JPH04296642A - Sample surface-defect detecting device - Google Patents

Sample surface-defect detecting device

Info

Publication number
JPH04296642A
JPH04296642A JP6225891A JP6225891A JPH04296642A JP H04296642 A JPH04296642 A JP H04296642A JP 6225891 A JP6225891 A JP 6225891A JP 6225891 A JP6225891 A JP 6225891A JP H04296642 A JPH04296642 A JP H04296642A
Authority
JP
Japan
Prior art keywords
optical fiber
sample surface
laser beam
light
integrating sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6225891A
Other languages
Japanese (ja)
Inventor
Takeshi Tada
武 多田
Nobuo Banba
番場 信夫
Taizo Sakaki
泰三 坂木
Ryuji Sakida
隆二 崎田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP6225891A priority Critical patent/JPH04296642A/en
Publication of JPH04296642A publication Critical patent/JPH04296642A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

PURPOSE:To obtain a sample surface-defect detecting device capable of easily increasing the efficiency in collecting light reflected from the surface of a sample. CONSTITUTION:A sample surface-defect detecting device is provided with a laser beam scanning means comprising a polygon mirror 3, etc., for scanning the surface of a sample 5 with laser beam and a photo-detector 6 which receives the laser beam light reflected from the sample surface 5 and converts it into electric signals. Also an integrating sphere 9 for collecting the laser beam light reflected from the sample surface 5 into the photo-detector 6 and an optical fiber array 8 composed of multiple optical fibers and introducing the laser beam light reflected from the sample surface 5 into the integrating sphere 9 by injecting it are provided, and the optical plane of incidence 8a of the optical fiber array 8 is formed of recessed annular surfaces.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、試料表面欠陥検出装置
に係り、特に、レーザ光の光スポットにより試料表面を
走査し、試料表面からの反射光に基づき試料表面の粗さ
や均一性等に対する欠陥を検出する試料表面欠陥検出装
置に関する。
[Industrial Application Field] The present invention relates to a sample surface defect detection device, and in particular, it scans the sample surface with a light spot of a laser beam, and detects the roughness, uniformity, etc. of the sample surface based on the reflected light from the sample surface. The present invention relates to a sample surface defect detection device that detects defects.

【0002】0002

【従来の技術】従来の試料表面欠陥検出装置としては、
例えば、特開昭59−208446号公報、特開昭62
−11151号公報および特開昭57−163853号
公報記載のものが知られている。最初の公報記載のもの
は、欠陥の検出信号レベルの増幅ゲインを調整可能な回
路を備えており、試料検出面からの散乱光を光ファイバ
により光電子増倍管に導くようにしている。
[Prior Art] As a conventional sample surface defect detection device,
For example, JP-A-59-208446, JP-A-62
Those described in Japanese Patent Laid-open No. 11151 and Japanese Patent Application Laid-open No. 57-163853 are known. The device described in the first publication includes a circuit that can adjust the amplification gain of the defect detection signal level, and guides scattered light from the sample detection surface to a photomultiplier tube through an optical fiber.

【0003】次の公報記載のものは、試料表面と光ファ
イバの間の光路中にシリンダレンズを配置して、シリン
ダレンズを通過する試料表面からの散乱光を光ファイバ
により光電子増倍管に導くようにしている。最後の公報
記載のものは、複数本のレーザビームを試料表面に照射
し、試料表面からの散乱光をファイバにより積分球に導
き、積分球により光電管に集光させるようにしている。
The method described in the following publication places a cylinder lens in the optical path between the sample surface and an optical fiber, and guides the scattered light from the sample surface passing through the cylinder lens to a photomultiplier tube through the optical fiber. That's what I do. The method described in the last publication irradiates the sample surface with multiple laser beams, guides the scattered light from the sample surface to an integrating sphere through a fiber, and focuses the light onto a phototube using the integrating sphere.

