JPH04297806A - Manufacture of probe for scan type tunnel microscope - Google Patents

Manufacture of probe for scan type tunnel microscope

Info

Publication number
JPH04297806A
JPH04297806A JP3063233A JP6323391A JPH04297806A JP H04297806 A JPH04297806 A JP H04297806A JP 3063233 A JP3063233 A JP 3063233A JP 6323391 A JP6323391 A JP 6323391A JP H04297806 A JPH04297806 A JP H04297806A
Authority
JP
Japan
Prior art keywords
probe
metal
stm
tip
probes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3063233A
Other languages
Japanese (ja)
Inventor
吹野清隆
Kiyotaka Fukino
安永 正
Tadashi Yasunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP3063233A priority Critical patent/JPH04297806A/en
Publication of JPH04297806A publication Critical patent/JPH04297806A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To enable mass-production of high-quality probes for scan type tunnel microscope having sharp outer edges, excellent resolution, and reserve stability. CONSTITUTION:The surface of a probe 1b formed by electropolishing the tip of a fine wire made of a first metal (tungsten) is coated with a second metal (platinum) 6 less susceptible to ionization than the first metal by vacuum thin film generation process (sputtering) to produce a high-quality probe 7 for scan type tunnel microscope. Coating by thin film generation process can be executed in a short time for probes in a large quantity.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、走査型トンネル顕微鏡
に用いる探針、および走査型トンネル顕微鏡の原理を応
用した記録再生装置に用いる探針の製造方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a probe used in a scanning tunneling microscope, and a method for manufacturing the probe used in a recording/reproducing device applying the principles of a scanning tunneling microscope.

【0002】0002

【従来の技術】走査型トンネル顕微鏡(以下、「STM
」と略記する)は、1982年にBinnigらによっ
て開発された新しいタイプの顕微鏡で、大気中で原子レ
ベルの分解能を有することから近年種々の分野で使われ
ている。
[Prior Art] Scanning tunneling microscope (hereinafter referred to as "STM")
'') is a new type of microscope developed by Binnig et al. in 1982, and has been used in various fields in recent years because it has atomic-level resolution in the atmosphere.

【0003】このSTMの原理は、金属製の探針を試料
に量子力学的な電子雲のしみ出しが重なる程度、即ち1
nm以内に近づけて電圧をかけると、探針と試料との間
には、数nA程度のトンネル電流が流れる、このトンネ
ル電流は、探針と試料との間の距離に指数関数的に依存
しており、探針を三次元的に走査すると試料の原子レベ
ルの凹凸がトンネル電流の大きさとして観測される、と
いうものである。
The principle of STM is to measure the extent to which the quantum mechanical electron clouds seep into the sample using a metal probe, that is, 1
When a voltage is applied to the probe at a distance of less than 1 nm, a tunnel current of several nA flows between the probe and the sample. This tunnel current depends exponentially on the distance between the probe and the sample. When the probe is scanned three-dimensionally, the unevenness of the sample at the atomic level can be observed as the magnitude of the tunneling current.

【0004】この原理からもわかるように、安定にトン
ネル電流を流すためには、試料の導電性の他に、探針の
導電性および探針の先端形状が非常に重要となる。即ち
、STMに用いる探針、およびSTMの原理を応用した
記録再生装置に用いる探針(以下、これらの探針を単に
「STM用探針」という)は、導電性が高く、しかもそ
の先端が鋭く尖っていることが必要である。
As can be seen from this principle, in order to stably flow a tunnel current, in addition to the conductivity of the sample, the conductivity of the probe and the shape of the tip of the probe are very important. In other words, the probes used in STM and the probes used in recording and reproducing devices applying the principles of STM (hereinafter these probes are simply referred to as "STM probes") have high conductivity, and their tips are It needs to be sharp and pointed.

【0005】従来は、STM用探針として、電解研磨し
たタングステン探針あるいは機械研磨した白金探針が使
用されてきた。
Conventionally, electrolytically polished tungsten probes or mechanically polished platinum probes have been used as STM probes.

【0006】[0006]

【発明が解決しようとする課題】上記したような従来の
STM用探針のうち、タングステン探針は、電解研磨に
より容易にその先端を尖鋭化することができる反面、空
気中に保管していると表面が酸化されてその導電性が悪
くなって良好なSTM像が得られなくなってしまう。ま
た、機械研磨した白金探針は酸化され難い反面、その先
端形状にばらつきが生じ易く、再現性よくSTM像が得
られないという問題点がみられた。
[Problems to be Solved by the Invention] Among the conventional STM probes mentioned above, the tip of the tungsten probe can be easily sharpened by electrolytic polishing, but on the other hand, it is stored in air. The surface is oxidized and its conductivity deteriorates, making it impossible to obtain a good STM image. In addition, although mechanically polished platinum probes are difficult to oxidize, they tend to vary in their tip shape, making it difficult to obtain STM images with good reproducibility.

