materials
JPH05179232A (en) Sintered metallic friction material for brake
JPH04304285A (en) Wet friction material
JP2877737B2 (en) Sliding material
JPH06240233A (en) Wet friction material
JPS6331005B2 (en)
JPH06145845A (en) Sintered friction material
JPH03185031A (en) Nonasbestos-based friction material
JPH07151172A (en) Composite friction material
JPH0368091B2 (en)
JP2006265081A (en) Selflubricating composite material and its producing method
JPH0532955A (en) Wet friction material
JP7246970B2 (en) brake friction material
CN110621742A (en) Resin material for sliding member and sliding member
JP2007112952A (en) Friction material
JPH07102335A (en) Sintered sliding member

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514