JPH04298236A - Catalyst for contact reduction of nox - Google Patents

Catalyst for contact reduction of nox

Info

Publication number
JPH04298236A
JPH04298236A JP3089699A JP8969991A JPH04298236A JP H04298236 A JPH04298236 A JP H04298236A JP 3089699 A JP3089699 A JP 3089699A JP 8969991 A JP8969991 A JP 8969991A JP H04298236 A JPH04298236 A JP H04298236A
Authority
JP
Japan
Prior art keywords
catalyst
alkaline earth
metals
nitrogen oxides
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3089699A
Other languages
Japanese (ja)
Inventor
Tadao Nakatsuji
忠夫 仲辻
Hiromasu Shimizu
宏益 清水
Fujio Suganuma
菅沼 藤夫
Akihiro Kitatsume
北爪 章博
Tatsuhiko Ito
伊藤 建彦
Hideaki Hamada
秀昭 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Sakai Chemical Industry Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Agency of Industrial Science and Technology
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Cosmo Oil Co Ltd, Petroleum Energy Center PEC, Sakai Chemical Industry Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP3089699A priority Critical patent/JPH04298236A/en
Publication of JPH04298236A publication Critical patent/JPH04298236A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain the catalyst which efficiently reduces the NOx in exhaust gases in the presence of oxygen by using the compd. of a specific compsn. contg. alkaline earth metals, at least one kind among alkali metals, alkaline earth metals and rare earth elements, at least one kind of specific metals and Al as an effective component. CONSTITUTION:The effective component of this catalyst is expressed by compsn. formula A(1-x)A'xB'yAl(12-y)O(19-z). In the formula, A denotes the alkaline earth metal; A' denotes at least one kind among the alkali metals, alkaline earth metals and rare earth elements; B' denotes Co, Ni, Cr, Fe, Mn or Cu; A and A' may be the same if A and A' are the alkaline earth metals; 0<=x<=1, 0<=y<=2, z are the values corresponding to the number of lattice defects. Such compds. include, for example, the compds. having a magnetoplumbite crystal structure. The ratio of the hydrocarbon or alcohols to be used as the reducing agent is preferably 0.2 to 2mol per 1mol NOx.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、炭化水素やアルコール
類を還元剤として用いる窒素酸化物接触還元用触媒に係
わり、詳しくは工場、自動車などから排出される排気ガ
スの中に含まれる有害な窒素酸化物を還元除去する際に
用いて好適な窒素酸化物接触還元用触媒に関する。
[Industrial Application Field] The present invention relates to a catalyst for catalytic reduction of nitrogen oxides using hydrocarbons or alcohols as reducing agents, and more specifically, the present invention relates to a catalyst for catalytic reduction of nitrogen oxides using hydrocarbons or alcohols as reducing agents. The present invention relates to a catalyst for catalytic reduction of nitrogen oxides suitable for use in reducing and removing nitrogen oxides.

【0002】0002

【従来の技術及び発明が解決しようとする課題】従来、
排気ガス中に含まれる窒素酸化物は、■該窒素酸化物を
酸化した後、アルカリに吸収させる方法、■NH3 、
H2 、CO等の還元剤を用いてN2 に変える方法な
どによって除去されてきた。
[Prior art and problems to be solved by the invention] Conventionally,
Nitrogen oxides contained in exhaust gas can be treated by: (1) oxidizing the nitrogen oxides and then absorbing them into alkali; (2) NH3;
It has been removed by methods such as converting it into N2 using reducing agents such as H2 and CO.

【0003】しかしながら、■の方法による場合は、公
害防止のためにアルカリの排液処理が必要となり、また
■の方法において還元剤としてNH3 等のアルカリ剤
を用いる場合においては、これが排ガス中のSOx と
反応して塩類を生成し、その結果還元剤の還元活性が低
下してしまうという問題があった。また、H2 、CO
、炭化水素を還元剤として用いる場合、これらが低濃度
に存在するNOx より高濃度に存在するO2 と反応
してしまうため、NOx を低減するためには多量の還
元剤を必要とした。
[0003] However, when method (2) is used, alkaline drainage treatment is required to prevent pollution, and when an alkaline agent such as NH3 is used as a reducing agent in method (2), this removes SOx in the exhaust gas. There is a problem in that the reducing agent reacts with salts to produce salts, resulting in a decrease in the reducing activity of the reducing agent. Also, H2, CO
When hydrocarbons are used as reducing agents, they react with O2, which is present in high concentrations, rather than with NOx, which is present in low concentrations, so a large amount of the reducing agent is required to reduce NOx.