【0004】0004

【発明が解決しようとする課題】しかしながら、これら
の従来の試料表面欠陥検出装置にあっては、下述のよう
な理由のため、試料表面からの反射光の集光効率を高め
るのが困難であるといった問題点があった。すなわち、
最初の二つの公報記載のものにあっては、走査されるレ
ーザビームは試料表面に垂直な方向で拡散光として入射
するため、平面的な開口部を有する光ファイバアレイで
は、試料表面の欠陥部で反射された光は光ファイバアレ
イの開口面に対して大きな角度で入射する。したがって
、光ファイバアレイの収束部において集められた散乱光
も広がった光束となって出射することになる。このよう
な不具合を解消するために、最後の公報記載のものは、
光ファイバアレイの下流側に積分球を配置しているが、
積分球を設けただけでは、集光効率の向上は不十分であ
る。
[Problem to be Solved by the Invention] However, with these conventional sample surface defect detection devices, it is difficult to increase the efficiency of collecting reflected light from the sample surface for the reasons described below. There were some problems. That is,
In the first two publications, the scanned laser beam enters the sample surface as diffused light in a direction perpendicular to the sample surface, so an optical fiber array with a planar aperture cannot detect defects on the sample surface. The reflected light enters the aperture surface of the optical fiber array at a large angle. Therefore, the scattered light collected at the convergence part of the optical fiber array also becomes a spread light beam and is emitted. In order to solve this problem, the last publication is as follows:
An integrating sphere is placed downstream of the optical fiber array, but
Merely providing an integrating sphere is insufficient to improve light collection efficiency.

