JPH04301595A - Manufacture of spherical nuclear fuel particle - Google Patents

Manufacture of spherical nuclear fuel particle

Info

Publication number
JPH04301595A
JPH04301595A JP3066621A JP6662191A JPH04301595A JP H04301595 A JPH04301595 A JP H04301595A JP 3066621 A JP3066621 A JP 3066621A JP 6662191 A JP6662191 A JP 6662191A JP H04301595 A JPH04301595 A JP H04301595A
Authority
JP
Japan
Prior art keywords
fuel particles
nuclear fuel
droplets
particles
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3066621A
Other languages
Japanese (ja)
Inventor
Akira Kitamura
北村 昶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP3066621A priority Critical patent/JPH04301595A/en
Publication of JPH04301595A publication Critical patent/JPH04301595A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To produce spherical nuclear fuel particles suitable for producing fuel particles of high spherically and of more uniformity. CONSTITUTION:Manufacturing method of spherical nuclear fuel particles is to dissolve an uranium into a nitric acid, to drip the raw liquid added with an additives such as a binder and so on, to solidify the droplets in an ammonia water and to cure the solidified droplets obtained from the solidification in the ammonia water, in a pressurized condition. In this way, fuel particles of high sphericity and of highly uniform particle diameter, and also non-defective fuel particles, can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は球状核燃料粒子の製造
方法に関し、更に詳しくは、真球度が良好であり、かつ
均一な燃料核を得るのに好適な球状核燃料粒子の製造方
法に関するものである。
[Field of Industrial Application] This invention relates to a method for producing spherical nuclear fuel particles, and more particularly, to a method for producing spherical nuclear fuel particles that have good sphericity and are suitable for obtaining uniform fuel nuclei. be.

【0002】0002

【従来の技術と発明が解決しようとする課題】球状核燃
料粒子として、ウラン(U)、トリウム(Th)、プル
トニウム(Pu)等の核***物質の酸化物、またはそれ
らの混合物等を、直径300〜800ミクロン程度の小
球体に形成したものがある。
[Prior Art and Problems to be Solved by the Invention] As spherical nuclear fuel particles, oxides of fissile materials such as uranium (U), thorium (Th), and plutonium (Pu), or mixtures thereof, are used as spherical nuclear fuel particles with a diameter of 300 to Some are formed into small spheres of about 800 microns.

【0003】そして、この球状核燃料粒子の表面に、通
常、熱分解炭素及び炭化硅素等のセラミックスを多重に
被覆してなる被覆燃料粒子を、円筒状若しくは球状の黒
鉛コンポジット成型体に分散せしめたものを高温ガス型
原子炉用燃料として使用している。
[0003] Then, coated fuel particles, which are usually made by coating the surface of these spherical nuclear fuel particles in multiple layers with ceramics such as pyrolytic carbon and silicon carbide, are dispersed in a cylindrical or spherical graphite composite molded body. is used as fuel for high-temperature gas reactors.

【0004】ここで、被覆された球状核燃料粒子の真球
度(真球の程度は核燃料粒子の最大径と最少径の比とし
て規定される。)が良好である程、黒鉛マトリックス中
に埋め込まれて成型される成型工程中において、又は原
子炉運転中において欠陥を生じる割合が小さい。このた
め、核燃料粒子を選別し、真球度の高いものを使用する
のが通常である。
[0004] Here, the better the sphericity of the coated spherical nuclear fuel particles (the degree of sphericity is defined as the ratio of the maximum diameter to the minimum diameter of the nuclear fuel particles), the more embedded they are in the graphite matrix. The rate of defects occurring during the molding process or during nuclear reactor operation is low. For this reason, it is common practice to select nuclear fuel particles and use those with high sphericity.

【0005】被覆された核燃料粒子の真球度を良好に保
つには、芯となる球状核燃料粒子の真球度の高いことが
必要である。球状核燃料粒子の真球度が少しでも悪いと
、被覆されるにつれて形状の歪が増幅され、真球度が低
下していくからである。
[0005] In order to maintain good sphericity of the coated nuclear fuel particles, it is necessary that the core spherical nuclear fuel particles have high sphericity. This is because if the sphericity of the spherical nuclear fuel particles is even slightly poor, the shape distortion will be amplified as the particles are coated, and the sphericity will decrease.