【0004】このため、最近では、還元剤を用いること
なく窒素酸化物を触媒により直接分解する方法も提案さ
れているが、窒素酸化物分解活性が低いため、実用に供
し得ないという問題があった。
[0004] For this reason, a method has recently been proposed in which nitrogen oxides are directly decomposed by a catalyst without using a reducing agent, but this method has the problem of being impractical due to its low nitrogen oxide decomposition activity. Ta.

【0005】本発明は、以上の事情に鑑みなされたもの
であって、その目的とするところは、例えば炭化水素や
アルコール類を還元剤として用いたときに、酸素の共存
下においても窒素酸化物がこれらの還元剤と選択的に反
応するため、多量の還元剤を用いることなく排気ガス中
の窒素酸化物を効率良く還元することができる窒素酸化
物接触還元用触媒を提供するにある。
The present invention was made in view of the above circumstances, and its object is to reduce nitrogen oxides even in the coexistence of oxygen when hydrocarbons or alcohols are used as reducing agents. It is an object of the present invention to provide a catalyst for catalytic reduction of nitrogen oxides, which can efficiently reduce nitrogen oxides in exhaust gas without using a large amount of reducing agents, since the catalyst selectively reacts with these reducing agents.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る窒素酸化物の選択的還元触媒(接触還元
触媒)は、組成式A(1−x) A’X B’y Al
 (12−y) O (19−z) で表される化合物
を有効成分として含有するものである。〔ただし、式中
、Aは少なくとも一種のアルカリ土類金属、A’はアル
カリ金属、アルカリ土類金属、希土類からなる群より選
ばれた少なくとも一種の元素、B’はCo、Ni、Cr
、Fe、MnまたはCuであり、AとA’とがともにア
ルカリ土類金属である場合、AとA’とは同一であって
もよく異なっていてもよい。また、xおよびyは、それ
ぞれ0≦x≦1、0≦y≦2、zは格子欠陥数に対応す
る値である。〕上式で表される化合物としては、例えば
マグネトプランバイト型結晶構造を有するものが挙げら
れる。本発明に係る窒素酸化物選択還元触媒は例えば次
に示す(1)(2)または(3)の各製法により製造さ
れる。
[Means for Solving the Problems] A nitrogen oxide selective reduction catalyst (catalytic reduction catalyst) according to the present invention for achieving the above object has the composition formula A(1-x) A'X B'y Al
It contains a compound represented by (12-y) O (19-z) as an active ingredient. [However, in the formula, A is at least one alkaline earth metal, A' is at least one element selected from the group consisting of alkali metals, alkaline earth metals, and rare earths, and B' is Co, Ni, Cr.
, Fe, Mn, or Cu, and when A and A' are both alkaline earth metals, A and A' may be the same or different. Further, x and y are respectively 0≦x≦1 and 0≦y≦2, and z is a value corresponding to the number of lattice defects. ] Examples of the compound represented by the above formula include those having a magnetoplumbite crystal structure. The nitrogen oxide selective reduction catalyst according to the present invention is manufactured, for example, by each of the following manufacturing methods (1), (2), or (3).

【0007】(1)アルカリ土類金属の酸化物または水
酸化物もしくはアルカリ土類金属の塩類と、アルカリ金
属の水酸化物または塩類もしくは希土類の酸化物または
塩類と、Co、Ni、Cr、Fe、Mn、Cuからなる
群より選ばれた少なくとも一種の金属の酸化物、水酸化
物または塩類と、アルミニウムの酸化物、水酸化物また
は塩類とを混合、好ましくは湿式粉砕混合し、その混合
物を乾燥した後、800〜1500°Cで焼成する。
(1) Alkaline earth metal oxide or hydroxide or alkaline earth metal salt, alkali metal hydroxide or salt or rare earth oxide or salt, Co, Ni, Cr, Fe , Mn, and Cu, and an oxide, hydroxide, or salt of aluminum are mixed, preferably wet-pulverized, and the mixture is mixed. After drying, it is fired at 800-1500°C.