【0005】そこで、本発明は、試料表面からの反射光
の集光効率を容易に高めることができる試料表面欠陥検
出装置を提供することを課題としている。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a sample surface defect detection device that can easily improve the efficiency of collecting reflected light from the sample surface.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
、請求項1記載の発明は、試料表面上にレーザ光を走査
するレーザ光走査手段と、試料表面からのレーザ光の反
射光を受光し電気信号に変換する光電変換手段と、を備
えた試料表面欠陥検出装置において、前記試料表面から
のレーザ光の反射光を光電変換手段に集光する積分球と
、複数の光ファイバからなり、試料表面からのレーザ光
の反射光を入射して積分球に導く光ファイバアレイと、
を設け、前記光ファイバアレイの光入射面が凹型の円弧
状面により構成されることを特徴とするものであり、請
求項2記載の発明は、請求項1の構成に加え、前記光フ
ァイバアレイを構成する各光ファイバの光入射面近傍部
の軸線が光ファイバアレイの光入射面の法線に一致する
ことを特徴とするものであり、請求項3記載の発明は、
請求項1または請求項2の構成に加え、前記試料表面と
光ファイバアレイの間の光路中にトロイダルレンズを設
けたことを特徴とするものであり、請求項4記載の発明
は、試料表面上にレーザ光を走査するレーザ光走査手段
と、試料表面からのレーザ光の反射光を受光し電気信号
に変換する光電変換手段と、を備えた試料表面欠陥検出
装置において、前記試料表面からのレーザ光の反射光を
光電変換手段に集光する積分球と、複数の光ファイバか
らなり、試料表面からのレーザ光の反射光を入射して積
分球に導く光ファイバアレイと、光ファイバアレイと積
分球の間に配置され、レーザ光の走査方向に長い偏平な
円形開口および該円形開口から入射したレーザ光を反射
させる変形コーン状反射面を有し、光ファイバアレイか
ら円形開口を通してレーザ光を入射して変形コーン状反
射面により反射させながら積分球に導く変形コーンと、
を設けたことを特徴とするものであり、請求項5記載の
発明は、試料表面上にレーザ光を走査するレーザ光走査
手段と、試料表面からのレーザ光の反射光を受光し電気
信号に変換する光電変換手段と、を備えた試料表面欠陥
検出装置において、前記試料表面からのレーザ光の反射
光を光電変換手段に集光する積分球と、複数の光ファイ
バからなり、試料表面からのレーザ光の反射光を入射し
て積分球に導く光ファイバアレイと、を設け、前記各光
ファイバの光入射面通過直後の光の光軸と各光ファイバ
の光入射面近傍部の軸線とが一致するように、各光ファ
イバの光入射面における光の入射角と光ファイバの屈折
率に基づいて、各光ファイバが配列されたことを特徴と
するものである。
[Means for Solving the Problems] In order to solve the above problems, the invention according to claim 1 provides a laser beam scanning means for scanning a laser beam on a sample surface, and a laser beam scanning means for scanning a laser beam on a sample surface, and receiving reflected light of the laser beam from the sample surface. A sample surface defect detection device comprising: a photoelectric conversion means for converting the laser beam into an electric signal; an optical fiber array that enters reflected laser light from the sample surface and guides it to an integrating sphere;
In addition to the structure of claim 1, the invention according to claim 2 is characterized in that the light incidence surface of the optical fiber array is constituted by a concave arc-shaped surface. The invention according to claim 3 is characterized in that an axis of a portion near the light entrance surface of each optical fiber constituting the optical fiber array corresponds to a normal line of the light entrance surface of the optical fiber array.
In addition to the structure of claim 1 or claim 2, the invention is characterized in that a toroidal lens is provided in the optical path between the sample surface and the optical fiber array. A sample surface defect detection apparatus comprising: a laser beam scanning means for scanning a laser beam on the sample surface; and a photoelectric conversion means for receiving reflected light of the laser beam from the sample surface and converting it into an electrical signal. An integrating sphere that focuses the reflected light on a photoelectric conversion means, an optical fiber array that is made up of multiple optical fibers and guides the reflected laser light from the sample surface to the integrating sphere, and an optical fiber array and an integrating sphere. Arranged between the spheres, it has a flat circular aperture that is long in the scanning direction of the laser beam and a deformed cone-shaped reflecting surface that reflects the laser beam incident from the circular aperture, and the laser beam is input from the optical fiber array through the circular aperture. a deformed cone that guides the cone to an integrating sphere while being reflected by a deformed cone-shaped reflecting surface;
The invention according to claim 5 is characterized in that it is provided with a laser beam scanning means for scanning a laser beam on the sample surface, and a means for receiving the reflected light of the laser beam from the sample surface and converting it into an electrical signal. A sample surface defect detection device comprising: a photoelectric conversion means for converting laser light from the sample surface; an optical fiber array that enters the reflected light of the laser beam and guides it to an integrating sphere; The optical fibers are arranged based on the angle of incidence of light on the light incident surface of each optical fiber and the refractive index of the optical fiber so that the optical fibers match.

【0007】[0007]

【作用】請求項1記載の発明では、前記光ファイバアレ
イの光入射面が凹型の円弧状面により構成され、試料表
面からの反射光が光ファイバアレイの光入射面に対して
小さい入射角で入射し、拡散光の集光効率が高められる
。請求項2記載の発明では、請求項1の作用に加え、各
光ファイバの光入射面近傍部の軸線が光ファイバアレイ
の光入射面の法線に一致し、各光ファイバの光入射面通
過直後の光の光軸と各光ファイバの光入射面近傍部の軸
線とが一致する。したがって、光ファイバの集光効率が
高められるとともに、光ファイバからの出射光の広がり
が小さくなり、積分球の小型化が可能になる。
[Operation] In the invention as set forth in claim 1, the light incident surface of the optical fiber array is constituted by a concave arc-shaped surface, and the reflected light from the sample surface is formed at a small incident angle with respect to the light incident surface of the optical fiber array. The efficiency of collecting diffused light is increased. In the invention according to claim 2, in addition to the effect of claim 1, the axis of each optical fiber in the vicinity of the light entrance surface coincides with the normal line of the light entrance surface of the optical fiber array, and the light entrance surface of each optical fiber passes through. The optical axis of the immediately following light coincides with the axis of each optical fiber in the vicinity of the light incident surface. Therefore, the light collection efficiency of the optical fiber is increased, and the spread of light emitted from the optical fiber is reduced, making it possible to downsize the integrating sphere.