【0006】従来、球状核燃料粒子の製造方法としては
、核***物質を硝酸等の酸に溶解し、これにバインダー
樹脂および光分解停止剤等の添加物を適宜に加えた水溶
性原液を、アンモニア水溶液からなる凝固槽に滴下して
液滴を凝固せしめ、その後、乾燥、焙焼、燒結を行なう
ことにより、金属酸化物である球状核燃料粒子を得る方
法が知られている。
Conventionally, as a method for producing spherical nuclear fuel particles, nuclear fissile material is dissolved in an acid such as nitric acid, and a water-soluble stock solution is prepared by adding appropriate additives such as a binder resin and a photodegradation stopper, and then dissolved in an aqueous ammonia solution. A known method is to obtain spherical nuclear fuel particles, which are metal oxides, by dropping the droplets into a coagulation tank consisting of a liquid droplet and solidifying the droplets, followed by drying, roasting, and sintering.

【0007】すなわち、例えば、核燃料金属元素の塩の
水溶液又は核燃料金属元素の酸化物のゾル、及び適当な
バインダー樹脂を含む樹脂からなる原液を小滴化し、こ
の小滴をアンモニアガス及びアンモニア水中に通過させ
、小球体に凝固させることによって得られる(外部ゲル
化法)。
That is, for example, a stock solution consisting of an aqueous solution of a salt of a nuclear fuel metal element or a sol of an oxide of a nuclear fuel metal element, and a resin containing a suitable binder resin is formed into droplets, and the droplets are placed in ammonia gas and ammonia water. Obtained by passing through and coagulating into spherules (external gelation method).

【0008】この場合、原液が滴下ノズルから吐出され
た液滴が凝固液面に着水し、凝固液により液滴が凝固し
、その結果として凝固液中で多量の水を含んだゲル状粒
子が形成されるのであるが、この一連の過程におけるバ
インダー樹脂の特性が粒子の変形に著しい影響を与える
In this case, droplets of the stock solution discharged from the dropping nozzle land on the surface of the coagulating liquid, and the droplets are coagulated by the coagulating liquid, resulting in gel-like particles containing a large amount of water in the coagulating liquid. are formed, but the properties of the binder resin during this series of processes have a significant effect on the deformation of the particles.

【0009】特に滴下ノズルより液滴を形成せしめる工
程において、振動により液滴の分離を行なう場合、一般
に液滴の着水までの時間が短いので、バインダー樹脂を
正しく選択しなければ、滴下ノズルから吐出されてから
着水するまで間での変形が著しくなる。
In particular, in the process of forming droplets from the dripping nozzle, when the droplets are separated by vibration, the time required for the droplets to land on the water is generally short, so if the binder resin is not selected correctly, the droplets will separate from the dripping nozzle. The deformation becomes significant between the time it is discharged and the time it lands on the water.

【0010】このような振動滴下に適合したバインダー
樹脂の一例としてはPVA(ポリビニルアルコール)樹
脂を挙げることができる。
An example of a binder resin suitable for such vibratory dropping is PVA (polyvinyl alcohol) resin.

【0011】しかしながら、PVA樹脂添加の粒子は凝
固が遅く、アンモニア水溶液中に長時間保持しても、粒
子の中心部は不均一になり、後工程での乾燥、焙焼、燒
結での『割れ』等の粒子欠陥の原因となっているという
問題点を有している。
However, particles containing PVA resin solidify slowly, and even if kept in an ammonia aqueous solution for a long time, the center of the particles becomes uneven, resulting in ``cracking'' during drying, roasting, and sintering in the subsequent process. The problem is that it causes particle defects such as '.

【0012】この発明は前記事情に基づいてなされたも
のである。すなわち、本発明の目的は、球状核燃料粒子
の製造方法に関し、ウラン原液液滴の凝固、熟成をアン
モニアガス、あるいはアンモニア水溶液の共存状態にお
いて加圧条件下で行なうことにより、球状核燃料粒子の
真球度が良好であり、より均一な燃料粒子を得るのに好
適な球状核燃料粒子の製造方法を提供しようとするもの
である。
[0012] This invention has been made based on the above circumstances. That is, the object of the present invention is to produce true spheres of spherical nuclear fuel particles by coagulating and ripening droplets of uranium stock solution under pressurized conditions in the coexistence of ammonia gas or aqueous ammonia solution. It is an object of the present invention to provide a method for producing spherical nuclear fuel particles that have good consistency and are suitable for obtaining more uniform fuel particles.