【0008】(2)アルカリ土類金属のアルコキシドと
、アルカリ金属および/または希土類のアルコキシドと
、Co、Ni、Cr、Fe、Mn、Cuからなる群より
選ばれた少なくとも一種の金属のアルコキシドと、アル
ミニウムのアルコキシドとをアルコール等の溶剤に溶か
して均一に混合した後、加水分解により沈澱物を生成せ
しめ、生成した沈澱物を乾燥し、600〜1400°C
で焼成する(アルコキシド法)。要すれば、この焼成物
を粉砕し適宜の成形方法(押出成形、打錠成形、球状成
形等)により成形する。さらに必要に応じて、この成形
物を300〜1200°Cで焼成する。
(2) an alkoxide of an alkaline earth metal, an alkoxide of an alkali metal and/or a rare earth metal, and an alkoxide of at least one metal selected from the group consisting of Co, Ni, Cr, Fe, Mn, and Cu; After dissolving aluminum alkoxide in a solvent such as alcohol and mixing uniformly, a precipitate is formed by hydrolysis, and the formed precipitate is dried and heated at 600 to 1400°C.
(alkoxide method). If necessary, this fired product is pulverized and molded by an appropriate molding method (extrusion molding, tablet molding, spherical molding, etc.). Further, if necessary, this molded product is fired at 300 to 1200°C.

【0009】(3)アルカリ土類金属、希土類、及び、
Co、Ni、Cr、Fe、Mn、Cuからなる群より選
ばれた少なくとも一種の金属の塩■を水に溶解し、得ら
れた溶液に炭酸ナトリウム等の中和剤を加えて共沈させ
、生成した共沈物を水洗した後、乾燥し、800〜15
00°Cで焼成する(共沈法)。上記(1)、(2)ま
たは(3)の各方法で得た触媒を、コージェライト、ム
ライト、シリコンカーバイド等の耐熱性担体にコーティ
ングし、乾燥することにより、触媒担持担体を得る。 要すれば、さらにこの触媒担持担体を300〜1200
°Cで焼成する。上記(1)〜(3)は、本発明に係る
触媒の調製方法の例示に過ぎず、本発明に係る触媒は、
これらの調製方法以外の方法によって調製することが可
能であることは勿論であり、触媒成分が実質的に同じも
のであれば、同等の効果を有するものが得られる。
(3) Alkaline earth metals, rare earths, and
A salt of at least one metal selected from the group consisting of Co, Ni, Cr, Fe, Mn, and Cu is dissolved in water, and a neutralizing agent such as sodium carbonate is added to the resulting solution to cause coprecipitation, After washing the generated coprecipitate with water and drying it,
Calcinate at 00°C (co-precipitation method). A catalyst-supporting carrier is obtained by coating a heat-resistant carrier such as cordierite, mullite, silicon carbide, etc. with the catalyst obtained by each method of (1), (2), or (3) above and drying it. If necessary, this catalyst-carrying carrier may be further added to 300 to 1200
Bake at °C. The above (1) to (3) are merely examples of the preparation method of the catalyst according to the present invention, and the catalyst according to the present invention is
Of course, it is possible to prepare by methods other than these preparation methods, and as long as the catalyst components are substantially the same, products having equivalent effects can be obtained.

【0010】本発明に係る触媒を構成する元素Aおよび
A’の原料としては、AおよびA’のそれぞれ酸化物、
水酸化物、炭酸塩、硝酸塩、硫酸塩、アルコキシド等、
各種の化合物を使用することができる。元素B’の原料
としては、B’の酸化物、水酸化物、炭酸塩、硝酸塩、
硫酸塩、有機酸塩、アルコキシド等、各種の化合物を使
用することができる。アルミニウムの原料としては、そ
の酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、アルコ
キシド等、各種の化合物を使用することができる。比表
面積の大きな活性の高い触媒を得るためには、元素A、
A’、B’及びアルミニウムとしてそれぞれのアルコキ
シドを使用して、A、A’及びB’のアルコキシドと、
アルミニウムのアルコキシドとをアルコール等の溶剤に
溶解混合した後、加水分解するアルコキシド法によれば
よい。また、この方法によれば比較的低い温度(800
°C程度)での焼成が可能となる。
Raw materials for the elements A and A' constituting the catalyst of the present invention include oxides of A and A', respectively;
hydroxides, carbonates, nitrates, sulfates, alkoxides, etc.
A variety of compounds can be used. Raw materials for element B' include B' oxides, hydroxides, carbonates, nitrates,
Various compounds such as sulfates, organic acid salts, alkoxides, etc. can be used. As raw materials for aluminum, various compounds such as its oxides, hydroxides, carbonates, nitrates, sulfates, and alkoxides can be used. In order to obtain a highly active catalyst with a large specific surface area, element A,
alkoxides of A, A' and B', using the respective alkoxides as A', B' and aluminum;
An alkoxide method may be used in which aluminum alkoxide is dissolved and mixed in a solvent such as alcohol, and then hydrolyzed. Moreover, according to this method, the temperature is relatively low (800
It becomes possible to perform firing at a temperature of about 30°F (°C).