【0007】これらの問題点を解決するために、例えば
特開平1−320403号公報に開示されているように
、電解研磨を容易に行ない得る金属(例えばニッケル)
と酸化し難い金属(例えば金または白金)との合金から
なる細線の先端部を尖鋭化した後、熱処理を行なってこ
の細線の表面に酸化し難い金属を析出させるSTM用探
針の製造方法が知られている。このような製造方法によ
って製造されるSTM用探針は、先端部が尖鋭化し易く
、かつ高い導電性を維持できるという特徴がある。
In order to solve these problems, metals (such as nickel) that can be easily subjected to electrolytic polishing have been developed, for example, as disclosed in Japanese Patent Application Laid-Open No. 1-320403.
A method for producing an STM probe is to sharpen the tip of a thin wire made of an alloy of metal and a metal that is difficult to oxidize (for example, gold or platinum), and then heat-treated to deposit a metal that is difficult to oxidize on the surface of the thin wire. Are known. The STM probe manufactured by such a manufacturing method is characterized in that the tip portion is easily sharpened and high conductivity can be maintained.

【0008】ところが、上記のような合金に熱処理を行
なうSTM用探針の製造方法は、析出に時間がかかるう
え、探針の表面に酸化し難い金属が完全に析出しない場
合が起こり易いなど、高品質のSTM用探針を大量生産
するには適さない、という問題がある。
However, the method for manufacturing STM probes in which the alloy as described above is heat-treated takes a long time to precipitate, and the metal that is difficult to oxidize is often not completely precipitated on the surface of the probe. There is a problem in that it is not suitable for mass production of high quality STM probes.

【0009】本発明は上記課題に鑑み、先端部が尖鋭で
分解能に優れ、しかも化学的に安定して保存性のよい高
品質のSTM用探針を、大量生産するのに適したSTM
用探針の製造方法を提供することを目的とするものであ
る。
In view of the above-mentioned problems, the present invention has developed a high-quality STM probe with a sharp tip, excellent resolution, chemical stability and good storage stability, and an STM probe suitable for mass production.
The purpose of this invention is to provide a method for manufacturing a probe for use in the present invention.

【0010】0010

【課題を解決するための手段】上記課題を解決するため
に、本発明による走査型トンネル顕微鏡(STM)用探
針の製造方法は、第1の金属からなる細線の先端部を尖
鋭化し、この先端部表面に前記第1の金属よりイオン化
傾向の低い第2の金属を真空薄膜生成法によってコーテ
ィングすることを特徴とするものである。
[Means for Solving the Problems] In order to solve the above problems, the method of manufacturing a probe for a scanning tunneling microscope (STM) according to the present invention sharpens the tip of a thin wire made of a first metal. It is characterized in that a second metal having a lower ionization tendency than the first metal is coated on the surface of the tip by a vacuum thin film formation method.

【0011】上記において「第1の金属」としてタング
ステン,ニッケル,クロム,モリブデン,鉄,コバルト
,亜鉛,チタン,または銅を用いることができ、また「
第2の金属」として金,銀,または白金属(白金,パラ
ジウム,オスシウム,イリジウム,ルテニウム,ロジウ
ム)を用いることができる。
[0011] In the above, tungsten, nickel, chromium, molybdenum, iron, cobalt, zinc, titanium, or copper can be used as the "first metal";
Gold, silver, or platinum metal (platinum, palladium, ossium, iridium, ruthenium, rhodium) can be used as the second metal.

【0012】また上記において「真空薄膜生成法」とは
、蒸着,スパッタリング,イオンプレーティング等の物
理的プロセスにより金属皮膜を得る方法(Physic
al Vapor Deposition ;PVD)
、および金属ハロゲン化物などを高温によって熱分解ま
たは水素還元するという化学的プロセスにより金属皮膜
を得る方法(Chemical Vapor Depo
sition ;CVD)をいい、いわゆるメッキとい
う概念や、上記した、合金を加熱処理してその表面に合
金を構成する一部の金属を析出させる方法とは違うもの
である。
[0012] In the above, the "vacuum thin film production method" refers to a method for obtaining a metal film by a physical process such as vapor deposition, sputtering, or ion plating.
al Vapor Deposition; PVD)
, and a method of obtaining a metal film by a chemical process of thermal decomposition or hydrogen reduction of metal halides etc. at high temperatures (Chemical Vapor Depo
It is different from the concept of so-called plating and the above-mentioned method of heating an alloy to precipitate some of the metals that make up the alloy on its surface.

