JPH04298602A - Steam turbine starting equipment - Google Patents

Steam turbine starting equipment

Info

Publication number
JPH04298602A
JPH04298602A JP8583191A JP8583191A JPH04298602A JP H04298602 A JPH04298602 A JP H04298602A JP 8583191 A JP8583191 A JP 8583191A JP 8583191 A JP8583191 A JP 8583191A JP H04298602 A JPH04298602 A JP H04298602A
Authority
JP
Japan
Prior art keywords
steam
turbine
pressure turbine
boiler
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8583191A
Other languages
Japanese (ja)
Inventor
Yukio Shinozaki
篠崎 幸雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP8583191A priority Critical patent/JPH04298602A/en
Publication of JPH04298602A publication Critical patent/JPH04298602A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To shorten the time required for starting until a steam turbine reaches target load by supplying low temperature steam to a low pressure turbine after a boiler is ignited to start the steam turbine, and by supplying steam to an intermediate pressure turbine and a high pressure turbine sequentially in accordance with rise of boiler steam temperature. CONSTITUTION:A high pressure bypass control valve 15 which is opened or closed to control the amount of main steam which is bypassed from an inlet of a high pressure turbine 3 to a boiler 1 when a steam turbine is started in accordance with the temperature of main steam is installed in a high pressure bypass pipe 14. Also, an intermediate pressure bypass control valve 17 which is opened or closed to control the amount of reheated steam at an inlet of an intermediate pressure turbine 6 which is bypassed to an outlet and supplied to a low pressure turbine 8 when the steam turbine is started in accordance with the temperature of reheated steam at the inlet of the intermediate pressure turbine 6 is installed in an intermediate pressure bypass pipe 16. Since it is possible to supply low temperature steam to the low pressure turbine 8 after the boiler 1 is ignited to start the steam turbine and to the intermediate pressure turbine 6 and the high pressure turbine 3 sequentially in accordance with rise of steam temperature of the boiler 1, the time required for starting can be shortened.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【産業上の利用分野】本発明は、発電プラントの蒸気タ
ービンを短時間で起動させる蒸気タービン起動装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steam turbine starting device for starting a steam turbine of a power plant in a short time.

【0002】0002

【従来の技術】図5に従来の発電プラントの蒸気タービ
ン起動装置を示す。
2. Description of the Related Art FIG. 5 shows a conventional steam turbine starting device for a power plant.

【0003】ボイラ1で発生した蒸気は、主蒸気管2を
通って高圧タービン3に導入され、高圧タービン3を駆
動させる。高圧タービン3内で仕事をして圧力、温度が
低下した蒸気は高圧タービン出口蒸気管4を通って、再
びボイラ1に導かれる。
[0003] Steam generated in the boiler 1 is introduced into a high pressure turbine 3 through a main steam pipe 2, and drives the high pressure turbine 3. The steam whose pressure and temperature have been lowered by doing work in the high-pressure turbine 3 passes through the high-pressure turbine outlet steam pipe 4 and is led to the boiler 1 again.

【0004】ボイラ1で再熱されて昇温した蒸気は、再
熱蒸気管5を通って中圧タービン6に導かれ、中圧ター
ビン6を駆動させる。中圧タービン6内で仕事をして圧
力、温度が低下した蒸気は、連絡蒸気管7を通って低圧
タービン8に導入され、この低圧タービン8を駆動させ
る。
[0004] Steam whose temperature has been raised by being reheated in the boiler 1 is led to an intermediate pressure turbine 6 through a reheat steam pipe 5, and drives the intermediate pressure turbine 6. Steam whose pressure and temperature have been reduced by performing work in the intermediate pressure turbine 6 is introduced into the low pressure turbine 8 through the connecting steam pipe 7, and drives the low pressure turbine 8.

【0005】大型蒸気タービンでは、通常2台の低圧タ
ービン8を有しており、連絡蒸気管7が2本の構造のも
のと、1本の連絡蒸気管が分岐する構造のものとがある
[0005] A large steam turbine usually has two low-pressure turbines 8, and there are two types of steam turbines, one having two connecting steam pipes 7, and the other having a structure in which one connecting steam pipe branches.

【0006】その後、低圧タービン8の出口蒸気は、復
水器9に導かれる。
[0006] Thereafter, the outlet steam of the low pressure turbine 8 is guided to a condenser 9.