【0008】請求項3記載の発明では、請求項1または
請求項2の作用に加え、試料表面と光ファイバアレイの
間の光路中に設けられたトロイダルレンズにより、結像
関係がレンズ周辺部まで成立し、集光効率が一層高めら
れる。請求項4記載の発明では、光ファイバと積分球の
間に配置された変形コーンにより、光ファイバアレイの
光入射面が大きい場合でも、積分球の光入射口が小さく
なり、積分球が小型化される。
[0008] In the invention recited in claim 3, in addition to the effects of claim 1 or 2, the toroidal lens provided in the optical path between the sample surface and the optical fiber array improves the imaging relationship up to the lens periphery. This is true, and the light collection efficiency is further improved. In the invention as claimed in claim 4, the deformed cone placed between the optical fiber and the integrating sphere makes the light entrance of the integrating sphere small even when the light incidence surface of the optical fiber array is large, and the integrating sphere is made smaller. be done.

【0009】請求項5記載の発明では、光ファイバアレ
イの光入射面を円弧状にすることなく、各光ファイバの
光入射面通過直後の光の光軸と各光ファイバの光入射面
近傍部の軸線とが一致し、光ファイバの集光効率が高め
られるとともに、光ファイバからの出射光の広がりが小
さくなり、積分球の小型化が可能になる。
In the invention as set forth in claim 5, the optical axis of the light immediately after passing through the light entrance surface of each optical fiber and the vicinity of the light entrance surface of each optical fiber are formed without making the light entrance surface of the optical fiber array arc-shaped. coincides with the axes of the optical fiber, increasing the light collection efficiency of the optical fiber and reducing the spread of light emitted from the optical fiber, making it possible to downsize the integrating sphere.

【0010】0010

【実施例】以下、本発明を図面に基づいて説明する。図
1、図2は請求項1および請求項2記載の発明に係る試
料表面欠陥検出装置の一実施例を示す図である。まず、
構成を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be explained below based on the drawings. FIGS. 1 and 2 are diagrams showing an embodiment of a sample surface defect detection apparatus according to the first and second aspects of the invention. first,
Explain the configuration.

【0011】図1、図2において、1はレーザ光源であ
り、レーザ光源1から出射されたレーザ光はレンズ系2
を通してポリゴンミラー3に入射される。ポリゴンミラ
ー3は回転駆動されて入射したレーザ光を反射しfθレ
ンズ4を通して試料表面5をレーザビームにより走査す
る。したがって、レーザ光源1、レンズ系2、ポリゴン
ミラー3およびFθレンズ4は、試料表面5上にレーザ
光を走査するレーザ光走査手段を構成する。試料表面5
からの反射光は下記の構成を通して、光検出器6に入射
され、光検出器6は入射光に対応した電気信号を出力す
る。したがって、光検出器は試料表面5からのレーザ光
の反射光を受光し電気信号に変換する光電変換手段を構
成する。
In FIGS. 1 and 2, 1 is a laser light source, and the laser light emitted from the laser light source 1 is transmitted through a lens system 2.
The light is incident on the polygon mirror 3 through the polygon mirror 3. The polygon mirror 3 is driven to rotate, reflects the incident laser beam, and scans the sample surface 5 with the laser beam through the fθ lens 4. Therefore, the laser light source 1, the lens system 2, the polygon mirror 3, and the Fθ lens 4 constitute a laser beam scanning means that scans the laser beam onto the sample surface 5. Sample surface 5
The reflected light is incident on the photodetector 6 through the following configuration, and the photodetector 6 outputs an electric signal corresponding to the incident light. Therefore, the photodetector constitutes a photoelectric conversion means that receives reflected light of the laser beam from the sample surface 5 and converts it into an electrical signal.