【0013】[0013]

【作用および効果】上記したように本発明によるSTM
用探針の製造方法は、第1の金属からなる細線の先端部
を尖鋭化し、その表面に第1の金属よりイオン化傾向の
低い第2の金属を真空薄膜生成法によってコーティング
するものである。
[Action and Effect] As described above, the STM according to the present invention
The method for manufacturing the probe is to sharpen the tip of a thin wire made of a first metal, and coat its surface with a second metal that has a lower ionization tendency than the first metal using a vacuum thin film formation method.

【0014】第2の金属は、第1の金属よりもイオン化
傾向が低く酸化し難いので化学的に安定している。他方
、第1の金属は第2の金属よりもイオン化傾向が高いの
で第1の金属からなる細線の先端部は、電解研磨法によ
って容易に尖鋭化することができる。したがって第1の
金属からなる細線の先端部を尖鋭化した後、この先端部
表面に化学的に安定した第2の金属をコーティングすれ
ば、保存安定性を有し、先端部が尖鋭で分解能に優れた
高品質のSTM用探針をつくることができる。
The second metal has a lower ionization tendency than the first metal and is less likely to be oxidized, so it is chemically stable. On the other hand, since the first metal has a higher ionization tendency than the second metal, the tip of the thin wire made of the first metal can be easily sharpened by electrolytic polishing. Therefore, if the tip of a thin wire made of a first metal is sharpened and the surface of this tip is coated with a chemically stable second metal, it will have storage stability, and the sharp tip will improve the resolution. Excellent, high-quality STM probes can be made.

【0015】また、真空薄膜生成法(例えば蒸着やスパ
ッタリング)は、一度に大量の探針に短時間で、しかも
ほぼ完全に第2の金属をコーティングすることが可能で
ある。
[0015] Further, the vacuum thin film forming method (eg, vapor deposition or sputtering) allows a large number of probes to be coated with the second metal almost completely at once in a short period of time.

【0016】したがって、本発明によるSTM用探針の
製造方法によれば、先端部が尖鋭で分解能に優れ、しか
も化学的に安定して保存性のよい高品質のSTM用探針
を、大量に生産することが可能である。
Therefore, according to the method for manufacturing STM probes according to the present invention, high-quality STM probes with sharp tips and excellent resolution, which are chemically stable and have good storage stability, can be produced in large quantities. It is possible to produce.

【0017】[0017]

【実施例】以下、本発明によるSTM用探針の製造方法
の実施例について図面に基づいて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the method for manufacturing an STM probe according to the present invention will be described below with reference to the drawings.

【0018】図1は、本発明の一実施例によるSTM用
探針の製造方法における、金属細線を電解研磨する様子
を示す概略図、図2は、その製造方法における、金属探
針の表面にコーティングする様子を示す概略図、および
図3は、その製造方法により製造されたSTM用探針の
先端部の構造を示す断面拡大図である。
FIG. 1 is a schematic diagram showing electrolytic polishing of a thin metal wire in a method for manufacturing an STM probe according to an embodiment of the present invention, and FIG. FIG. 3 is an enlarged cross-sectional view showing the structure of the tip of the STM probe manufactured by the manufacturing method.

【0019】本実施例は、タングステン製の探針の表面
に、マグネトロンスパッタリングによって白金をコーテ
ィングしたSTM用探針の製造に関するものである。
This example relates to the manufacture of an STM probe in which the surface of a tungsten probe is coated with platinum by magnetron sputtering.

【0020】図1に示すように、直径0.2mm のタ
ングステン製の細線1aを、5wt%の水酸化カリウム
水溶液2の中に3mm浸し、電圧20VACで60秒間
電解研磨を行なった。
As shown in FIG. 1, a thin tungsten wire 1a having a diameter of 0.2 mm was immersed for 3 mm into a 5 wt % potassium hydroxide aqueous solution 2, and electrolytically polished at a voltage of 20 VAC for 60 seconds.

【0021】電解研磨を行ない、先端部を尖鋭化したタ
ングステン製の細線1aを、蒸留水で十分に洗浄して、
タングステン製の探針1bとした。
The thin tungsten wire 1a, which has been electrolytically polished and has a sharpened tip, is thoroughly washed with distilled water.
The probe 1b was made of tungsten.

