JPH04299225A - Clinical thermometer - Google Patents

Clinical thermometer

Info

Publication number
JPH04299225A
JPH04299225A JP3064616A JP6461691A JPH04299225A JP H04299225 A JPH04299225 A JP H04299225A JP 3064616 A JP3064616 A JP 3064616A JP 6461691 A JP6461691 A JP 6461691A JP H04299225 A JPH04299225 A JP H04299225A
Authority
JP
Japan
Prior art keywords
temperature
infrared sensor
thermometer
casing
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3064616A
Other languages
Japanese (ja)
Inventor
Masaru Kurokawa
黒川 賢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Avio Infrared Technologies Co Ltd
Original Assignee
NEC Avio Infrared Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Avio Infrared Technologies Co Ltd filed Critical NEC Avio Infrared Technologies Co Ltd
Priority to JP3064616A priority Critical patent/JPH04299225A/en
Publication of JPH04299225A publication Critical patent/JPH04299225A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

PURPOSE:To enable accurate measurement of a body temperature in a short time by providing an infrared sensor and a temperature correcting element and by computing and displaying detection outputs of the infrared sensor and the temperature correcting element. CONSTITUTION:Inside a casing 11, an IC chip containing various electronic circuits are disposed together with an electric cell. A detecting unit 7 is provided in the fore end part of a narrow part 11a of the casing 11 and infrared radiation from a human body is made to enter the detecting unit 7 through a window 15 formed of an infrared transmitting material such as germanium(Ge). Inside the detecting unit 7, an infrared sensor 18 having a thermopile in a base 16 and also a temperature correcting element 19 are provided. Detection outputs of the sensor 18 and the element 19 are computed in the electronic circuits in the casing 11 and the result of computation is displayed. In this way, a body temperature can be measured accurately in a short time.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は体温計に係わり、特に瞬
間的に計温可能な体温計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermometer, and more particularly to a thermometer that can measure temperature instantaneously.

【0002】0002

【従来の技術】従来から温度を計測するための温度セン
サとしては種々のセンサが知られているが最も一般的な
ものは熱電対、金属測温抵抗体、サーミスタ等である。
2. Description of the Related Art Various types of temperature sensors have been known for measuring temperature, but the most common ones include thermocouples, metal resistance temperature detectors, and thermistors.

【0003】一般に体温等の温度計測に用いられるもの
はガラス式の水銀体温計であるが、最近は電子体温計が
使用される様になって来ている。この電子体温計は水銀
体温計に比べて1分以下の短時間で体温計測が出来ると
云うことで普及をみている。
Glass-type mercury thermometers are generally used to measure temperatures such as body temperature, but recently electronic thermometers have come into use. This electronic thermometer is becoming popular because it can measure body temperature in less than a minute, compared to mercury thermometers.

【0004】この電子体温計には2種類のものが提案さ
れている。その一つは水銀の代わりにサーミスタを用い
て温度センサで体温を実測するものである。この実測方
式では脇の下では3分程度、口腔では1分程度の計測時
間を必要とする。
Two types of electronic thermometers have been proposed. One of them uses a thermistor instead of mercury to measure body temperature with a temperature sensor. This actual measurement method requires about 3 minutes to measure the armpit and about 1 minute to measure the oral cavity.

【0005】これに対し電子体温計でも予測方式と呼ば
れるものがある。これは十分に長い時間をかけて測定し
た場合の熱平衡時の状態を設定し、この時の平衡温を予
測によって短時間にコンピュータ等を用いて計算して求
める様にしたものである。
[0005] On the other hand, there is also an electronic thermometer called a prediction method. This is a method in which the state at thermal equilibrium is set when measurements are taken over a sufficiently long period of time, and the equilibrium temperature at this time is calculated and calculated in a short time using a computer or the like by predicting the equilibrium temperature.

【0006】この予測方法にも種々の方法が提案されて
いるが、図9に示すものは縦軸に温度を横軸に時間とし
て分をとった平衡温2の予測特性図で、例えば、32°
前後から出発して、実測温1を約40秒間くり返して測
定し、その間の時系列データから平衡温2を回帰計算し
て予測温度3を割り出して、略1分以内に電子音4を鳴
らす様にしている。
Various methods have been proposed for this prediction method, but the one shown in FIG. 9 is a prediction characteristic diagram of the equilibrium temperature 2 in which the vertical axis is temperature and the horizontal axis is minutes as time. °
Starting from the front and back, measure the actual temperature 1 repeatedly for about 40 seconds, calculate the equilibrium temperature 2 by regression calculation from the time series data during that time, calculate the predicted temperature 3, and sound the beep 4 within about 1 minute. I have to.