【0012】ここで、試料表面5からの反射光はシリン
ダレンズ7、光ファイバアレイ8および積分球9を順に
通して光検出器6に集光される。すなわち、シリンダレ
ンズ7により反射光の副走査方向が集光され、光ファイ
バアレイ8の光入射面8aに入射する。光ファイバアレ
イ8は複数の光ファイバ10から構成され、光をアレイ
出射口8bで集光して積分球9に導く。積分球9は光フ
ァイバアレイ8から入射した光を光検出器6に集光する
。 光ファイバアレイ8の光入射面8aは凹型の円弧状面に
より構成される。本実施例では、図2に示されるように
、光入射面8aは、走査する光束の回転半径Rに等しい
円弧状面により構成される。さらに、本実施例では、光
ファイバアレイ8を構成する各光ファイバ10の光入射
面近傍部10aの軸線が光ファイバアレイの光入射面8
aの法線に一致するように、各光ファイバが配列されて
いる。また、シリンダレンズ7の代りにトロイダルレン
ズ(図示しない)を配置してもよい。この場合、レンズ
周辺部においても結像関係が成立する。すなわち、シリ
ンダレンズ7により試料表面5と光ファイバアレイ8の
光入射面8aが共役な関係になっているのが望ましいが
、光束は拡散光となっているため、実際にはシリンダレ
ンズ7の周辺部では結像関係が成立しなくなる。そこで
、シリンダレンズ7の代りにトロイダルレンズ(図示せ
ず)を配置すれば、周辺部まで結像関係を成立させるこ
とができる。このようにトロイダルレンズを配置した場
合の実施例は、請求項3記載の発明に係る試料表面欠陥
検出装置の一実施例となる。
Here, the reflected light from the sample surface 5 passes through a cylinder lens 7, an optical fiber array 8, and an integrating sphere 9 in this order and is focused on a photodetector 6. That is, the reflected light in the sub-scanning direction is focused by the cylinder lens 7 and enters the light incidence surface 8a of the optical fiber array 8. The optical fiber array 8 is composed of a plurality of optical fibers 10, and condenses light at an array exit 8b and guides it to an integrating sphere 9. Integrating sphere 9 focuses the light incident from optical fiber array 8 onto photodetector 6 . The light entrance surface 8a of the optical fiber array 8 is constituted by a concave arc-shaped surface. In this embodiment, as shown in FIG. 2, the light entrance surface 8a is constituted by an arcuate surface equal to the radius of rotation R of the scanning light beam. Furthermore, in this embodiment, the axis of the light entrance surface vicinity portion 10a of each optical fiber 10 constituting the optical fiber array 8 is the light entrance surface 8 of the optical fiber array.
Each optical fiber is arranged so as to coincide with the normal line of a. Further, a toroidal lens (not shown) may be arranged in place of the cylinder lens 7. In this case, the imaging relationship also holds true at the lens periphery. In other words, it is desirable that the sample surface 5 and the light incidence surface 8a of the optical fiber array 8 are in a conjugate relationship due to the cylinder lens 7, but since the light flux is diffused light, in reality, the periphery of the cylinder lens 7 In this case, the imaging relationship no longer holds true. Therefore, by arranging a toroidal lens (not shown) in place of the cylinder lens 7, the imaging relationship can be established up to the peripheral portion. The embodiment in which the toroidal lens is arranged in this manner is an embodiment of the sample surface defect detection apparatus according to the third aspect of the invention.