【0022】続いて図2に示すように上記のように製造
された複数個の探針1bをマグネトロンスパッタ機3の
中に入れ、試料ステージ4の上に置いた。この時各探針
1bの軸方向が、ステージ4の上方に配置されたターゲ
ット5に垂直となるようにした。そして、真空ポンプ8
によって1×10−3Torrまで真空排気し、電圧0
.4kV、電流15 mAの条件で図3に示すように白
金6を探針1bの表面に20nmコーティングして、S
TM用探針7とした。
Subsequently, as shown in FIG. 2, the plurality of probes 1b manufactured as described above were put into the magnetron sputtering machine 3 and placed on the sample stage 4. At this time, the axial direction of each probe 1b was made to be perpendicular to the target 5 placed above the stage 4. And vacuum pump 8
Evacuate to 1 x 10-3 Torr by
.. Under the conditions of 4 kV and 15 mA of current, the surface of the probe 1b was coated with platinum 6 to a thickness of 20 nm as shown in Fig. 3, and S
It was designated as TM probe 7.

【0023】次に、上記のような製造方法により製造さ
れたSTM用探針(以下「本例」という)によりSTM
測定を行なった結果について説明する。なお比較のため
、直径0.2mm のタングステン製の細線を5wt%
の水酸化カリウム水溶液中に3mm浸し、電圧20VA
c で60秒間電解研磨したSTM用探針(以下「比較
例−1」という)と、直径0.3mmの白金製の細線の
先端部をマイクログラインダーによって尖鋭化し、蒸留
水で十分に洗浄したSTM用探針(以下「比較例−2」
という)とを用いてそれぞれ同様のSTM測定を行なっ
た。
Next, using the STM probe manufactured by the above manufacturing method (hereinafter referred to as "this example"), the STM
The results of the measurements will be explained. For comparison, 5wt% of tungsten thin wire with a diameter of 0.2mm was used.
Immerse it 3mm in a potassium hydroxide aqueous solution and apply a voltage of 20VA.
An STM probe (hereinafter referred to as "Comparative Example-1") that was electrolytically polished for 60 seconds at C and an STM probe whose tip of a fine platinum wire with a diameter of 0.3 mm was sharpened with a microgrinder and thoroughly washed with distilled water. probe (hereinafter referred to as “Comparative Example-2”)
Similar STM measurements were performed using the following.

【0024】本例、比較例−1、および比較例−2のい
ずれも1か月間空気中で保存後にSTM測定を行なった
。試料としては、原子レベルの分解能チェックとしてグ
ラファイトを、粗さレベル(μmレベル)の分解能チェ
ック用として回折格子板を用いた。
[0024] All of this example, Comparative Example-1, and Comparative Example-2 were stored in air for one month and then subjected to STM measurement. As a sample, graphite was used to check the resolution at the atomic level, and a diffraction grating plate was used to check the resolution at the roughness level (μm level).

【0025】その結果、比較例−1では、グラファイト
の原子は観察できず、また回折格子板の測定の際も時々
ノイズが入り、鮮明なSTM像は得られなかった。
As a result, in Comparative Example 1, graphite atoms could not be observed, and noise sometimes occurred during measurement of the diffraction grating plate, making it impossible to obtain a clear STM image.

【0026】また、比較例−2では、グラファイトの原
子像は観察できたものの、回折格子板の測定の際は、探
針のセットする方向により像が異なり、再現性のよいS
TM像が得られなかった。
In Comparative Example 2, although the atomic image of graphite could be observed, when measuring the diffraction grating plate, the image differed depending on the direction in which the probe was set, and S
No TM image was obtained.

【0027】それに対して、本例では、グラファイトの
原子像も、回折格子板のSTM像も鮮明に、かつ再現性
よく得られた。
In contrast, in this example, both the atomic image of graphite and the STM image of the diffraction grating plate were obtained clearly and with good reproducibility.

【0028】上記測定結果によって、本発明の一実施例
によるSTM用探針の製造方法によれば、保存安定性を
有し、かつ分解能の優れた高品質のSTM用探針を製造
することができることがわかる。
According to the above measurement results, it is possible to manufacture a high-quality STM probe with storage stability and excellent resolution according to the method for manufacturing an STM probe according to an embodiment of the present invention. I know what I can do.