【0007】なお、高圧タービン3の入口には主蒸気止
め弁10と蒸気加減弁11が設置され、中圧タービン6
の入口には再熱蒸気止め弁12が設置されている。さら
に、上記したタービンの主軸に発電機13が連絡してい
る。
[0007] A main steam stop valve 10 and a steam control valve 11 are installed at the inlet of the high pressure turbine 3.
A reheat steam stop valve 12 is installed at the inlet. Furthermore, a generator 13 is connected to the main shaft of the turbine.

【0008】次に、タービンが停止状態から通気して定
格発電出力に達するまでの起動時の手順を説明する。
[0008] Next, the procedure for starting the turbine from a stopped state until it ventilates and reaches the rated power generation output will be explained.

【0009】まず、ボイラ1に点火をして、ボイラ1内
の給水を昇温し蒸気を発生させる。タービンに通気する
条件としては、ボイラ1で発生した蒸気が所定の温度に
達する必要がある。その理由は、タービンの部品、特に
、タービン回転軸の金属温度と蒸気温度との差を小さく
して通気時に発生する熱応力を限度内に抑えるためであ
る。
First, the boiler 1 is ignited to raise the temperature of the feed water in the boiler 1 and generate steam. The condition for ventilating the turbine is that the steam generated in the boiler 1 must reach a predetermined temperature. The reason for this is to reduce the difference between the metal temperature of the turbine parts, especially the turbine rotating shaft, and the steam temperature to suppress the thermal stress generated during ventilation to within limits.

【0010】ボイラ1の発生蒸気が所定の温度に達した
後に、高圧タービン3に蒸気が通気されるが、この通気
に先行して蒸気加減弁11と再熱蒸気止め弁12とを全
開とし、主蒸気止め弁10を徐々に開ける。これにより
蒸気が高圧タービン3へ通気され、高圧タービン3が回
転を開始する。タービンが回転を開始した後に、定格発
電出力の10%以下の低負荷運転では、主蒸気止め弁1
0により蒸気量を制御して運転が行われる。この蒸気量
としては少量であるから、主蒸気止め弁10の内部に小
さな副弁を設けて、この副弁を用いて蒸気量を精度良く
制御する手段が多く採用されている。
After the steam generated by the boiler 1 reaches a predetermined temperature, the steam is vented to the high-pressure turbine 3. Prior to this venting, the steam control valve 11 and the reheat steam stop valve 12 are fully opened. Gradually open the main steam stop valve 10. As a result, steam is vented to the high-pressure turbine 3, and the high-pressure turbine 3 starts rotating. After the turbine starts rotating, in low-load operation of 10% or less of the rated power output, the main steam stop valve 1
Operation is performed with the steam amount controlled by 0. Since this amount of steam is small, many methods are used to provide a small sub-valve inside the main steam stop valve 10 and use this sub-valve to control the amount of steam with high precision.

【0011】定格発電出力の10%以上の負荷運転をす
るために、主蒸気止め弁10の替わりに蒸気加減弁11
を絞って蒸気量を制御する運転に切り替える。この蒸気
加減弁11は数個の弁で構成されており、多量の蒸気を
高精度に流量制御できるようになっている。この切替操
作はFA・PA切替(全周噴射から部分噴射への切替え
)と呼ばれる。FA・PA切替後は、蒸気加減弁11を
徐々に開けて負荷を上昇させる。
In order to perform load operation of 10% or more of the rated power generation output, a steam control valve 11 is used instead of the main steam stop valve 10.
Switch to operation where the amount of steam is controlled by restricting the amount of steam. This steam control valve 11 is composed of several valves, and is capable of controlling the flow rate of a large amount of steam with high precision. This switching operation is called FA/PA switching (switching from full-circle injection to partial injection). After switching between FA and PA, the steam control valve 11 is gradually opened to increase the load.

【0012】ところで、今日電力需要は昼間に高く、夜
間は低く、その需要差は近年増えている。そのため、上
記した火力発電用蒸気タービンでは昼間は定格負荷で運
転され、夜間は停止した運用をする、いわゆる、DSS
運用(DailyStart  Stop運用)が多く
行われている。
[0012] Nowadays, the demand for electricity is high during the day and low at night, and the difference in demand has been increasing in recent years. For this reason, the steam turbines for thermal power generation mentioned above are operated at rated load during the day and are stopped at night, which is called DSS.
Many operations (Daily Start Stop operations) are being carried out.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上記し
た従来の蒸気タービン起動装置には、次の問題がある。
However, the conventional steam turbine starting device described above has the following problems.