【0007】図10に示すものは30℃前後から計測を
スタートさせ、毎秒計測される体温から臨床で実験的に
得た温度上昇曲線5と比較しながら予測上乗せ量を随時
計算して実測した温度に加算して、上乗せ量予測温度6
を得て、1分後に電子音4を鳴らして計測終了を知らせ
る様になされている。
[0007] In the case shown in Fig. 10, the measurement is started from around 30°C, and the predicted additional amount is calculated at any time while comparing the body temperature measured every second with the temperature rise curve 5 experimentally obtained in clinical practice. Added to the predicted temperature 6
After one minute, an electronic sound 4 is sounded to notify the end of the measurement.

【0008】[0008]

【発明が解決しようとする課題】上述した予測方法によ
って体温測定時間を短縮することが出来るが水銀の体温
計に比べて体温は平均的に0.4℃程度高い値を示すこ
と並びに測定部位のズレ等による発生誤差を含め±0.
2℃程度の誤差を許容している。この様な誤差では最高
と最低温度差で考えると0.4℃近くの差を発生し、正
確な体温測定が出来ないと云う問題があった。
[Problems to be Solved by the Invention] Although the above-mentioned prediction method can shorten the time required to measure body temperature, the body temperature shows an average value of about 0.4°C higher than that of a mercury thermometer, and the measurement site may be misaligned. ±0.
An error of about 2°C is allowed. Such an error would result in a difference of nearly 0.4°C between the highest and lowest temperatures, making it impossible to accurately measure body temperature.

【0009】更に体温測定時間が短縮されたとしても1
分から45秒程度の時間がかかっている。
[0009] Even if the time for measuring body temperature is further shortened, 1
It takes about 45 seconds.

【0010】本発明は叙上の如き問題点を解消するため
になされたもので、その目的とするところは正確な体温
をほとんど瞬間に計測可能な体温計を提供しようとする
ものである。
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a thermometer that can accurately measure body temperature almost instantaneously.

【0011】[0011]

【課題を解決するための手段】本発明の体温計はその例
が図1に示される様に、赤外センサ及び温度補正素子と
を有してなるものである。
[Means for Solving the Problems] The thermometer of the present invention, an example of which is shown in FIG. 1, comprises an infrared sensor and a temperature correction element.

【0012】0012

【作用】本発明の体温計は赤外センサと温度補正素子と
の夫々の出力を演算した結果から、極めて応答速度の速
い正確な体温計測を行なうようにしたものである。
[Operation] The thermometer of the present invention is designed to accurately measure body temperature with an extremely fast response speed based on the results of calculating the respective outputs of the infrared sensor and the temperature correction element.

【0013】[0013]

【実施例】以下、本発明の体温計を図1乃至図8により
詳細に説明する。図1は本例の体温計の外観図を示すも
のである。
EMBODIMENTS The thermometer of the present invention will be explained in detail below with reference to FIGS. 1 to 8. FIG. 1 shows an external view of the thermometer of this example.

【0014】11は通常の電子体温計等と同様の合成樹
脂で扁平な幅挟部11aと幅広部11bからなるケーシ
ングであり、このケーシングの内部には図6で後述する
各種電気回路がIC化され電池と共に収納されている。
Reference numeral 11 denotes a casing made of a synthetic resin similar to that of an ordinary electronic thermometer etc. and consisting of a flat sandwiched part 11a and a wide part 11b, and inside this casing various electric circuits, which will be described later in FIG. 6, are integrated. It is stored together with the battery.

【0015】ケーシング11の幅広部11bの表面に電
池電源を接断させる電源切換スイッチ8、メモリ読出し
キー9並びに液晶ディスプレイ(LCD)10が配設さ
れている。
On the surface of the wide portion 11b of the casing 11, a power changeover switch 8 for connecting and disconnecting the battery power source, a memory read key 9, and a liquid crystal display (LCD) 10 are arranged.

【0016】ケーシング11の幅挟部11aには、その
先端部に金属等で構成した検出部7が設けられている。 この検出部7はケーシング11の幅挟部11aの先端に
適宣方法で固定されている。
[0016] A detecting part 7 made of metal or the like is provided at the tip of the width-spanning part 11a of the casing 11. This detection part 7 is fixed to the tip of the width-spanning part 11a of the casing 11 in an appropriate manner.