【0011】上記成分以外に、必要に応じて粘土、メチ
ルセルロース、カルボキシメチルセルロース、カルボキ
シエチルセルロース、ポリエチレンオキサイド等の成形
助剤や、ガラス繊維等の補強剤を配合してもよい。ただ
し、これらの任意成分の総量は50%以下におさえるこ
とが好ましい。本発明に係る触媒は、用途に応じて、粉
末状、タブレット状、球状、ハニカム状等、適宜の形状
に賦形することが可能である。
[0011] In addition to the above components, molding aids such as clay, methyl cellulose, carboxymethyl cellulose, carboxyethyl cellulose, polyethylene oxide, etc., and reinforcing agents such as glass fiber may be blended as required. However, it is preferable to keep the total amount of these optional components to 50% or less. The catalyst according to the present invention can be shaped into an appropriate shape, such as powder, tablet, spherical, or honeycomb shape, depending on the intended use.

【0012】還元剤として炭化水素を使用する場合の炭
化水素としては、アルカン、アルケン、アルキン等の脂
肪族系炭化水素、芳香族系炭化水素などが挙げられる。 この場合、選択的還元反応を示す温度は、アルキン<ア
ルケン<芳香族系炭化水素<アルカンの順に高くなる。 また、同系の炭化水素においては、炭素数が大きくなる
にしたがって、その温度は低くなる。好適な炭化水素と
しては、アセチレン、メチルアセチレン、1−ブチン等
の低級アルキン、エチレン、プロピレン、イソブチレン
、1−ブテン、2−ブテン等の低級アルケン、ブタジエ
ン、イソプレン等の低級ジエンが例示される。
When a hydrocarbon is used as a reducing agent, examples of the hydrocarbon include aliphatic hydrocarbons such as alkanes, alkenes, and alkynes, and aromatic hydrocarbons. In this case, the temperature at which the selective reduction reaction occurs increases in the order of alkyne<alkene<aromatic hydrocarbon<alkane. Furthermore, in similar hydrocarbons, the temperature decreases as the number of carbon atoms increases. Suitable hydrocarbons include lower alkynes such as acetylene, methylacetylene and 1-butyne, lower alkenes such as ethylene, propylene, isobutylene, 1-butene and 2-butene, and lower dienes such as butadiene and isoprene.

【0013】還元剤としてアルコール類を使用する場合
のアルコールとしては、脂肪族系アルコール、芳香族系
アルコールなどが挙げられる。好適なアルコール類とし
ては、エタノール、プロパノール、イソプロパノール、
n−ブチルアルコール、イソブチルアルコール、ter
t−ブチルアルコール、アリルアルコール等の低級アル
コールが例示される。
When alcohols are used as reducing agents, examples of the alcohols include aliphatic alcohols and aromatic alcohols. Suitable alcohols include ethanol, propanol, isopropanol,
n-butyl alcohol, isobutyl alcohol, ter
Examples include lower alcohols such as t-butyl alcohol and allyl alcohol.

【0014】上記炭化水素またはアルコール類の好適な
添加量は、その種類によって異なるが、窒素酸化物1モ
ルに対して0.1〜2モルの割合である。0.1モル未
満であると、充分な活性を得ることができず、また2モ
ルを越えると、未反応物や部分酸化生成物の排出量が多
くなるため、これを処理するための後処理が必要となる
[0014] The preferred amount of the hydrocarbon or alcohol added varies depending on the type thereof, but is in the range of 0.1 to 2 moles per mole of nitrogen oxide. If it is less than 0.1 mol, sufficient activity cannot be obtained, and if it exceeds 2 mol, a large amount of unreacted substances and partial oxidation products will be discharged, so post-treatment is required to deal with this. Is required.