【0014】DSS運用においては、蒸気タービンの起
動時間の短縮の必要性が高いが従来の蒸気タービン起動
装置ではDSS運用に十分対応ができないという問題が
ある。即ち、この場合、解列から次の起動までの停止時
間が通常8時間程度と短時間のため高圧タービン3の回
転軸や中圧タービン6の回転軸の温度が高い。このため
ボイラ1を点火して所定の蒸気温度に達するまで通気を
待つ必要がある。
[0014] In DSS operation, there is a strong need to shorten the startup time of the steam turbine, but there is a problem in that conventional steam turbine startup devices cannot adequately respond to DSS operation. That is, in this case, since the stop time from decoupling to the next start-up is usually about 8 hours, which is a short time, the temperature of the rotating shaft of the high-pressure turbine 3 and the rotating shaft of the intermediate-pressure turbine 6 is high. Therefore, it is necessary to ignite the boiler 1 and wait for ventilation until a predetermined steam temperature is reached.

【0015】これを図6を参照して説明すると、t0時
点でボイラ1が点火され、主蒸気温度Tが所定の蒸気温
度のt1時点のとき通気される。このボイラ1の点火か
ら通気までの所要時間は約1時間である。次にタービン
に通気がされ、徐々にタービンの回転数Nが上昇してt
2時点で定格回転数となる。続いて、t3時点で負荷に
併入し、負荷Pの上昇に伴いt4時点になると、FA・
PA切替えをする。その後、負荷Pは、さらに上昇して
t5時点になると定格負荷となる。
To explain this with reference to FIG. 6, the boiler 1 is ignited at time t0, and vented when the main steam temperature T reaches a predetermined steam temperature at time t1. The time required from ignition to ventilation of the boiler 1 is about 1 hour. Next, the turbine is ventilated, and the rotational speed N of the turbine gradually increases until t.
The rated rotation speed is reached at point 2. Subsequently, at time t3, it joins the load, and as the load P increases, at time t4, FA・
Switch the PA. Thereafter, the load P further increases and reaches the rated load at time t5.

【0016】ところで、ボイラ1の蒸気温度が低い状態
でタービンに通気した場合には、高圧タービン3および
中圧タービン6の回転軸の金属温度が通気直後に冷却さ
れ、その後に、ボイラ1の昇温により蒸気温度も上昇し
、その結果回転軸の金属温度も上昇する。このように通
気直後にタービンの回転軸の金属温度が一旦低下した後
に、定格温度まで温度上昇するため、起動過程の温度変
化幅と温度変化率が大きくなり、発生熱応力も大きくな
るから、負荷上昇率に制限を生じる。従って、結果的に
定格負荷に到達するまでの時間が長くなる。
By the way, when the turbine is vented while the steam temperature of the boiler 1 is low, the metal temperature of the rotating shafts of the high-pressure turbine 3 and the intermediate-pressure turbine 6 is cooled immediately after the venting, and then the boiler 1 is raised. The temperature of the steam also increases due to the increased temperature, and as a result, the temperature of the metal of the rotating shaft also increases. In this way, the metal temperature of the rotating shaft of the turbine once drops immediately after ventilation, and then rises to the rated temperature, which increases the temperature change width and temperature change rate during the startup process, and the generated thermal stress increases. This will limit the rate of increase. Therefore, as a result, it takes longer to reach the rated load.

【0017】以上のように従来の装置では、夜間停止後
に再起動する際にボイラ点火から目標負荷に達するまで
の時間が長時間を要するという問題があった。
As described above, the conventional apparatus has a problem in that it takes a long time from ignition of the boiler until the target load is reached when the apparatus is restarted after a nighttime shutdown.

【0018】そこで、本発明は、ボイラの点火から目標
負荷に到達までの起動所要時間を短縮することができる
蒸気タービン起動装置を提供することを目的とする。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a steam turbine starting device that can shorten the time required for starting the boiler from ignition to reaching the target load.

【0019】[発明の構成][Configuration of the invention]