【0013】[0013]

【前記課題を解決するための手段】前記課題を解決すべ
く本発明者が鋭意検討した結果、従来の粒子形成には好
適であるが、一方、凝固が遅く、後工程での欠陥の発生
するウラン原液を使用する燃料核製造工程において、ア
ンモニア浴中での凝固を加圧状態で実施することにより
、上述した問題点を解消し得る事を見出して本発明に到
達した。
[Means for Solving the Problems] As a result of intensive studies by the present inventors to solve the problems described above, it has been found that although it is suitable for conventional particle formation, solidification is slow and defects occur in subsequent steps. The present invention has been achieved by discovering that the above-mentioned problems can be solved by performing solidification in an ammonia bath under pressure in a fuel nuclear production process that uses uranium stock solution.

【0014】前記課題を解決するための請求項1に記載
の発明は、ウランを硝酸に溶解しさらにバインダー樹脂
等の添加剤を加えた原液を、アンモニア水溶液中に滴下
し、アンモニア水浴中で形成される凝固液滴を加圧条件
下で熟成することを特徴とする球状核燃料粒子の製造方
法であり、前記課題を解決するための請求項2に記載の
発明は、前記請求項1に記載のバインダー樹脂としてポ
リビニルアルコール樹脂あるいはアルカリ条件下で凝固
する性質を有する樹脂を用いることを特徴とする前記請
求項1に記載の球状核燃料粒子の製造方法である。
[0014] The invention as set forth in claim 1 for solving the above problem is such that a stock solution in which uranium is dissolved in nitric acid and additives such as a binder resin are added thereto is dropped into an ammonia aqueous solution, and the solution is formed in an ammonia water bath. A method for producing spherical nuclear fuel particles characterized by ripening solidified droplets under pressurized conditions. 2. The method for producing spherical nuclear fuel particles according to claim 1, wherein a polyvinyl alcohol resin or a resin having a property of coagulating under alkaline conditions is used as the binder resin.

【0015】以下、さらに本発明の製造方法について詳
細に説明する。
The manufacturing method of the present invention will be further explained in detail below.

【0016】本発明の方法は、従来の球状核燃料粒子の
製造方法、すなわち、核***物質を硝酸等の酸に溶解し
、これにバインダー樹脂および添加剤を適宜加えた水溶
性原液を、アンモニア水溶液からなる凝固浴に滴下し、
液滴を凝固させ、その後、乾燥、焙焼、燒結を行なうこ
とにより、金属酸化物である球状核燃料粒子を得る方法
に適用することができる。
The method of the present invention is similar to the conventional method for producing spherical nuclear fuel particles, that is, a water-soluble stock solution in which fissile material is dissolved in an acid such as nitric acid and a binder resin and additives are appropriately added thereto is prepared from an ammonia aqueous solution. drop into a coagulation bath,
It can be applied to a method for obtaining spherical nuclear fuel particles, which are metal oxides, by solidifying droplets and then drying, roasting, and sintering.

【0017】その内でも、ウランを硝酸に溶解して硝酸
ウラニルを形成し、バインダー樹脂等の添加剤を加えた
原液を、アンモニア水溶液中に滴下し、凝固させてなる
球状核燃料粒子の製造方法に好適に適用する事ができる
Among them, a method for producing spherical nuclear fuel particles in which uranium is dissolved in nitric acid to form uranyl nitrate, and a stock solution containing additives such as a binder resin is dropped into an ammonia aqueous solution and solidified. It can be suitably applied.

【0018】原液成分としては、たとえば、重ウラン酸
アンモニウム粒子を製造する場合には、硝酸ウラニル溶
液が用いられる。
As the stock solution component, for example, when producing ammonium deuterate particles, a uranyl nitrate solution is used.

【0019】また、原液は増粘剤としてバインダー樹脂
等を含有するのが好ましい。前記ウランを硝酸に溶解し
たものや、硝酸ウラニル溶液が増粘剤を含有すると、原
液をアンモニア水溶液中に滴下して生じる適下粒の変形
を防止することができ、より良好な真球度で、より低い
破損率で燃料粒子を製造することができる。
[0019] Furthermore, the stock solution preferably contains a binder resin or the like as a thickener. When the uranium dissolved in nitric acid or the uranyl nitrate solution contains a thickener, it is possible to prevent the deformation of the lower grains that occurs when the undiluted solution is dropped into an ammonia aqueous solution, resulting in better sphericity. , fuel particles can be produced with a lower failure rate.