【0015】本発明に係る触媒が窒素酸化物に対して良
好な還元活性を示す温度は、使用する還元剤、触媒種に
より異なるが、通常100〜800°Cの範囲である。 この温度領域においては、500〜50000程度の空
間速度(SV)で排気ガスを通流させることが好ましい
。なお、より良好な還元活性を示す温度は、200〜6
00°Cである。
The temperature at which the catalyst of the present invention exhibits good reducing activity against nitrogen oxides varies depending on the reducing agent and catalyst type used, but is usually in the range of 100 to 800°C. In this temperature range, it is preferable to flow the exhaust gas at a space velocity (SV) of about 500 to 50,000. In addition, the temperature showing better reduction activity is 200 to 6
It is 00°C.

【0016】このように、本発明に係る触媒は、排気ガ
ス温度100〜800°C程度の範囲において炭化水素
やアルコール類を還元剤として窒素酸化物を効率良く接
触還元することを可能ならしめる。
As described above, the catalyst according to the present invention makes it possible to efficiently catalytically reduce nitrogen oxides using hydrocarbons or alcohols as reducing agents at exhaust gas temperatures in the range of about 100 to 800°C.

【0017】[0017]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。 (1)触媒の調製
[Examples] The present invention will be explained in more detail based on Examples below, but the present invention is not limited to the following Examples in any way, and may be practiced with appropriate modifications within the scope of the gist thereof. is possible. (1) Preparation of catalyst

【0018】(実施例1)硝酸アルミニウム、硝酸スト
ロンチウム、硝酸ランタン及び硝酸マンガンの混合水溶
液にアンモニア水を加えて液のpH8とし、蒸発乾固し
て得た生成物を、500°Cで2時間仮焼した後、10
00°Cで3時間焼成して、組成式Sr0.8 La0
.2 MnAl11O19−zで表されるマグネトプラ
ンバイト型結晶構造の触媒(A−1)を得た。
(Example 1) Aqueous ammonia was added to a mixed aqueous solution of aluminum nitrate, strontium nitrate, lanthanum nitrate and manganese nitrate to adjust the pH of the solution to 8, and the resulting product was evaporated to dryness at 500°C for 2 hours. After calcining, 10
After firing at 00°C for 3 hours, the composition formula Sr0.8 La0
.. A catalyst (A-1) having a magnetoplumbite crystal structure represented by 2MnAl11O19-z was obtained.

【0019】(実施例2)硝酸アルミニウム、硝酸スト
ロンチウム、硝酸ランタン及び硝酸マンガンの混合水溶
液にアンモニア水を加えて液のpH8とした後、蒸発乾
固して得た生成物を、500°Cで2時間仮焼した後、
1350°Cで3時間焼成して、組成式Sr0.8 L
a0.2 MnAl11O19−zで表されるマグネト
プランバイト型結晶構造の触媒(A−2)を得た。
(Example 2) Aqueous ammonia was added to a mixed aqueous solution of aluminum nitrate, strontium nitrate, lanthanum nitrate and manganese nitrate to adjust the pH of the solution to 8, and the resulting product was evaporated to dryness at 500°C. After calcination for 2 hours,
After firing at 1350°C for 3 hours, the composition formula Sr0.8 L
A catalyst (A-2) having a magnetoplumbite crystal structure represented by a0.2 MnAl11O19-z was obtained.

【0020】(実施例3)市販のアルミニウムイソプロ
コキシドをイソプロピルアルコールに溶かし、得られた
溶液に硝酸バリウム、硝酸ランタン及び酢酸マンガンを
含む水溶液を滴下して加水分解した。得られた懸濁液を
攪拌しつつ12時間熟成した後、80°Cで16時間減
圧乾燥し、次いで500°Cで2時間仮焼した後、さら
に1200°Cで3時間焼成して、組成式Ba0.7 
La0.3 MnAl11O19−zで表されるマグネ
トプランバイト型結晶構造の触媒(A−3)を得た。
(Example 3) Commercially available aluminum isoprokoxide was dissolved in isopropyl alcohol, and an aqueous solution containing barium nitrate, lanthanum nitrate, and manganese acetate was added dropwise to the resulting solution for hydrolysis. The resulting suspension was aged for 12 hours with stirring, dried under reduced pressure at 80°C for 16 hours, then calcined at 500°C for 2 hours, and then further calcined at 1200°C for 3 hours to determine the composition. Formula Ba0.7
A catalyst (A-3) having a magnetoplumbite crystal structure represented by La0.3 MnAl11O19-z was obtained.