【課題を解決するための手段】本発明は、ボイラで発生
した蒸気で駆動される高圧タービンと、この高圧タービ
ンの出口蒸気をボイラで再熱し、この再熱蒸気で駆動さ
れる中圧タービンと、この中圧タービンの出口蒸気で駆
動される低圧タービンと、これらのタービンの動力を電
気出力に変換する発電機で構成される火力発電設備の蒸
気タービン起動装置において、高圧タービンの入口の主
蒸気管と高圧タービンの出口蒸気管とを結合する高圧バ
イパス管と、この高圧バイパス管に配置され蒸気タービ
ン起動時に高圧タービンの入口からボイラへ主蒸気をバ
イパスさせる量を主蒸気の温度に応じて開閉制御するた
めの高圧バイパス制御弁と、中圧タービンの入口の再熱
蒸気管と中圧タービンの出口とを結合する中圧バイパス
管と、この中圧バイパス管に配置され蒸気タービン起動
時に中圧タービンの入口の再熱蒸気を中圧タービンの出
口へバイパスさせ低圧タービンに通気させる量を中圧タ
ービンの入口の再熱蒸気の温度に応じて開閉制御するた
めの中圧バイパス制御弁とを設けるようにしたものであ
る。
[Means for Solving the Problems] The present invention provides a high-pressure turbine that is driven by steam generated in a boiler, and an intermediate-pressure turbine that reheats the outlet steam of the high-pressure turbine in the boiler and is driven by the reheated steam. In a steam turbine startup device for thermal power generation equipment, which consists of a low-pressure turbine driven by the outlet steam of this intermediate-pressure turbine and a generator that converts the motive power of these turbines into electrical output, the main steam at the inlet of the high-pressure turbine is A high-pressure bypass pipe that connects the pipe and the outlet steam pipe of the high-pressure turbine, and a system that opens and closes the amount of main steam bypassed from the inlet of the high-pressure turbine to the boiler depending on the temperature of the main steam when the steam turbine is started. a high-pressure bypass control valve for controlling; an intermediate-pressure bypass pipe that connects the reheat steam pipe at the inlet of the intermediate-pressure turbine and the outlet of the intermediate-pressure turbine; An intermediate pressure bypass control valve is provided for controlling the opening and closing of the amount of reheated steam at the inlet of the turbine bypassed to the outlet of the intermediate pressure turbine and vented to the low pressure turbine in accordance with the temperature of the reheated steam at the inlet of the intermediate pressure turbine. This is how it was done.

【0020】[0020]

【作用】上記構成により、蒸気タービンのホット状態の
起動において、ボイラを点火した後、低温の主蒸気をボ
イラにバイパスさせ再熱する一方、再熱温度が比較的低
い所定の温度となったとき、再熱蒸気を低圧タービンに
通気して起動させる。さらに、ボイラの蒸気温度の上昇
に従って中圧タービンおよび高圧タービンに順次通気し
て運転する。この結果、ボイラ点火の直後の再熱蒸気が
比較的低温度のときに通気できることから起動所要時間
の短縮が図れる。
[Operation] With the above configuration, when the steam turbine is started in a hot state, after the boiler is ignited, the low-temperature main steam is bypassed to the boiler and reheated, and when the reheat temperature reaches a relatively low predetermined temperature. , the reheated steam is vented to the low pressure turbine for startup. Further, as the steam temperature of the boiler increases, the intermediate pressure turbine and the high pressure turbine are sequentially vented and operated. As a result, the reheated steam immediately after ignition of the boiler can be vented when the temperature is relatively low, thereby reducing the time required for startup.

【0021】[0021]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the drawings.

【0022】図1は、本発明の第一実施例を示す蒸気タ
ービン起動装置のブロック構成図である。図5と同一符
号は、同一部分または相当部分を示す。図5と異なる点
は、主蒸気管2と高圧タービン出口蒸気管4を結合しバ
イパスする高圧バイパス管14と、高圧バイパス制御弁
15と、再熱蒸気管5と中圧タービン6の出口を結合し
バイパスする中圧バイパス管16と、中圧バイパス制御
弁17と、さらに主蒸気温度計18および再熱蒸気温度
計19を備えた点である。
FIG. 1 is a block diagram of a steam turbine starting device showing a first embodiment of the present invention. The same reference numerals as in FIG. 5 indicate the same or equivalent parts. The differences from FIG. 5 include a high-pressure bypass pipe 14 that connects and bypasses the main steam pipe 2 and the high-pressure turbine outlet steam pipe 4, a high-pressure bypass control valve 15, and a high-pressure bypass control valve 15 that connects the reheat steam pipe 5 and the outlet of the intermediate-pressure turbine 6. It is equipped with an intermediate-pressure bypass pipe 16 for bypassing, an intermediate-pressure bypass control valve 17, a main steam thermometer 18, and a reheat steam thermometer 19.

【0023】次に、図2に示す本実施例の起動パターン
を参照してタービンの起動の手順を説明する。まず、夜
間停止後のホット状態で起動するとき、ボイラ1をt0
時点で点火し、蒸気加減弁11を開け、再熱蒸気止め弁
12を全閉とする。また、その他の弁は全閉としておく
。ところで、このとき、図5で説明した従来の起動では
再熱蒸気止め弁12も開いていた。
Next, the procedure for starting the turbine will be explained with reference to the starting pattern of this embodiment shown in FIG. First, when starting up in a hot state after shutting down at night, boiler 1 is set to t0.
At this point, the steam is ignited, the steam control valve 11 is opened, and the reheat steam stop valve 12 is fully closed. Also, keep all other valves fully closed. By the way, at this time, the reheat steam stop valve 12 was also open in the conventional startup explained in FIG.