【0013】上述のような構成によれば、光ファイバア
レイ8の光入射面8aが凹型の円弧状面により構成され
るので、試料表面5からの反射光が光ファイバアレイ8
の光入射面8aに対して小さい入射角で入射させること
ができ、光が拡散していくような光学系であっても、拡
散光の集光効率を高めることができる。また、光ファイ
バアレイ8を構成する各光ファイバ10の光入射面近傍
部10aの軸線が光ファイバアレイ8の光入射面8aの
法線に一致するように、各光ファイバ10が配列されて
いるので、光ファイバアレイ8の集光効率を高めるとと
もに、光ファイバアレイ8からの出射光の広がりを小さ
くすることができ、積分球9を小型化することができる
According to the above-described configuration, since the light incident surface 8a of the optical fiber array 8 is constituted by a concave arc-shaped surface, the reflected light from the sample surface 5 is transmitted to the optical fiber array 8.
The light can be made incident on the light incident surface 8a at a small incident angle, and even in an optical system in which light is diffused, the efficiency of collecting the diffused light can be improved. Further, each optical fiber 10 is arranged such that the axis of the optical fiber 10 near the light entrance surface 10a of each optical fiber 10 constituting the optical fiber array 8 coincides with the normal to the light entrance surface 8a of the optical fiber array 8. Therefore, the light collection efficiency of the optical fiber array 8 can be increased, and the spread of the light emitted from the optical fiber array 8 can be reduced, and the integrating sphere 9 can be made smaller.

【0014】さらに、上述のように構成される光ファイ
バアレイ8を用いても、アレイからの出射光は多少広が
るが、積分球9を設けているので、集光効率を一層高め
ることができる。さらにまた、シリンダレンズ7の代り
に、トロイダルレンズ7を配置した場合、集光効率を一
層高めることができる。
Furthermore, even if the optical fiber array 8 configured as described above is used, the light emitted from the array will spread out somewhat, but since the integrating sphere 9 is provided, the light collection efficiency can be further improved. Furthermore, when a toroidal lens 7 is arranged instead of the cylinder lens 7, the light collection efficiency can be further improved.

【0015】図3〜図6は請求項4記載の発明に係る試
料表面欠陥検出装置の一実施例を示す図である。なお、
図3において、図1、図2に示した実施例の構成部材と
同一の部材には同じ符号を付してその説明は省略し、以
下の実施例においても同様とする。図3において、11
は変形コーンでり、変形コーン11は光ファイバアレイ
8と積分球9の間に配置されている。変形コーン11以
外の他の構成は図1、図2に示される実施例の構成と同
じである。変形コーン11は、レーザ光の走査方向に長
い偏平な円形開口11aと、円形開口11aから入射し
たレーザ光を反射させる変形コーン状反射面11bとを
有しており、光ファイバアレイ8から円形開口11aを
通してレーザ光を入射し、図5に示すように変形コーン
状反射面11bにより反射させながら積分球9に導くも
のである。変形コーン11も積分球9と同様に集光効果
があり、さらに変形コーン状反射面11bは鏡面である
ため積分球9より反射率も高い。
FIGS. 3 to 6 are diagrams showing an embodiment of a sample surface defect detection apparatus according to the fourth aspect of the invention. In addition,
In FIG. 3, the same members as those of the embodiment shown in FIGS. 1 and 2 are given the same reference numerals, and the explanation thereof will be omitted, and the same applies to the following embodiments. In FIG. 3, 11
is a deformation cone, and the deformation cone 11 is arranged between the optical fiber array 8 and the integrating sphere 9. The structure other than the deformed cone 11 is the same as that of the embodiment shown in FIGS. 1 and 2. The deformed cone 11 has a flat circular aperture 11a that is long in the scanning direction of the laser beam, and a deformed cone-shaped reflective surface 11b that reflects the laser beam incident from the circular aperture 11a. Laser light enters through 11a and is guided to integrating sphere 9 while being reflected by deformed cone-shaped reflecting surface 11b as shown in FIG. The deformed cone 11 also has a light condensing effect like the integrating sphere 9, and also has a higher reflectance than the integrating sphere 9 because the deformed cone-shaped reflecting surface 11b is a mirror surface.