【0021】(実施例4)窒素雰囲気下、市販のアルミ
ニウムイソプロポキシド及び金属バリウムをイソプロピ
ルアルコールに溶かし、得られた溶液に酢酸コバルト及
び硝酸カリウムを含む水溶液を滴下して加水分解した。 得られた懸濁液を攪拌しつつ12時間熟成した後、80
°Cで16時間減圧乾燥し、次いで500°Cで2時間
仮焼した後、さらに1200°Cで5時間焼成して、組
成式Ba0.8 K0.2 CoAl11O19−zで
表されるマグネトプランバイト型結晶構造の触媒(A−
4)を得た。
Example 4 Commercially available aluminum isopropoxide and barium metal were dissolved in isopropyl alcohol under a nitrogen atmosphere, and an aqueous solution containing cobalt acetate and potassium nitrate was added dropwise to the resulting solution for hydrolysis. The resulting suspension was aged for 12 hours with stirring, and then aged at 80
After drying under reduced pressure at °C for 16 hours, then calcining at 500 °C for 2 hours, and further firing at 1200 °C for 5 hours, magnetoplumbite represented by the composition formula Ba0.8 K0.2 CoAl11O19-z was obtained. Catalyst with type crystal structure (A-
4) was obtained.

【0022】(実施例5)酸化アルミニウム、炭酸バリ
ウム及び酸化クロム(Al2 O 3、BaCO 3、
Cr2 O3 の混合モル比:71.4:14.3:7
.15)を遊星ミルに供給し、24時間粉砕混合した後
、1450°Cで5時間焼成して、組成式BaO・Cr
O・5Al2 O3 で表されるマグネトプランバイト
型結晶構造の触媒(A−5)を得た。
(Example 5) Aluminum oxide, barium carbonate and chromium oxide (Al2O3, BaCO3,
Mixing molar ratio of Cr2O3: 71.4:14.3:7
.. 15) was supplied to a planetary mill, pulverized and mixed for 24 hours, and then fired at 1450°C for 5 hours to obtain the composition formula BaO・Cr.
A catalyst (A-5) having a magnetoplumbite crystal structure represented by O.5Al2O3 was obtained.

【0023】(実施例6)実施例2において、硝酸マン
ガンに代えて硝酸第一鉄を用いたこと以外は実施例2と
同様にして、組成式Sr0.8 La0.2 FeAl
11O19−zで表されるマグネトプランバイト型結晶
構造の触媒(A−6)を得た。
(Example 6) In Example 2, the composition formula Sr0.8 La0.2 FeAl was prepared in the same manner as in Example 2 except that ferrous nitrate was used instead of manganese nitrate.
A catalyst (A-6) having a magnetoplumbite crystal structure represented by 11O19-z was obtained.

【0024】(実施例7)実施例2において、硝酸マン
ガンに代えて硝酸ニッケルを用いたこと以外は実施例2
と同様にして、組成式Sr0.8 La0.2 NiA
l11O19−zで表されるマグネトプランバイト型結
晶構造の触媒(A−7)を得た。
(Example 7) Example 2 except that nickel nitrate was used instead of manganese nitrate in Example 2.
Similarly, the composition formula Sr0.8 La0.2 NiA
A catalyst (A-7) having a magnetoplumbite crystal structure represented by l11O19-z was obtained.

【0025】(実施例8)実施例2において、硝酸マン
ガンに代えて硝酸銅を用いたこと以外は実施例2と同様
にして、組成式Sr0.8 La0.2 CuAl11
O19−zで表されるマグネトプランバイト型結晶構造
の触媒(A−8)を得た。
(Example 8) The composition formula Sr0.8 La0.2 CuAl11 was prepared in the same manner as in Example 2 except that copper nitrate was used instead of manganese nitrate.
A catalyst (A-8) having a magnetoplumbite crystal structure represented by O19-z was obtained.