【0024】ボイラ1を点火して低温の蒸気が発生した
後、直ちに高圧バイパス制御弁15を開け、この低温の
蒸気をボイラ1へ再び戻して再熱する。この再熱蒸気も
当初低温であるが、低圧タービン8の回転軸の金属温度
程度(入口部で200℃程度)には短時間で昇温される
Immediately after the boiler 1 is ignited and low-temperature steam is generated, the high-pressure bypass control valve 15 is opened, and this low-temperature steam is returned to the boiler 1 and reheated. This reheated steam is also initially at a low temperature, but its temperature is raised to about the metal temperature of the rotating shaft of the low-pressure turbine 8 (about 200° C. at the inlet) in a short time.

【0025】再熱蒸気が再熱蒸気温度計19の計測によ
り、約200℃程度の温度に到達した後、t1時点で直
ちに中圧バイパス制御弁17を開けて再熱蒸気を中圧タ
ービン6の出口を通して低圧タービン8に通気する。こ
のとき、タービン回転数Nの上昇を監視しながら中圧バ
イパス制御弁17の開度制御をする。なお、低圧タービ
ン8に通気された蒸気によってタービンの回転数Nは上
昇し、定格回転数まで昇速できるように、高圧バイパス
制御弁15と中圧バイパス制御弁17の容量が決められ
ている。このタービン昇速には通常20分から30分を
要する。この間にも、主蒸気の温度は時間の経過と共に
上昇する。その上、主蒸気は高圧バイパス制御弁15に
よりバイパスされ主蒸気の流速が増加するから熱伝達率
が速くなり、主蒸気の温度の昇温も速くなる。
After the reheated steam reaches a temperature of about 200° C. as measured by the reheated steam thermometer 19, the intermediate pressure bypass control valve 17 is immediately opened at time t1, and the reheated steam is transferred to the intermediate pressure turbine 6. The low pressure turbine 8 is vented through the outlet. At this time, the opening degree of the intermediate pressure bypass control valve 17 is controlled while monitoring the increase in the turbine rotational speed N. The capacities of the high-pressure bypass control valve 15 and the intermediate-pressure bypass control valve 17 are determined so that the steam vented to the low-pressure turbine 8 increases the rotational speed N of the turbine to the rated rotational speed. This turbine speed up usually takes 20 to 30 minutes. During this period as well, the temperature of the main steam increases with time. Furthermore, the main steam is bypassed by the high-pressure bypass control valve 15 and the flow rate of the main steam is increased, so that the heat transfer coefficient becomes faster and the temperature of the main steam increases faster.

【0026】タービン回転数Nがt2時点で定格回転数
に達し、かつ主蒸気温度計18で計測される主蒸気温度
Tおよび再熱蒸気温度が高圧タービン3の回転軸の金属
温度および中圧タービン6の回転軸の金属温度(約30
0℃程度)に近くなったとき、高圧バイパス制御弁15
の開度制御で回転数の制御をしながら再熱蒸気止め弁1
2を徐々に開けて全開とする。これと同時に、中圧バイ
パス制御弁17を徐々に閉めて全閉とする。
When the turbine rotational speed N reaches the rated rotational speed at time t2, and the main steam temperature T and the reheated steam temperature measured by the main steam thermometer 18 are equal to the metal temperature of the rotating shaft of the high-pressure turbine 3 and the intermediate-pressure turbine The metal temperature of the rotating shaft of No. 6 (approximately 30
(approximately 0°C), the high pressure bypass control valve 15
Reheat steam stop valve 1 while controlling the rotation speed by controlling the opening of
Gradually open 2 until fully open. At the same time, the intermediate pressure bypass control valve 17 is gradually closed to be fully closed.

【0027】これに続いて主蒸気止め弁10の副弁を徐
々に開ける。同時に高圧バイパス制御弁15を徐々に閉
めて全閉とする。以上の操作は併入に先立って行うか、
または、併入した後の初負荷で行うことになるか、どち
らになるかはボイラ1で発生する蒸気温度で選択される
。即ち、主蒸気温度計18および再熱蒸気温度計19を
監視して、高圧タービン3の回転軸の金属温度および中
圧タービン6の回転軸の金属温度に近い温度になったと
きに上記の弁切替操作を行う。
Subsequently, the sub-valve of the main steam stop valve 10 is gradually opened. At the same time, the high pressure bypass control valve 15 is gradually closed to be fully closed. Are the above operations performed prior to annexation?
Or, whether it will be carried out at the initial load after joining, which is selected depending on the temperature of the steam generated in the boiler 1. That is, the main steam thermometer 18 and the reheat steam thermometer 19 are monitored, and when the temperature approaches the metal temperature of the rotating shaft of the high-pressure turbine 3 and the metal temperature of the rotating shaft of the intermediate-pressure turbine 6, the above-mentioned valve is activated. Perform the switching operation.