【0017】13は人体であり、人体13から放射され
る赤外放射14は、ゲルマニウム(Ge)或いはフッ化
バリウム(BaF2 )等の赤外線透過材で構成された
窓15を介して、検出部7内に収納された、赤外センサ
18に入射される。
Reference numeral 13 represents a human body, and infrared radiation 14 emitted from the human body 13 passes through a window 15 made of an infrared transmitting material such as germanium (Ge) or barium fluoride (BaF2) to the detection unit 7. The light is incident on an infrared sensor 18 housed inside.

【0018】上述の検出部7のA部拡大図を図2によっ
て説明すると、窓15は検出部7の先端に穿った透孔内
に嵌め込まれ固定される。基板16は熱伝導率のよいも
のを選択し、検出部7の内部に形成した段部17に固定
されている。この基板16にはサーモパイルを有する赤
外センサ18並びに温度補正素子19を配設する。
Referring to FIG. 2, an enlarged view of part A of the detection section 7 described above will be explained. The window 15 is fitted into a through hole bored at the tip of the detection section 7 and fixed. The substrate 16 is selected from one with good thermal conductivity, and is fixed to a stepped portion 17 formed inside the detection section 7 . An infrared sensor 18 having a thermopile and a temperature correction element 19 are arranged on this substrate 16.

【0019】上述の赤外センサ18即ち、サーモパイル
としてのチップ20の構造を図3及び図4で説明する。
The structure of the above-mentioned infrared sensor 18, ie, the chip 20 as a thermopile, will be explained with reference to FIGS. 3 and 4.

【0020】図3はチップ20の拡大平面図、図4はチ
ップ20の断面構造図を示すもので、人体13等から放
射された赤外放射14はSi3 N4 (窒化シリコン
)とSiO2 (酸化シリコン)並びにSi3 N4 
の三層からなる数ミクロン厚の熱伝導率の低い薄膜21
上に形成した1mm×1mmの正方形状の金黒体22上
に照射される。
FIG. 3 is an enlarged plan view of the chip 20, and FIG. 4 is a cross-sectional view of the chip 20. Infrared radiation 14 emitted from the human body 13, etc. ) and Si3 N4
A thin film 21 with a thickness of several microns and low thermal conductivity consisting of three layers of
The light is irradiated onto a 1 mm x 1 mm square gold-black body 22 formed above.

【0021】この金黒体22は人体13からの赤外放射
の熱を吸収し、この部分の温度をわずかに上昇させる。 薄膜21は熱伝導率が低いので金黒体22が吸収した熱
は周囲に逃げることはほとんど無い。
[0021] This gold-black body 22 absorbs the heat of infrared radiation from the human body 13, and slightly increases the temperature of this part. Since the thin film 21 has a low thermal conductivity, almost no heat absorbed by the gold-black body 22 escapes to the surroundings.

【0022】上述の薄膜21は熱伝導率のよいシリコン
基板23上に形成され、金黒体22の形成される部分の
シリコン基板23には開口25が穿たれているのでシリ
コン基板側に金黒体22の熱は逃げない構成となってい
る。
The above-mentioned thin film 21 is formed on a silicon substrate 23 having good thermal conductivity, and since an opening 25 is made in the silicon substrate 23 in the area where the gold-black body 22 is formed, the gold-black body is formed on the silicon substrate side. The structure is such that the heat of the body 22 does not escape.

【0023】シリコン基板23の薄膜22が形成される
反対側の面にはSi3 N4 膜24が形成される、こ
のシリコン基板23は通常のSiO2 薄膜に比べて1
00倍近い熱伝導率を有し、金黒体22の近傍に配設さ
れる高感度の熱電対26の温接点に対する冷接点のヒー
トシンクとして機能する。又、薄膜21内のSiO2 
はSi3 N4 の強度確保に用いられ、シリコン基板
23の裏側のSi3 N4 膜24はシリコン基板23
のエッチング時のストッパーとして機能する。
A Si3 N4 film 24 is formed on the opposite surface of the silicon substrate 23 on which the thin film 22 is formed.
It has a thermal conductivity of nearly 0.00 times, and functions as a heat sink for the cold junction of the highly sensitive thermocouple 26 disposed near the gold-black body 22 . Moreover, SiO2 in the thin film 21
is used to ensure the strength of Si3 N4, and the Si3 N4 film 24 on the back side of the silicon substrate 23 is
Functions as a stopper during etching.