【0026】(比較例)市販のシリカ(比表面積120
m2 /g)をPt担持後の触媒中のPtの重量分率が
1%になるべき量のPtを含有するH2 PtCl6 
水溶液500ミリリットルに浸漬し、攪拌しながら、理
論量の1.2倍量のヒドラジンを加えてH2 PtCl
6 を還元した後、ろ別、水洗、100°Cで18時間
乾燥して触媒(B−1)を得た。
(Comparative example) Commercially available silica (specific surface area 120
H2 PtCl6 containing Pt in an amount such that the weight fraction of Pt in the catalyst after Pt loading is 1%.
Immerse it in 500 ml of an aqueous solution, add 1.2 times the theoretical amount of hydrazine while stirring, and add H2PtCl.
After reducing 6, it was filtered, washed with water, and dried at 100°C for 18 hours to obtain a catalyst (B-1).

【0027】(2)評価試験 実施例1〜8で得た触媒(A−1)〜(A−8)及び比
較例で得た触媒(B−1)について、炭化水素またはア
ルコール類を還元剤として下記の試験条件により窒素酸
化物含有ガス中の窒素酸化物の接触還元を行い、窒素酸
化物のN2 への転換率を、ガスクロマトグラフ法によ
りN2 を定量して算出した。 (試験条件)  (2)空間速度          1000  1
/Hr(3)反応温度    300°C、400°C
、500°Cまたは600°C結果を表1に示す。
(2) Evaluation Test Regarding the catalysts (A-1) to (A-8) obtained in Examples 1 to 8 and the catalyst (B-1) obtained in Comparative Example, hydrocarbons or alcohols were used as a reducing agent. Catalytic reduction of nitrogen oxides in nitrogen oxide-containing gas was carried out under the following test conditions, and the conversion rate of nitrogen oxides to N2 was calculated by quantifying N2 using gas chromatography. (Test conditions) (2) Space velocity 1000 1
/Hr (3) Reaction temperature 300°C, 400°C
, 500°C or 600°C results are shown in Table 1.

【0028】[0028]

【表1】[Table 1]

【0029】表1より、本発明に係る窒素酸化物接触還
元用触媒(A−1)〜(A−8)は、いずれも窒素酸化
物のN2 への転化率が高いのに対して、従来の二成分
系の触媒(B−1)は、いずれの反応温度においても総
じて転化率が低いことが分かる。
Table 1 shows that the nitrogen oxide catalytic reduction catalysts (A-1) to (A-8) according to the present invention all have a high conversion rate of nitrogen oxides to N2, whereas the conventional It can be seen that the two-component catalyst (B-1) has a generally low conversion rate at any reaction temperature.

【0030】[0030]

【発明の効果】以上、詳細に説明したように、本発明に
係る窒素酸化物接触還元用触媒によれば、酸素の存在下
において排気ガス中の窒素酸化物を効率良く接触還元す
ることができるなど、本発明は優れた特有の効果を奏す
る。
[Effects of the Invention] As explained above in detail, the catalyst for catalytic reduction of nitrogen oxides according to the present invention can efficiently catalytically reduce nitrogen oxides in exhaust gas in the presence of oxygen. The present invention exhibits excellent and unique effects.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】組成式A(1−x) A’X B’y A
l (12−y) O (19−z) で表される化合
物を有効成分として含有することを特徴とする窒素酸化
物接触還元用触媒。〔ただし、式中、Aは少なくとも一
種のアルカリ土類金属、A’はアルカリ金属、アルカリ
土類金属、希土類からなる群より選ばれた少なくとも一
種の元素、B’はCo、Ni、Cr、Fe、Mnまたは
Cuであり、AとA’とがともにアルカリ土類金属であ
る場合、AとA’とは同一であってもよく異なっていて
もよい。また、xおよびyは、それぞれ0≦x≦1、0
≦y≦2、zは格子欠陥数に対応する値である。〕
Claim 1: Compositional formula A(1-x) A'X B'y A
A catalyst for catalytic reduction of nitrogen oxides, comprising a compound represented by l (12-y) O (19-z) as an active ingredient. [However, in the formula, A is at least one alkaline earth metal, A' is at least one element selected from the group consisting of alkali metals, alkaline earth metals, and rare earths, and B' is Co, Ni, Cr, Fe. , Mn, or Cu, and when A and A' are both alkaline earth metals, A and A' may be the same or different. Also, x and y are 0≦x≦1, 0, respectively.
≦y≦2, and z is a value corresponding to the number of lattice defects. ]
【請求項2】前記化合物の結晶構造がマグネトプランバ
イト型である請求項1記載の窒素酸化物接触還元用触媒
2. The catalyst for catalytic reduction of nitrogen oxides according to claim 1, wherein the crystal structure of the compound is magnetoplumbite type.
JP3089699A 1991-03-27 1991-03-27 Catalyst for contact reduction of nox Pending JPH04298236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3089699A JPH04298236A (en) 1991-03-27 1991-03-27 Catalyst for contact reduction of nox