【0028】この弁切替完了後は、従来の起動操作とな
り、図5で説明したと同様に、まず、t3時点で併入し
、負荷Pが定格負荷の10%付近のt4時点でFA・P
A切替えをして蒸気加減弁11による制御に移行して、
目標負荷(通常は定格負荷)となるt5時点まで出力上
昇をする。
After this valve switching is completed, the conventional start-up operation is performed, and as explained in FIG.
A is switched to control using the steam control valve 11,
The output is increased until the target load (usually the rated load) is reached at time t5.

【0029】以上説明した本実施例による蒸気タービン
起動装置を用いたホット状態での起動パターンは従来の
起動パターンを示す図6と比較して分かるように、ボイ
ラ1の点火直後の低温蒸気条件時に通気できることから
、通気するまでの時間t1が短い。また、上記低圧ター
ビン8の通気により定格回転数まで上昇できるから、直
ちに併入することができる。さらに、タービン起動時高
圧バイパス制御弁15により主蒸気をバイパスさせる。 これによりボイラ1の主蒸気の流量が増加するから熱伝
達率が大きくなり、主蒸気の温度上昇も従来より速くな
る。このようにボイラ1の点火から定格負荷に達するま
での起動所要時間が短縮される。
As can be seen from the hot state starting pattern using the steam turbine starting device according to the present embodiment described above, when compared with FIG. Since ventilation is possible, the time t1 required for ventilation is short. Furthermore, since the low-pressure turbine 8 can be increased to its rated rotational speed by ventilation, it can be used immediately. Furthermore, the main steam is bypassed by the high pressure bypass control valve 15 when starting the turbine. This increases the flow rate of the main steam of the boiler 1, increasing the heat transfer coefficient and increasing the temperature of the main steam faster than before. In this way, the time required for starting up the boiler 1 from ignition to reaching the rated load is shortened.

【0030】次に、図3を参照して本発明の第二実施例
を説明する。
Next, a second embodiment of the present invention will be described with reference to FIG.

【0031】図1と異なる点は、中圧バイパス制御弁1
7の上流に復水器9に結合する配管系統20を設け、そ
の途中に低圧バイパス制御弁21を設けた点である。
The difference from FIG. 1 is that the intermediate pressure bypass control valve 1
A piping system 20 connected to the condenser 9 is provided upstream of the condenser 7, and a low pressure bypass control valve 21 is provided in the middle thereof.

【0032】この実施例は、ホット状態での起動の通気
時に、図2に示した操作手順の高圧バイパス制御弁15
と中圧バイパス制御弁17を開ける操作に加え、低圧バ
イパス制御弁21を開ける。これにより中圧バイパス制
御弁17から一部の蒸気を中圧タービン6の出口を通し
て低圧タービン8に通気し、同時に低圧バイパス制御弁
21から復水器9に蒸気を流す。
In this embodiment, the high pressure bypass control valve 15 of the operating procedure shown in FIG.
In addition to opening the intermediate pressure bypass control valve 17, the low pressure bypass control valve 21 is opened. As a result, some steam is vented from the intermediate pressure bypass control valve 17 to the low pressure turbine 8 through the outlet of the intermediate pressure turbine 6, and at the same time, steam is caused to flow from the low pressure bypass control valve 21 to the condenser 9.

【0033】この実施例では、ボイラ1を通過する給水
と蒸気の量を多くすることができる。このためボイラチ
ューブを通過する給水の流速が速くなる結果、熱伝達率
が大きくなり、ボイラの昇温率が速くなる。従って、蒸
気の昇温が速くなり、図1に示した実施例より起動所要
時間をさらに短縮できる。
In this embodiment, the amount of feed water and steam passing through the boiler 1 can be increased. As a result, the flow rate of the feed water passing through the boiler tube becomes faster, resulting in a larger heat transfer coefficient and a faster temperature rise rate of the boiler. Therefore, the temperature of the steam increases quickly, and the time required for startup can be further shortened compared to the embodiment shown in FIG.

【0034】図4に本発明の第三の実施例を示す。FIG. 4 shows a third embodiment of the present invention.