【0029】以上、本発明によるSTM用探針の製造方
法について一実施例に基づいて説明したが本発明による
STM用探針の製造方法はかかる実施例に限定されるも
のではない。
Although the method for manufacturing an STM probe according to the present invention has been described above based on one embodiment, the method for manufacturing an STM probe according to the present invention is not limited to this embodiment.

【0030】例えば前記実施例では金属細線として、タ
ングステン製の細線を用いているが、これはニッケルや
銅等に代えることも可能である。なお、タングステンは
ニッケルや銅に比べ硬度が高く、STM用探針用として
用いるのに適している。
For example, in the embodiment described above, a thin metal wire made of tungsten is used, but this may be replaced with nickel, copper, or the like. Note that tungsten has higher hardness than nickel or copper, and is suitable for use as an STM probe.

【0031】また、前記実施例では、探針表面のコーテ
ィング材として白金を用いているが、これは金やパウジ
ウム等に置き換えることも可能である。
Further, in the above embodiment, platinum is used as a coating material on the surface of the probe, but it is also possible to replace this with gold, paudium, or the like.

【0032】また前記実施例ではコーティング方法とし
てマグネトロンスパッタリングを用いているが、コーテ
ィングは蒸着やイオンプレーティング等の他の真空薄膜
生成法で行なうことも可能である。
Further, although magnetron sputtering is used as the coating method in the above embodiment, the coating can also be performed by other vacuum thin film forming methods such as vapor deposition or ion plating.

【0033】なお、コーティング厚としては2〜200
nm が好ましい。2nmよりも薄い場合はコーティン
グにむらが生じやすく、母材金属の露出している部分か
ら浸食されてしまう。また200nm よりも厚い場合
は、探針先端の形状が鈍ってしまいSTM測定時の面分
解能が悪くなってしまう。
[0033] The coating thickness is 2 to 200 mm.
nm is preferred. If it is thinner than 2 nm, the coating tends to be uneven, and the exposed parts of the base metal will be eroded. If the thickness is thicker than 200 nm, the shape of the tip of the probe becomes blunt, resulting in poor surface resolution during STM measurement.

【0034】また探針先端を電解研磨後、十分洗浄を行
ない、さらにスパッタイオンエッチング等のドライエッ
チングを施すと洗浄効果は大きい。
Further, after electrolytically polishing the tip of the probe, it is thoroughly cleaned, and furthermore, dry etching such as sputter ion etching is applied to the tip to obtain a great cleaning effect.

【0035】さらに、探針先端をコーティングした後、
スパッタイオンエッチングを数秒間行なうと、コーティ
ングにより多少丸くなった探針先端部を尖鋭化する効果
があり、分解能のよいSTM像を得るために有効である
Furthermore, after coating the tip of the probe,
Sputter ion etching for several seconds has the effect of sharpening the tip of the probe, which has become somewhat rounded due to the coating, and is effective for obtaining a high-resolution STM image.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例による走査型トンネル顕微鏡
用探針の製造方法における、金属細線を電解研磨する様
子を示す概略図
FIG. 1 is a schematic diagram showing electrolytic polishing of a thin metal wire in a method of manufacturing a probe for a scanning tunneling microscope according to an embodiment of the present invention.

【図2】本発明の一実施例による走査型トンネル顕微鏡
用探針の製造方法における、金属探針の表面にコーティ
ングする様子を示す概略図
FIG. 2 is a schematic diagram showing how the surface of a metal probe is coated in a method for manufacturing a probe for a scanning tunneling microscope according to an embodiment of the present invention.

【図3】本発明の一実施例による走査型トンネル顕微鏡
用探針の製造方法により製造された走査型トンネル顕微
鏡用探針の先端部の構造を示す断面拡大図
FIG. 3 is an enlarged cross-sectional view showing the structure of the tip of a scanning tunneling microscope probe manufactured by the method for manufacturing a scanning tunneling microscope probe according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1a    第1の金属からなる細線 6    第2の金属 1a Thin wire made of first metal 6 Second metal