【0020】前記バインダー樹脂としては、ポリビニル
アルコ−ル樹脂あるいはアルカリ条件下で凝固する性質
を有する樹脂を用いることができる。
As the binder resin, a polyvinyl alcohol resin or a resin having a property of coagulating under alkaline conditions can be used.

【0021】アルカリ条件下で凝固する性質を有する樹
脂としては、樹脂単独でもアルカリ雰囲気中で凝固性能
を有するもの、例えばポリビニルアセタール/N;N−
ジメチルアミノアセテート酸中和物(商品名  AEA
,三共製)等を挙げることができる。
[0021] Examples of resins that have the property of coagulating under alkaline conditions include those that have the ability to coagulate in an alkaline atmosphere even when the resin alone has the property of coagulating in an alkaline atmosphere, such as polyvinyl acetal/N;
Dimethylaminoacetate acid neutralized product (product name: AEA
, Sankyo), etc.

【0022】本発明においては、ポリビニルアルコール
樹脂を特に好ましく用いることができる。
In the present invention, polyvinyl alcohol resin can be particularly preferably used.

【0023】本発明に好適な原液組成の一例としては、
ウランが硝酸ウラニルとして濃度100gU/リットル
〜400gU/リットル、バインダー樹脂が2g/リッ
トルより50g/リットルとして含有されているものを
挙げることができる。
[0023] An example of a stock solution composition suitable for the present invention is:
Examples include those containing uranium as uranyl nitrate at a concentration of 100 gU/liter to 400 gU/liter and binder resin at a concentration of 2 to 50 g/liter.

【0024】また、原液中に光分解停止剤や、原液の表
面張力を調整する為の界面活性剤等の添加剤を適宜に含
有することが好ましい。光分解停止剤としては、バイン
ダー樹脂の光分解(ウランが触媒となる)を防止する効
果のある物質、例えばテトラハイドロフルフリルアルコ
ール(4HF)やポリエチレングリコール等を挙げるこ
とができる。
[0024] Furthermore, it is preferable that additives such as a photolysis stopper and a surfactant for adjusting the surface tension of the stock solution are appropriately contained in the stock solution. Examples of the photodecomposition stopper include substances that are effective in preventing photodecomposition of the binder resin (uranium serves as a catalyst), such as tetrahydrofurfuryl alcohol (4HF) and polyethylene glycol.

【0025】本発明の球状核燃料粒子は、原液の液滴を
凝固液中に滴下することにより製造される。
The spherical nuclear fuel particles of the present invention are produced by dropping droplets of a stock solution into a coagulating solution.

【0026】原液の液滴化方法は、特に制限がないので
あるが、たとえば、細径のノズルを適宜の手段で振動さ
せることにより実現することができる。
[0026] There is no particular restriction on the method of turning the stock solution into droplets, but it can be realized, for example, by vibrating a small-diameter nozzle by an appropriate means.

【0027】ウラン原液を、滴下ノズルを振動させる等
の手段を用い、液滴を形成させるが、液滴が着水するま
での空間において、液滴の表面が硬化を開始するように
するのが、着水時の変形を防止するために望ましい。
[0027] The uranium stock solution is formed into droplets using means such as vibrating the dropping nozzle, but it is best to make the surface of the droplet start to harden in the space until the droplet lands on the water. , desirable to prevent deformation when landing on water.

【0028】よって、この空間がアンモニアガスにより
充たされていることが望ましい。アンモニアガスは凝固
槽から発生するアンモニアガスでもよいが、原液の組成
によってはアンモニアガスを液滴が着水するまでの空間
に強制的に放出し、その空間内のアンモニア濃度を調整
することも時により必要である。
[0028] Therefore, it is desirable that this space is filled with ammonia gas. The ammonia gas may be ammonia gas generated from a coagulation tank, but depending on the composition of the stock solution, it is sometimes possible to forcefully release ammonia gas into the space until the droplets land on the water and adjust the ammonia concentration in that space. It is necessary due to

【0029】凝固液として好適に使用されるのは、通常
、20重量%〜飽和濃度の濃厚アンモニア水溶液である
A concentrated ammonia aqueous solution having a concentration of 20% by weight to saturation is preferably used as the coagulating liquid.