【0024】熱電対26は、InSb(インジウム・ア
ンチモン)とTe(テルル)で構成され、シリコン基板
23の残っている部分に設けて、熱をよく逃がすように
する。熱電対26はゼーベック効果を利用するものであ
るが、金黒体22の温度上昇は500°の物体からの赤
外放射でも1度以下であるので熱電対26の温接点28
の温度を少しでも高くし、冷接点27の温度を室温に近
づけ両接点間の温度差を大きくし、熱電対26の起電力
を上げる必要がある。熱電対26の単位当たりの起電力
は小さいために56対の熱電対を直列に接続して図3に
示す様に金黒体22の四方に熱電堆として配設する様な
パターニングを行っている。尚、図4で29は保複膜と
してのSiO2 である。
The thermocouple 26 is made of InSb (indium antimony) and Te (tellurium), and is provided on the remaining portion of the silicon substrate 23 to allow heat to dissipate well. The thermocouple 26 utilizes the Seebeck effect, but since the temperature rise of the gold-black body 22 is less than 1 degree even with infrared radiation from an object at 500°, the hot junction 28 of the thermocouple 26
It is necessary to increase the temperature of the cold junction 27 as much as possible, bring the temperature of the cold junction 27 closer to room temperature, increase the temperature difference between the two junctions, and increase the electromotive force of the thermocouple 26. Since the electromotive force per unit of the thermocouple 26 is small, 56 pairs of thermocouples are connected in series and patterned to form a thermopile on all sides of the gold-black body 22, as shown in FIG. . In FIG. 4, numeral 29 represents SiO2 as a protective film.

【0025】本例では上述の如きチップ20のシリコン
基板23上に温度補正素子としてのサーミスタ19を同
時にパターニングするか、前記した様に基板16に個別
のサーミスタ19を取り付ける様にすることで体温計1
2のケーシング11(室温)を計測する。
In this example, the thermometer 1 is formed by patterning the thermistor 19 as a temperature correction element on the silicon substrate 23 of the chip 20 as described above, or by attaching individual thermistors 19 to the substrate 16 as described above.
Measure the casing 11 (room temperature) of No. 2.

【0026】図5は、サーミスタ19の基本接続を示す
ものでサーミスタ19に電池電源Bより電流を流し、温
度の変化を基準抵抗Roの両端の電圧に変換して検出電
圧Voutを検出出力として取り出している。
FIG. 5 shows the basic connection of the thermistor 19. A current is passed through the thermistor 19 from the battery power source B, the change in temperature is converted into a voltage across the reference resistor Ro, and the detected voltage Vout is taken out as a detected output. ing.

【0027】以下、図6及び図7によって本発明の体温
計の回路及びその動作を説明する。
The circuit and operation of the thermometer of the present invention will be explained below with reference to FIGS. 6 and 7.

【0028】図6で18は赤外センサとしてのサーモパ
イルであり、19はサーミスタ等の温度補正素子である
。これら両素子18及び19の出力は前置増幅器29及
び30で増幅された後にリニアライザ31及び32に供
給される。
In FIG. 6, 18 is a thermopile as an infrared sensor, and 19 is a temperature correction element such as a thermistor. The outputs of both elements 18 and 19 are amplified by preamplifiers 29 and 30 and then supplied to linearizers 31 and 32.

【0029】一般に黒体から放射されたエネルギーはス
テファン・ボルツマンの法則に従い、黒体の温度を絶対
温度でT度、赤外線センサの金黒体22の温度をTo度
とするとT4 −To4 に比例したエネルギーを吸収
することになり、起電力の換算によって体温の測定を行
なうことが出来る。又、室温より低い温度の場合は温接
点28と冷接点27の温度が逆になり、負の出力が得ら
れる。これらの場合の温度対起電力の出力特性は正確に
直線的ではない。
In general, the energy radiated from a black body follows the Stefan-Boltzmann law, and is proportional to T4 - To4, where the temperature of the black body is T degrees in absolute temperature and the temperature of the gold black body 22 of the infrared sensor is To degrees. Energy is absorbed, and body temperature can be measured by converting the electromotive force. Further, when the temperature is lower than room temperature, the temperatures of the hot junction 28 and the cold junction 27 are reversed, and a negative output is obtained. The output characteristics of temperature versus electromotive force in these cases are not exactly linear.