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  第1の金属からなる細線の先端部を尖
鋭化し、この先端部表面に前記第1の金属よりイオン化
傾向の低い第2の金属を真空薄膜生成法によってコーテ
ィングすることを特徴とする走査型トンネル顕微鏡用探
針の製造方法。
1. The tip of a thin wire made of a first metal is sharpened, and the surface of the tip is coated with a second metal having a lower ionization tendency than the first metal using a vacuum thin film formation method. A method for manufacturing a probe for a scanning tunneling microscope.
【請求項2】  前記第1の金属が、タングステン,ニ
ッケル,クロム,モリブデン,鉄,コバルト,亜鉛,チ
タン,および銅よりなる群から選ばれた金属、前記第2
の金属が、金,銀,および白金属(白金,パラジウム,
オスシウム,イリジウム,ルテニウム,ロジウム)より
なる群から選ばれた金属であることを特徴とする請求項
1記載の走査型トンネル顕微鏡用探針の製造方法。
2. The first metal is a metal selected from the group consisting of tungsten, nickel, chromium, molybdenum, iron, cobalt, zinc, titanium, and copper;
metals such as gold, silver, and platinum (platinum, palladium,
2. The method for manufacturing a scanning tunneling microscope probe according to claim 1, wherein the metal is selected from the group consisting of ossium, iridium, ruthenium, and rhodium.
JP3063233A 1991-03-27 1991-03-27 Manufacture of probe for scan type tunnel microscope Withdrawn JPH04297806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3063233A JPH04297806A (en) 1991-03-27 1991-03-27 Manufacture of probe for scan type tunnel microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3063233A JPH04297806A (en) 1991-03-27 1991-03-27 Manufacture of probe for scan type tunnel microscope

Publications (1)

Publication Number Publication Date
JPH04297806A true JPH04297806A (en) 1992-10-21

Family

ID=13223296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3063233A Withdrawn JPH04297806A (en) 1991-03-27 1991-03-27 Manufacture of probe for scan type tunnel microscope

Country Status (1)

Country Link
JP (1) JPH04297806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048694A (en) * 2008-08-22 2010-03-04 Japan Electronic Materials Corp Contact probe, probe card, and method for manufacturing the contact probe
CN110531121A (en) * 2019-09-30 2019-12-03 燕山大学 A kind of dressing method of atomic force microscope probe needle point

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048694A (en) * 2008-08-22 2010-03-04 Japan Electronic Materials Corp Contact probe, probe card, and method for manufacturing the contact probe
CN110531121A (en) * 2019-09-30 2019-12-03 燕山大学 A kind of dressing method of atomic force microscope probe needle point

Similar Documents

Publication Publication Date Title
US6897603B2 (en) Catalyst for carbon nanotube growth
US5892223A (en) Multilayer microtip probe and method
Oliva et al. Electrochemical preparation of tungsten tips for a scanning tunneling microscope
McDermott et al. Scanning tunneling microscopy of carbon surfaces: relationships between electrode kinetics, capacitance, and morphology for glassy carbon electrodes
JP2002162336A (en) Probe for electroconductive scanning microscope and processing method using this probe
US20060075626A1 (en) Single-atom tip and preparation method thereof
US20100005553A1 (en) Sidewall tracing nanoprobes, method for making the same, and method for use
US5075094A (en) Method of growing diamond film on substrates
JPH0275902A (en) Diamond probe and its forming method
Hendricks et al. Imaging of the in situ deposition of lead on highly oriented pyrolytic graphite by scanning tunneling and atomic force microscopies
US8168251B2 (en) Method for producing tapered metallic nanowire tips on atomic force microscope cantilevers
JPH04297806A (en) Manufacture of probe for scan type tunnel microscope
WO2004102582A1 (en) Carbon nanotube-based probes, related devices and methods of forming the same
JP2009109411A (en) Probe, its manufacturing method, and probe microscope of scanning type
CN113049853A (en) Method for preparing tilting AFM probe tip with size and tilt angle controllable and ultra-large height-to-width ratio
JP2008157686A (en) Methods for manufacturing conductive probe and magnetic probe
Schmidt-Rieder et al. In situ electrochemical scanning probe microscopy corrosion studies on duplex stainless steel in aqueous NaCl solutions
Beitel et al. Atomic structure of clean and Cu covered Pt (110) electrodes
KR102101854B1 (en) Atomic force microscope tip and its manufacturing method
Zhu et al. Insulating method using cataphoretic paint for tungsten tips for electrochemical scanning tunnelling microscopy (ECSTM)
RU2397138C1 (en) Method for controlled synthesis, modification and destruction of single metal oxide nanostructures in combination with control of their composition and properties (versions)
JP4761129B2 (en) Probing method for probe microscope and probe microscope
Kuo et al. Preparation of single-atom tips and their field emission behaviors
Kim et al. Enhanced charge storage properties of ultrananocrystalline diamond films by contact electrification-induced hydrogenation
Yao et al. Coordination-controlled electrodeposition of palladium/copper thin films onto a pyridine-terminated self-assembled monolayer

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514