【0030】濃厚アンモニウム水溶液を採用すると、そ
の液面上はアンモニア蒸気の雰囲気となっているから、
濃厚アンモニウム水溶液に落下する前記原液の液滴が前
記アンモニア蒸気雰囲気中を通過する間に、凝固を開始
して、液滴の表面に凝固皮膜が形成される。そしてその
凝固皮膜の形成によって、液滴が原液の液面に衝突する
際の粒子形状の変形が防止される。この凝固皮膜は、ア
ンモニアとの反応により金属塩、例えば硝酸ウラニルが
重ウラン酸アンモン(ADU)の様なアンモニウム化合
物に転化することにより、形成される。
[0030] When a concentrated ammonium aqueous solution is used, there is an atmosphere of ammonia vapor above the liquid surface.
While the droplets of the stock solution falling into the concentrated ammonium aqueous solution pass through the ammonia vapor atmosphere, coagulation starts and a coagulated film is formed on the surface of the droplets. The formation of the solidified film prevents deformation of the particle shape when the droplets collide with the liquid surface of the stock solution. This coagulated film is formed by converting a metal salt, such as uranyl nitrate, into an ammonium compound such as ammonium diurate (ADU) by reaction with ammonia.

【0031】形成された粒子の量が多い場合には、粒子
が重畳した状態で凝固浴中に滞留することにより粒子の
破損を生じることがあるので、このような粒子の破損を
防止するために凝固槽のアンモニア水溶液を循環させる
ことも好ましい。
[0031] If a large amount of particles are formed, the particles may remain in the coagulation bath in a superimposed state, resulting in particle breakage; therefore, in order to prevent such particle breakage, It is also preferable to circulate the ammonia aqueous solution in the coagulation tank.

【0032】本発明の球状核燃料粒子の製造方法におい
ては、ウランおよびバインダー樹脂等の添加剤を加えた
原液の液滴をアンモニア水浴中に滴下して得られる凝固
液滴を加圧条件下で熟成する。
In the method for producing spherical nuclear fuel particles of the present invention, droplets of a stock solution containing uranium and additives such as a binder resin are dropped into an ammonia water bath, and the resulting solidified droplets are aged under pressurized conditions. do.

【0033】熟成は、凝固液滴を形成するアンモニア凝
固液の装填された凝固槽にて、一定量の凝固液滴が得ら
れてから、その凝固槽内を加圧することにより行うこと
もできるし、また凝固槽で得られた凝固液滴を集めて別
の加圧可能な熟成槽に移動し、その熟成槽中で行っても
良い。熟成槽中で熟成する場合、凝固液滴と共にアンモ
ニア凝固液が熟成槽中に同伴されても良い。
[0033] Aging can also be carried out by pressurizing the inside of the coagulation tank after a certain amount of coagulation droplets have been obtained in a coagulation tank filled with an ammonia coagulation solution that forms coagulation droplets. Alternatively, the solidified droplets obtained in the coagulation tank may be collected and transferred to another pressurized ripening tank, and the fermentation may be carried out in that ripening tank. In the case of aging in the aging tank, the ammonia coagulation liquid may be entrained into the aging tank together with the coagulation droplets.

【0034】また、加圧の際の雰囲気は、凝固液滴に対
して不活性な気体であれば特に制限がないのであるが、
凝固を更に促進するためにアンモニアガスとするのが好
ましい。また、凝固中の粒子の過度の乾燥を防止するた
めに、アンモニアガス中で行なう場合であっても、湿っ
た雰囲気で行なうことが必要である。
[0034] Furthermore, the atmosphere during pressurization is not particularly limited as long as it is a gas that is inert to the solidified droplets.
Ammonia gas is preferably used to further promote coagulation. Further, in order to prevent excessive drying of particles during coagulation, it is necessary to carry out the process in a humid atmosphere even when carrying out the process in ammonia gas.

【0035】加圧圧力は大きいほど望ましい。圧力が大
きいほど反応が速くなる。しかし、加圧槽の耐圧への要
求性能を考慮すると10kg/cm2 位までで十分で
ある。
[0035] The higher the pressurizing pressure, the more desirable. The greater the pressure, the faster the reaction. However, considering the required performance for pressure resistance of the pressurized tank, up to about 10 kg/cm2 is sufficient.