【0030】同様にサーミスタ等の温度補正素子19の
温度対起電力の変化も直線性を示さないために共にリニ
アライザ31及び32によって、その出力特性を校正す
る。
Similarly, since the change in temperature vs. electromotive force of the temperature correction element 19 such as a thermistor does not exhibit linearity, the output characteristics thereof are calibrated using linearizers 31 and 32.

【0031】即ち、リニアライザ31では赤外センサ1
8の冷接点27の温度(体温計12のケーシング11の
温度、即ち温度補正素子19の温度)が例えば、20℃
の時に人体13の体温として36.5℃を測定した時の
出力が例えば、16.5で、冷接点27の温度が例えば
、22℃になった時に36.5℃の人体13を測定した
とすればこの時の出力は14.5になる様にすればよい
That is, in the linearizer 31, the infrared sensor 1
8 (the temperature of the casing 11 of the thermometer 12, that is, the temperature of the temperature correction element 19) is, for example, 20°C.
When the temperature of the human body 13 is 36.5°C, the output is, for example, 16.5, and when the temperature of the cold junction 27 is, for example, 22°C, the human body 13 is measured at 36.5°C. Then, the output at this time should be 14.5.

【0032】同時にリニアライザ31では温度補正素子
のサーミスタ19の温度(体温計12のケーシング11
の温度)が20℃の時は20の出力が22℃の時は22
の出力が出る様に直線的に校正する。
At the same time, in the linearizer 31, the temperature of the thermistor 19 of the temperature correction element (the casing 11 of the thermometer 12
When the temperature of
Calibrate linearly so that the output is obtained.

【0033】リニアライザ31及び32で直線化された
出力電圧は加算回路33で加算される即ち、図7に示す
様に温度補正用素子19からの各時間に於ける基板16
又はチップ20のシリコン基板23(室温)即ち、ケー
シング11の測定温度38と赤外センサ18、即ちチッ
プ20に人体13から放射された赤外放射を非接触状態
で測定した温度39とが加算される。
The output voltages linearized by the linearizers 31 and 32 are added by an adder circuit 33, that is, as shown in FIG.
Or, the silicon substrate 23 of the chip 20 (at room temperature), that is, the measured temperature 38 of the casing 11, and the infrared sensor 18, that is, the temperature 39 measured in a non-contact state of the infrared radiation emitted from the human body 13 to the chip 20. Ru.

【0034】この加算出力はA/D変換回路35でデジ
タルデータに変換されてマイクロコンピュータ(以下C
PUと記す)34に供給されメモリ37に記憶されると
共にLCD10に表示される。メモリは何人ものデータ
を記録せずに取り込んだり、経時的に体温を計測する時
などにCPU34と共に用いられる。
This addition output is converted into digital data by the A/D conversion circuit 35 and then sent to a microcomputer (hereinafter referred to as C
(denoted as PU) 34, stored in the memory 37, and displayed on the LCD 10. The memory is used together with the CPU 34 to capture data on multiple people without recording it or to measure body temperature over time.

【0035】本例では赤外センサ18即ち、チップ20
を用いているので体温温度領域における温度分解能は0
.05℃程度と高く、応答速度も0.5mm/Sec〜
10mm/Secとハイレスポンスでリアルタイムに計
測が可能である。
In this example, the infrared sensor 18, that is, the chip 20
is used, so the temperature resolution in the body temperature range is 0.
.. The temperature is as high as 0.5℃, and the response speed is 0.5mm/Sec~
Real-time measurement is possible with a high response rate of 10 mm/Sec.

【0036】図8は本発明のチップ近傍の他の実施例を
示すもので40は熱伝導率の極めてよい、シリコン基板
で、エッチングした穴内に図3及び図4で説明した赤外
センサ18のチップ20並びに温度補正素子としてのサ
ーミスタ19を配設して、配線を施し、集光レンズ41
を覆せたものである。集光レンズ41にチップ20及び
温度補正素子19を埋め込む様にしてもよい、勿論、集
光レンズは赤外線のみを通すGe等を用いる様にしたも
のである。
FIG. 8 shows another embodiment near the chip of the present invention, where 40 is a silicon substrate with extremely good thermal conductivity, and the infrared sensor 18 explained in FIGS. 3 and 4 is placed in the etched hole. A chip 20 and a thermistor 19 as a temperature correction element are arranged, wiring is performed, and a condenser lens 41 is installed.
It was possible to overturn this. The chip 20 and the temperature correction element 19 may be embedded in the condenser lens 41. Of course, the condenser lens may be made of Ge or the like that transmits only infrared rays.