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3089699A JPH04298236A (en) 1991-03-27 1991-03-27 Catalyst for contact reduction of nox

Publications (1)

Publication Number Publication Date
JPH04298236A true JPH04298236A (en) 1992-10-22

Family

ID=13978021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3089699A Pending JPH04298236A (en) 1991-03-27 1991-03-27 Catalyst for contact reduction of nox

Country Status (1)

Country Link
JP (1) JPH04298236A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319952A (en) * 1993-04-22 1994-11-22 Toyo Mach & Metal Co Ltd High speed chemical degreasing furnace
US6025297A (en) * 1996-11-14 2000-02-15 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas and process for producing the same
WO2008096575A1 (en) * 2007-02-08 2008-08-14 Daihatsu Motor Co., Ltd. Catalyst composition
WO2009104386A1 (en) * 2008-02-21 2009-08-27 株式会社エフ・シー・シー Process for production of catalyst supports and catalyst supports

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06319952A (en) * 1993-04-22 1994-11-22 Toyo Mach & Metal Co Ltd High speed chemical degreasing furnace
US6025297A (en) * 1996-11-14 2000-02-15 Toyota Jidosha Kabushiki Kaisha Catalyst for purifying exhaust gas and process for producing the same
WO2008096575A1 (en) * 2007-02-08 2008-08-14 Daihatsu Motor Co., Ltd. Catalyst composition
JP5235686B2 (en) * 2007-02-08 2013-07-10 ダイハツ工業株式会社 Exhaust gas purification catalyst
WO2009104386A1 (en) * 2008-02-21 2009-08-27 株式会社エフ・シー・シー Process for production of catalyst supports and catalyst supports
US8461073B2 (en) 2008-02-21 2013-06-11 Kabushiki Kaisha F.C.C. Catalyst support and method of producing same
JP5431158B2 (en) * 2008-02-21 2014-03-05 株式会社エフ・シー・シー Catalyst carrier or catalyst and method for producing the same

Similar Documents

Publication Publication Date Title
US4988661A (en) Steam reforming catalyst for hydrocarbons and method of producing the catalyst
US4711930A (en) Honeycomb catalyst and its preparation
US4959339A (en) Heat-resistant noble metal catalyst and method of producing the same
RU2266784C2 (en) Catalytic composition (options) and a olefin conversion process involving it
JPH01168343A (en) Exhaust gas purifying catalyst
US5037792A (en) Catalyst for the selective reduction of nitrogen oxides and process for the preparation of the catalyst
US5658546A (en) Denitration catalyst
WO2014163235A1 (en) Mixed metal oxide catalyst for treating exhaust gas, preparation method therefor and treatment method for exhaust gas using same
KR20190046869A (en) Uses of Vanadium Acid Salt as Oxidation Catalyst
JP2838336B2 (en) Catalyst for catalytic reduction of nitrogen oxides
EP3277630A1 (en) NOx TRAP CATALYST SUPPORT MATERIAL WITH IMPROVED STABILITY AGAINST BAAL2O4&amp; xA;FORMATION
JPH06315634A (en) Catalytic structure for nitrogen oxide catalytic reduction
JPH04298236A (en) Catalyst for contact reduction of nox
JPH10502020A (en) Catalyst compositions for reducing nitrogen oxides based on tantalum, vanadium, niobium, copper or antimony
JP2620624B2 (en) Exhaust gas purification catalyst
JPH04298235A (en) Catalyst for contact reduction of nox
JPH0483535A (en) Rare earth element composite oxide combustion catalyst of perovskite type
JP3296141B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2559715B2 (en) Heat resistant catalyst for catalytic combustion reaction and method for producing the same
JPH0884912A (en) High efficiency nitrogen oxide reduction method
US3223653A (en) Mangano-chromia-manganite catalysts containing vanadates
JPS5823136B2 (en) How to remove nitrogen oxides from exhaust gas
JPH0435219B2 (en)
JPH0824648A (en) Exhaust gas purifying catalyst and preparation of the sam
JP3488999B2 (en) Exhaust gas purification catalyst composition, method for producing the same, and exhaust gas purification catalyst