【0036】加圧時間は原液組成により変るが、一般的
には10時間位までで十分である。
The pressurizing time varies depending on the composition of the stock solution, but generally up to about 10 hours is sufficient.

【0037】また加圧時に加熱してもよい。加熱する温
度は使用する樹脂の特性によるが、たとえばポリビニル
アルコ−ルの場合90℃までである。
[0037] Furthermore, heating may be performed during pressurization. The heating temperature depends on the characteristics of the resin used; for example, in the case of polyvinyl alcohol, it is up to 90°C.

【0038】凝固液滴を熟成する際、粒子の積み重なり
状態による凝固液滴の破損が懸念される場合には、加圧
している容器を揺動あるいは回転させることにより、凝
固液滴を流動状態に置くことも好ましい。
When ripening the solidified droplets, if there is a concern that the solidified droplets may be damaged due to the stacked state of the particles, the solidified droplets may be brought into a fluid state by shaking or rotating the pressurized container. It is also preferable to put

【0039】本発明においては、このように凝固液滴を
加圧状態の下に熟成すると、凝固が促進される。何故に
凝固が促進されるのかの理論的な解明は未だなされては
いないが、例えば、ポリビニルアルコール樹脂を含有す
るウラン原液では、硝酸ウラニルがアンモニアとの接触
により重ウラン酸アンモンになると共に多量のウラン金
属塩の存在によりポリビニルアルコール樹脂が凝固して
、凝固液滴が形成される。この凝固液滴を加圧状態の下
に熟成すると、凝固したポリビニルアルコール樹脂およ
び重ウラン酸アンモン中でのアンモニア分子の拡散が速
められることから、凝固が促進されると推定される。
In the present invention, solidification is promoted by ripening the solidified droplets under pressure in this manner. Theoretical explanation of why coagulation is promoted has not yet been made, but for example, in a uranium stock solution containing polyvinyl alcohol resin, uranyl nitrate becomes ammonium deuterate upon contact with ammonia, and a large amount of The presence of the uranium metal salt causes the polyvinyl alcohol resin to coagulate, forming coagulated droplets. When these coagulated droplets are aged under pressurized conditions, the diffusion of ammonia molecules in the coagulated polyvinyl alcohol resin and ammonium deuterate is accelerated, so it is presumed that coagulation is promoted.

【0040】上述した製造方法により得られた凝固粒子
は、内部に水分を含有しているので、更に純水等で洗浄
した後、乾燥し、焙焼、焼結を行ない球状核燃料粒子と
した後、球状核燃料粒子の表面に、熱分解炭素及び炭化
硅素等のセラミックスを蒸着被覆し、核***で生じる生
成物を閉じ込める特性を付与して高温ガス炉用被覆核燃
料粒子にすることができる。この被覆燃料粒子は、黒鉛
マトリックスに埋め込まれ、円筒状若しくは球状の黒鉛
コンポジット成型体に成型されて高温ガス型原子炉用燃
料として使用される。
Since the coagulated particles obtained by the above-mentioned production method contain moisture inside, they are further washed with pure water, dried, roasted, and sintered to form spherical nuclear fuel particles. The surface of spherical nuclear fuel particles can be coated with ceramics such as pyrolytic carbon and silicon carbide by vapor deposition to impart properties that trap products generated by nuclear fission, thereby making coated nuclear fuel particles for high-temperature gas reactors. The coated fuel particles are embedded in a graphite matrix, formed into a cylindrical or spherical graphite composite molded body, and used as a fuel for a high-temperature gas nuclear reactor.

【0041】[0041]

【実施例】以下、実施例により本発明を更に具体的に説
明するが、本発明は、これらの実施例に限定されるもの
ではない。
[Examples] The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.

【0042】(実施例1)ウラン濃度200gU/リッ
トル、PVA樹脂30gU/リットルおよび4HF10
v/oからなる硝酸性の原液を調製した。この原液を、
100ヘルツの振動を与えながら適下ノズルよりアンモ
ニア飽和水溶液から成る凝固液中に滴下した。なお、滴
下ノズルの先端部から凝固液面迄の距離は20cmであ
った。更に、凝固液に液滴が着水するまでの空間には5
リットル/minの流量でアンモニアガスを流した。こ
のようにして、約50gUのADU(重ウラン酸アンモ
ン)粒子が形成される迄滴下を継続した。
(Example 1) Uranium concentration 200 gU/liter, PVA resin 30 gU/liter and 4HF10
A nitric stock solution consisting of v/o was prepared. This stock solution,
It was dropped into a coagulation liquid consisting of an ammonia saturated aqueous solution from a dropper nozzle while applying vibrations of 100 Hz. Note that the distance from the tip of the dropping nozzle to the surface of the solidified liquid was 20 cm. Furthermore, in the space before the droplet lands on the coagulation liquid, there are 5
Ammonia gas was flowed at a flow rate of liter/min. Dripping was continued in this manner until approximately 50 gU of ADU (ammonium deuterate) particles were formed.