【0035】この実施例は、高圧バイパス制御弁15の
上流に高圧バイパス止め弁22を備え、また、中圧バイ
パス制御弁17の上流に中圧バイパス止め弁23を備え
ている。
This embodiment includes a high-pressure bypass stop valve 22 upstream of the high-pressure bypass control valve 15 and an intermediate-pressure bypass stop valve 23 upstream of the intermediate-pressure bypass control valve 17.

【0036】この実施例は、負荷運転中に高圧バイパス
制御弁15および中圧バイパス制御弁17を全閉した状
態で、高圧バイパス止め弁22と中圧バイパス止め弁2
3とを全閉にする。この結果、各バイパス系統への蒸気
の洩れを確実に防止できる。
In this embodiment, with the high pressure bypass control valve 15 and the intermediate pressure bypass control valve 17 fully closed during load operation, the high pressure bypass stop valve 22 and the intermediate pressure bypass stop valve 2 are closed.
3 and fully closed. As a result, leakage of steam to each bypass system can be reliably prevented.

【0037】[0037]

【発明の効果】以上説明したように本発明によれば、蒸
気タービンのホット状態の起動時に、ボイラを点火した
後に低温蒸気を低圧タービンに通気して起動し、ボイラ
の蒸気温度の上昇に伴って中圧タービンおよび高圧ター
ビンに順次通気する。これにより、ボイラ点火から目標
負荷までの起動所要時間を従来より短くできる効果が得
られる。
As explained above, according to the present invention, when starting a steam turbine in a hot state, after the boiler is ignited, low-temperature steam is vented to the low-pressure turbine to start the turbine, and as the steam temperature of the boiler rises. The intermediate pressure turbine and high pressure turbine are vented sequentially. As a result, the time required for startup from boiler ignition to target load can be shortened compared to the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の第一実施例を示す蒸気タービン起動装
置の構成図である。
FIG. 1 is a configuration diagram of a steam turbine starting device showing a first embodiment of the present invention.

【図2】同装置の起動パターンを示す説明図である。FIG. 2 is an explanatory diagram showing a startup pattern of the device.

【図3】本発明の第二実施例を示す蒸気タービン起動装
置の構成図である。
FIG. 3 is a configuration diagram of a steam turbine starting device showing a second embodiment of the present invention.

【図4】本発明の第三実施例を示す蒸気タービン起動装
置の構成図である。
FIG. 4 is a configuration diagram of a steam turbine starting device showing a third embodiment of the present invention.

【図5】従来例を示す蒸気タービン起動装置の構成図で
ある。
FIG. 5 is a configuration diagram of a steam turbine starting device showing a conventional example.

【図6】同装置の起動パターンを示す説明図である。FIG. 6 is an explanatory diagram showing a startup pattern of the device.

【符号の説明】[Explanation of symbols]

1    ボイラ 2    主蒸気管 3    高圧タービン 4    高圧タービン出口蒸気管 6    中圧タービン 8    低圧タービン 9    復水器 11    蒸気加減弁 14    高圧バイパス管 15    高圧バイパス制御弁 16    中圧バイパス管 17    中圧バイパス制御弁 1 Boiler 2 Main steam pipe 3 High pressure turbine 4 High pressure turbine outlet steam pipe 6 Medium pressure turbine 8 Low pressure turbine 9 Condenser 11 Steam control valve 14 High pressure bypass pipe 15 High pressure bypass control valve 16 Medium pressure bypass pipe 17 Medium pressure bypass control valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ボイラで発生した蒸気で駆動される高
圧タービンと、この高圧タービンの出口蒸気をボイラで
再熱し、この再熱蒸気で駆動される中圧タービンと、こ
の中圧タービンの出口蒸気で駆動される低圧タービンと
、これらのタービンの動力を電気出力に変換する発電機
で構成される火力発電設備の蒸気タービン起動装置にお
いて、前記高圧タービンの入口の主蒸気管と前記高圧タ
ービンの出口蒸気管とを結合する高圧バイパス管と、こ
の高圧バイパス管に配置され蒸気タービン起動時に前記
高圧タービンの入口から前記ボイラへ主蒸気をバイパス
させる量を主蒸気の温度に応じて開閉制御するための高
圧バイパス制御弁と、前記中圧タービンの入口の再熱蒸
気管と前記中圧タービンの出口とを結合する中圧バイパ
ス管と、この中圧バイパス管に配置され蒸気タービン起
動時に前記中圧タービンの入口の再熱蒸気を前記中圧タ
ービンの出口へバイパスさせ前記低圧タービンに通気さ
せる量を前記中圧タービンの入口の再熱蒸気の温度に応
じて開閉制御するための中圧バイパス制御弁とを備えた
ことを特徴とする蒸気タービン起動装置。
Claim 1: A high-pressure turbine driven by steam generated in a boiler, an intermediate-pressure turbine in which the outlet steam of the high-pressure turbine is reheated in the boiler and driven by the reheated steam, and an outlet steam of the intermediate-pressure turbine. In a steam turbine startup device for thermal power generation equipment, which is composed of a low-pressure turbine driven by a low-pressure turbine and a generator that converts the power of these turbines into electric output, a high-pressure bypass pipe connecting the steam pipe; and a high-pressure bypass pipe disposed in the high-pressure bypass pipe for controlling the opening and closing of the amount of main steam to be bypassed from the inlet of the high-pressure turbine to the boiler at the time of starting the steam turbine according to the temperature of the main steam. a high-pressure bypass control valve; an intermediate-pressure bypass pipe that connects a reheat steam pipe at the inlet of the intermediate-pressure turbine and an outlet of the intermediate-pressure turbine; an intermediate-pressure bypass control valve for controlling opening and closing of an amount of reheated steam at an inlet of the intermediate-pressure turbine to be bypassed to an outlet of the intermediate-pressure turbine and vented to the low-pressure turbine according to a temperature of reheated steam at an inlet of the intermediate-pressure turbine; A steam turbine starting device characterized by comprising:
JP8583191A 1991-03-27 1991-03-27 Steam turbine starting equipment Pending JPH04298602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8583191A JPH04298602A (en) 1991-03-27 1991-03-27 Steam turbine starting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8583191A JPH04298602A (en) 1991-03-27 1991-03-27 Steam turbine starting equipment