【0037】上述の実施例では温度補正素子としてサー
ミスタ19を用いた例を説明したが、サーミスタ19の
代わりに半導体の温度特性を利用したICセンサ(例え
ばLN35DZ)等を用いることでリニアライザ32を
不用にすることも出来る。また、図2における窓15に
赤外透過レンズを用いることにより、集光効果が上がる
ことは云うまでもない。
In the above embodiment, the thermistor 19 was used as the temperature correction element, but the linearizer 32 can be omitted by using an IC sensor (for example, LN35DZ) that utilizes the temperature characteristics of a semiconductor instead of the thermistor 19. It is also possible to Furthermore, it goes without saying that by using an infrared transmitting lens for the window 15 in FIG. 2, the light condensing effect is improved.

【0038】[0038]

【発明の効果】本発明の体温計によれば接触型としても
非接触型としても使用することが出来、測定箇所の近傍
に触れても短時間(ほとんど瞬間的)に体温の測定が正
確に出来るものが得られる。
[Effects of the Invention] The thermometer of the present invention can be used as a contact type or a non-contact type, and can accurately measure body temperature in a short time (almost instantaneously) even if it is touched near the measurement point. You can get something.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の体温計の一実施例を示す構成図である
FIG. 1 is a configuration diagram showing an embodiment of a thermometer of the present invention.

【図2】本発明の体温計に用いる検出部のA部拡大断面
図である。
FIG. 2 is an enlarged sectional view of section A of the detection section used in the thermometer of the present invention.

【図3】本発明の体温計に用いる赤外センサのチップの
平面図である。
FIG. 3 is a plan view of an infrared sensor chip used in the thermometer of the present invention.

【図4】本発明の体温計に用いる赤外センサのチップの
断面構造図である。
FIG. 4 is a cross-sectional structural diagram of an infrared sensor chip used in the thermometer of the present invention.

【図5】本発明に用いる温度補正素子の動作回路図であ
る。
FIG. 5 is an operational circuit diagram of a temperature correction element used in the present invention.

【図6】本発明の体温計の一実施例を示す系統図である
FIG. 6 is a system diagram showing an embodiment of the thermometer of the present invention.

【図7】本発明の体温計の温度測定特性図である。FIG. 7 is a temperature measurement characteristic diagram of the thermometer of the present invention.

【図8】本発明の体温計に用いるチップの他の構成図で
ある。
FIG. 8 is another configuration diagram of the chip used in the thermometer of the present invention.

【図9】従来の体温計の平衡温予測(曲線回帰)特性図
である。
FIG. 9 is an equilibrium temperature prediction (curve regression) characteristic diagram of a conventional thermometer.

【図10】従来の体温計の平衡温予測(上乗せ量予測)
特性図である。
[Figure 10] Equilibrium temperature prediction of conventional thermometer (additional amount prediction)
It is a characteristic diagram.

【符号の説明】[Explanation of symbols]

7  検出部 10  LCD 11  ケーシング 13  人体 18  赤外センサ 19  温度補正素子 20  チップ 26  熱電対 7 Detection section 10 LCD 11 Casing 13 Human body 18 Infrared sensor 19 Temperature correction element 20 chips 26 Thermocouple

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  赤外センサ及び温度補正素子とを有し
てなることを特徴とする体温計
[Claim 1] A thermometer comprising an infrared sensor and a temperature correction element.
【請求項2】  赤外センサを一端に有する体温計にお
いて、上記赤外センサが配設される基部の温度を計測す
る温度補正素子とを具備し、上記赤外センサの検出出力
と上記温度補正素子の検出出力とを演算した演算結果を
表示させてなることを特徴とする体温計。
2. A thermometer having an infrared sensor at one end, further comprising a temperature correction element for measuring the temperature of a base on which the infrared sensor is disposed, and a temperature correction element that measures the temperature of a base on which the infrared sensor is disposed, and a detection output of the infrared sensor and the temperature correction element. A thermometer characterized by displaying a calculation result obtained by calculating the detection output of.
JP3064616A 1991-03-28 1991-03-28 Clinical thermometer Pending JPH04299225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3064616A JPH04299225A (en) 1991-03-28 1991-03-28 Clinical thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3064616A JPH04299225A (en) 1991-03-28 1991-03-28 Clinical thermometer