【0043】次に、容量500ccのオ−トクレ−ブに
200ccの28%アンモニア水溶液を入れ、このオー
トクレーブ内に、捕集した前記ADU粒子を移し替え、
アンモニアガスを5kg/cm2 になる迄まで加圧充
填し、オートクレーブを密封した。オ−トクレ−ブを8
0℃まで加熱し、5時間静置することにより熟成を行っ
た。
Next, 200 cc of 28% ammonia aqueous solution was placed in an autoclave with a capacity of 500 cc, and the collected ADU particles were transferred into this autoclave.
Ammonia gas was filled under pressure to 5 kg/cm2, and the autoclave was sealed. Autoclave 8
Aging was performed by heating to 0° C. and allowing it to stand for 5 hours.

【0044】熟成後、オートクレーブ内の凝固粒子を取
り出してこれを乾燥し、450℃の空気中で焙焼後、1
600℃のH2 ガス中で還元・焼成を行ない、平均径
600μの燃料粒子を得た。
After aging, the coagulated particles in the autoclave are taken out, dried, and roasted in air at 450°C.
Reduction and firing were performed in H2 gas at 600°C to obtain fuel particles with an average diameter of 600μ.

【0045】得られたUO2 燃料粒子は真球度もよく
(平均真球度は1、06)、1000個の粒子の金相観
察の結果、割れや欠けのある欠陥部を有する粒子は存在
しなかった。
The obtained UO2 fuel particles had good sphericity (average sphericity was 1.06), and as a result of observing the metal phase of 1000 particles, there were no particles with defects such as cracks or chips. There wasn't.

【0046】(比較例1)実施例1においてADU粒子
の滴下までは実施例1と同じ工程で行なった。
(Comparative Example 1) The same steps as in Example 1 were followed up to the dropping of ADU particles.

【0047】その後、同一の凝固槽中に常圧のまま15
時間保持した。この場合ADU粒子が50gUと少ない
ため、重なりによるつぶれ防止のための撹拌は行なわな
かった。
[0047] After that, it was left in the same coagulation tank for 15 minutes at normal pressure.
Holds time. In this case, since the ADU particles were as small as 50 gU, stirring was not performed to prevent crushing due to overlapping.

【0048】その後、実施例1と同様に乾燥、焙焼、焼
成を実施し、UO2 粒子を得た。
[0048] Thereafter, drying, roasting, and calcination were carried out in the same manner as in Example 1 to obtain UO2 particles.

【0049】得られた粒子のうちの1000粒子を観察
した結果、約50個の粒子に部分的な割れなどの欠陥が
見られた。
As a result of observing 1000 of the obtained particles, defects such as partial cracks were observed in about 50 particles.

【0050】[0050]

【発明の効果】この発明により、真球度、粒径の均一性
の良好な、かつ欠陥のない燃料核粒子が得られる。
[Effects of the Invention] According to the present invention, fuel core particles having good sphericity and uniformity in particle size and having no defects can be obtained.

【0051】この発明の方法により得られる燃料各粒子
を用いると、熱分解炭素及び炭化硅素等のセラミックス
を均一に被覆してなる被覆燃料粒子が得られ、また被覆
燃料粒子の強度も高められるので、最終的な燃料コンパ
クトでの特性が良好になる。
By using the fuel particles obtained by the method of the present invention, coated fuel particles uniformly coated with ceramics such as pyrolytic carbon and silicon carbide can be obtained, and the strength of the coated fuel particles can also be increased. , the properties of the final fuel compact will be better.