Publications (1)

Publication Number Publication Date
JPH04298602A true JPH04298602A (en) 1992-10-22

Family

ID=13869799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8583191A Pending JPH04298602A (en) 1991-03-27 1991-03-27 Steam turbine starting equipment

Country Status (1)

Country Link
JP (1) JPH04298602A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012567A (en) * 2009-06-30 2011-01-20 Mitsubishi Heavy Ind Ltd Method and device for controlling valve for warming steam turbine
CN103306751A (en) * 2013-07-04 2013-09-18 上海电气电站设备有限公司 Novel co-generation turbine
JP2021063498A (en) * 2019-10-17 2021-04-22 中国電力株式会社 Power generation system and activation method of power generation system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012567A (en) * 2009-06-30 2011-01-20 Mitsubishi Heavy Ind Ltd Method and device for controlling valve for warming steam turbine
CN103306751A (en) * 2013-07-04 2013-09-18 上海电气电站设备有限公司 Novel co-generation turbine
JP2021063498A (en) * 2019-10-17 2021-04-22 中国電力株式会社 Power generation system and activation method of power generation system

Similar Documents

Publication Publication Date Title
US20040131138A1 (en) Brayton cycle nuclear power plant and a method of starting the brayton cycle
US8776521B2 (en) Systems and methods for prewarming heat recovery steam generator piping
JPH09112215A (en) Gas turbine power plant and method of operating thereof
JPH0454802B2 (en)
JP2005163628A (en) Reheat steam turbine plant and method for operating the same
JP3559574B2 (en) Startup method of single-shaft combined cycle power plant
US11879365B2 (en) Steam turbine plant and operation method, combined cycle plant and operation method
JP3919966B2 (en) Operation method of combined cycle power plant
JPH04298602A (en) Steam turbine starting equipment
JP2004245184A (en) Reheat steam turbine plant and starting method for the plant
JP5734117B2 (en) Combined cycle power plant and operation method thereof
JPH04148035A (en) Vapor cooled gas turbine system
JP3559573B2 (en) Startup method of single-shaft combined cycle power plant
JPH03908A (en) Starting method for combined cycle plant
JPS6165003A (en) Controlling method for turbine in intermediate pressure starting
US4151712A (en) Protective shutdown system for combined cycle plant having a dual liquid fuel system
JP3641030B2 (en) Safety valve operation test method for combined cycle power plant
JPH08284615A (en) Control method for single shaft type combined cycle generating facility and device thereof
JP3641518B2 (en) Steam temperature control method and apparatus for combined cycle plant
JPS60159311A (en) Starting method for steam turbine
JPH0475363B2 (en)
JPH0330687B2 (en)
JP2558855B2 (en) Method of operating steam-gas combined cycle power plant and its power plant
JPS6013904A (en) Steam turbine system
JPH0633705A (en) Steam turbine control device