Publications (1)

Publication Number Publication Date
JPH04299225A true JPH04299225A (en) 1992-10-22

Family

ID=13263371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3064616A Pending JPH04299225A (en) 1991-03-28 1991-03-28 Clinical thermometer

Country Status (1)

Country Link
JP (1) JPH04299225A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258137A (en) * 1993-03-04 1994-09-16 Matsushita Electric Ind Co Ltd Pyroelectric infrared ray sensor
US7014358B2 (en) * 2001-02-19 2006-03-21 Braun Gmbh Radiation thermometer comprising a heated measuring tip
US7036978B2 (en) 2000-06-13 2006-05-02 Omron Corporation Pyrometer
US7249884B2 (en) * 2005-01-07 2007-07-31 Keyence Corporation Radiation thermometer
JP2009268676A (en) * 2008-05-07 2009-11-19 Oki Communication Systems Co Ltd Biological information monitoring system and biological information terminal
US7927012B2 (en) 2003-01-06 2011-04-19 Covidien Ag Probe cover cassette with improved probe cover support
JP2021083482A (en) * 2019-11-25 2021-06-03 株式会社村田製作所 Device for measuring inside of oral cavity and system for measuring inside of oral cavity

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258137A (en) * 1993-03-04 1994-09-16 Matsushita Electric Ind Co Ltd Pyroelectric infrared ray sensor
US7036978B2 (en) 2000-06-13 2006-05-02 Omron Corporation Pyrometer
US7380981B2 (en) * 2000-06-13 2008-06-03 Omron Healthcare Co., Ltd. Radiation thermometer
US7434992B2 (en) 2000-06-13 2008-10-14 Omron Healthcare Co., Ltd. Radiation thermometer
US7014358B2 (en) * 2001-02-19 2006-03-21 Braun Gmbh Radiation thermometer comprising a heated measuring tip
US7927012B2 (en) 2003-01-06 2011-04-19 Covidien Ag Probe cover cassette with improved probe cover support
US7249884B2 (en) * 2005-01-07 2007-07-31 Keyence Corporation Radiation thermometer
JP2009268676A (en) * 2008-05-07 2009-11-19 Oki Communication Systems Co Ltd Biological information monitoring system and biological information terminal
JP2021083482A (en) * 2019-11-25 2021-06-03 株式会社村田製作所 Device for measuring inside of oral cavity and system for measuring inside of oral cavity
JP2022188196A (en) * 2019-11-25 2022-12-20 株式会社村田製作所 Device for measuring inside of oral cavity and system for measuring inside of oral cavity

Similar Documents

Publication Publication Date Title
US6751497B2 (en) Infrared thermometer
JP2826337B2 (en) Radiation thermometer
CN101103907B (en) Thermal tympanic thermometer
KR100205384B1 (en) Infrared sensor and method of temperature compensation
JP2008145133A (en) Radiation thermometer
US6637931B2 (en) Probe for use in an infrared thermometer
JPH04299225A (en) Clinical thermometer
TW200936996A (en) Temperature sensing module
JPH0666639A (en) Infrared thermometer
JP2828258B2 (en) Radiation thermometer
JP2006105651A (en) Thermopile element and infrared sensor using it
JP4580562B2 (en) Non-contact temperature sensor and infrared thermometer using the same
JP2003294526A (en) Laser power detection device
JP2005148038A (en) Non-contact infrared radiation thermometer
JP3303786B2 (en) Bolometer type infrared sensor
JP3388207B2 (en) Thermoelectric sensor device and method of manufacturing the same
JP2003254824A (en) Infrared sensor device, non-contacting temperature measuring instrument, and non-contacting clinical thermometer
JP3855458B2 (en) Radiation temperature detector
JP3338456B2 (en) Radiation thermometer and method of measuring temperature of radiation thermometer
JP2856753B2 (en) Infrared sensor
JP2001091360A (en) Radiation temperature detecting element
KR101578374B1 (en) Thermopile sensor module
JPH08278203A (en) Infrared ray radiation thermometer
JPH11258040A (en) Thermopile type infrared ray sensor
JP3750340B2 (en) Radiation temperature detector