【0052】[0052]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  ウラン化合物を硝酸に溶解しさらにバ
インダー樹脂等の添加剤を加えてなる原液を、アンモニ
ア水溶液中に滴下し、アンモニア水浴中で形成される凝
固液滴を加圧条件下で熟成することを特徴とする球状核
燃料粒子の製造方法。
Claim 1: A stock solution prepared by dissolving a uranium compound in nitric acid and adding additives such as a binder resin is dropped into an ammonia aqueous solution, and the solidified droplets formed in an ammonia water bath are aged under pressurized conditions. A method for producing spherical nuclear fuel particles, characterized by:
【請求項2】  前記請求項1に記載のバインダー樹脂
としてポリビニルアルコール樹脂あるいはアルカリ条件
下で凝固する性質を有する樹脂を用いることを特徴とす
る前記請求項1に記載の球状核燃料粒子の製造方法。
2. The method for producing spherical nuclear fuel particles according to claim 1, wherein a polyvinyl alcohol resin or a resin having a property of coagulating under alkaline conditions is used as the binder resin according to claim 1.
JP3066621A 1991-03-29 1991-03-29 Manufacture of spherical nuclear fuel particle Withdrawn JPH04301595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3066621A JPH04301595A (en) 1991-03-29 1991-03-29 Manufacture of spherical nuclear fuel particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3066621A JPH04301595A (en) 1991-03-29 1991-03-29 Manufacture of spherical nuclear fuel particle

Publications (1)

Publication Number Publication Date
JPH04301595A true JPH04301595A (en) 1992-10-26

Family

ID=13321146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3066621A Withdrawn JPH04301595A (en) 1991-03-29 1991-03-29 Manufacture of spherical nuclear fuel particle

Country Status (1)

Country Link
JP (1) JPH04301595A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052108A (en) * 2004-08-11 2006-02-23 Nuclear Fuel Ind Ltd Method for producing fuel particles for high-temperature gas-cooled reactor
RU2496162C2 (en) * 2008-12-01 2013-10-20 Нукем Текнолоджиз Гмбх Method of and device for fuel particle production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052108A (en) * 2004-08-11 2006-02-23 Nuclear Fuel Ind Ltd Method for producing fuel particles for high-temperature gas-cooled reactor
JP4540047B2 (en) * 2004-08-11 2010-09-08 原子燃料工業株式会社 Method for producing fuel particles for HTGR
RU2496162C2 (en) * 2008-12-01 2013-10-20 Нукем Текнолоджиз Гмбх Method of and device for fuel particle production

Similar Documents

Publication Publication Date Title
JP5657381B2 (en) Method for producing spherical fuel or breeder particles
CA1080462A (en) Process for producing fuel particles and fertile material particles
JP2010527884A5 (en)
US4077908A (en) Production of material consisting of solid hollow spheroids
JPH0156399B2 (en)
US4405595A (en) Method of producing spherical lithium aluminate particles
US4382885A (en) Method for producing nuclear fuel
JPH04301595A (en) Manufacture of spherical nuclear fuel particle
JPS58180985A (en) Nuclear fuel pellet and manufacture therefor
US3384687A (en) Microsphere forming process for aqueous salt soultions using dissolved ammonia in a dehydrating solvent
US4193953A (en) Hydrosol droplet casting process for production of nuclear fuel and breeder material granules
US3211812A (en) Method of making nuclear fuel compact
CN104496487B (en) Double-layer ceramic microsphere of nucleocapsid structure and preparation method thereof
KR102078239B1 (en) Apparatus for Preparing a Radioactive Metal-Based Gelated Intermediate and Method for Preparing the Radioactive Metal-Based Gelated Intermediate
CN110935439B (en) Integral denitration catalyst and preparation method thereof
US3970580A (en) Method of making spherical metallic oxide and metallic carbide particles
US4384990A (en) Uranyl nitrate pouring solution for producing nuclear fuel particles and a method for its preparation
IL27641A (en) Openly porous refractory nuclear fuel microspheres and method of preparation
US3776988A (en) Cryochemical method for forming spherical metal oxide particles from metal salt solutions
JP4051732B2 (en) Method for producing nuclear fuel particles
US3518328A (en) Process for preparing microspheres of uranium,plutonium or thorium carbide
JPH01250095A (en) Original liquid composition for producing spherical nuclear fuel particle and production of spherical nuclear fuel particle by using this composition
CN107098367B (en) A kind of preparation method of alumina hollow ball for vibration damping and noise reducing
DE3204845C2 (en) Process for the production of thorium-containing nuclear fuel tablets
CN115769311A (en) Method for preparing fuel pellet by using uranium molybdenum powder

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514