【0016】ここに、変形コーン11を用いた場合、以
下のことに注意を要する。すなわち、入射光束の角度に
よっては、図6に示すように、光束が入射側に出ていく
ことになる。例えば変形コーン11の中心軸線Lに対す
る広がり角をθ、光の入射角をα、許容される反射回数
をnとすると、 2nθ+α<180゜ が成立つ。θ=20゜、α=20゜とすれば、n=3と
なり、3回しか反射は許されない。ただし、αの符号は
中心軸線Lより上側から入射するとき負とし、中心軸線
Lより下側から入射するときを正とする。
When the deformed cone 11 is used here, the following points must be noted. That is, depending on the angle of the incident light beam, the light beam will exit to the incident side as shown in FIG. For example, if the spread angle of the deformed cone 11 with respect to the central axis L is θ, the incident angle of light is α, and the allowable number of reflections is n, then 2nθ+α<180° holds true. If θ=20° and α=20°, n=3, and only three reflections are allowed. However, the sign of α is negative when the light is incident from above the central axis L, and positive when it is incident from below the central axis L.

【0017】上述の実施例では、光ファイバと積分球の
間に変形コーン11を配置しているので、前述の実施例
の効果に加え、光ファイバアレイ8の光入射面8aが大
きい場合でも、積分球9の光入射口小さくすることがで
き、積分球9を小型化することができる。図7は請求項
5記載の発明に係る試料表面欠陥検出装置の一実施例を
示す図である。
In the above embodiment, since the deformed cone 11 is arranged between the optical fiber and the integrating sphere, in addition to the effects of the above embodiment, even when the light entrance surface 8a of the optical fiber array 8 is large, The light entrance of the integrating sphere 9 can be made smaller, and the integrating sphere 9 can be made smaller. FIG. 7 is a diagram showing an embodiment of the sample surface defect detection device according to the invention as set forth in claim 5.

【0018】図7において、21は複数の光ファイバ2
2から構成される光ファバイアレイであり、光ファイバ
21は、各光ファイバ22の光入射面近傍部22aの軸
線が各光ファイバ22の光入射面通過直後の光の光軸に
一致するように、光ファイバ22の光入射面における光
の入射角と光ファイバの屈折率に基づいて、配列されて
いる。詳しくは、図8に示すように、光ファイバアレイ
21の光入射面21aに入射角θで入射する光束は光フ
ァイバの屈折率n1によって、角度δだけ曲げられてフ
ァイバ内に入る。 このとき、入射角と出射角との関係はスネルの法則によ
り、 n0sinθ=n1sinδ が成立つ。ここで、n0は空気の屈折率であるから、n
0=1であり上式は、 δ=sin−1(sinθ/n1) となる。したがって、光ファイバ22の光入射面近傍部
22aの軸線を、光入射面21aに直交する方向から角
度δだけ傾けて配置することにより、光入射面21aを
通過直後の光を各光ファイバ22の軸線方向に進行させ
ることができる。
In FIG. 7, reference numeral 21 indicates a plurality of optical fibers 2.
2, the optical fibers 21 are arranged in such a way that the axis of the portion 22a near the light entrance surface of each optical fiber 22 coincides with the optical axis of the light immediately after passing through the light entrance surface of each optical fiber 22. They are arranged based on the angle of incidence of light on the light incidence surface of the optical fiber 22 and the refractive index of the optical fiber. More specifically, as shown in FIG. 8, a light beam that enters the light entrance surface 21a of the optical fiber array 21 at an incident angle θ is bent by an angle δ due to the refractive index n1 of the optical fiber and enters the fiber. At this time, the relationship between the incident angle and the output angle is as follows according to Snell's law: n0 sin θ=n1 sin δ. Here, since n0 is the refractive index of air, n
0=1, and the above equation becomes δ=sin-1(sinθ/n1). Therefore, by arranging the axis of the optical fiber 22 in the vicinity of the light entrance surface 22a by an angle δ from the direction orthogonal to the light entrance surface 21a, the light immediately after passing through the light entrance surface 21a is transferred to each optical fiber 22. It can be advanced in the axial direction.

【0019】上述ように本実施例では、各光ファイバ2
2を角度δだけ傾けて配列して、光入射面21aを通過
後の光の光軸を各光ファイバ22の軸線に一致させてい
るので、図7に示すように、光ファイバアレイ21の光
入射面21を円弧状にすることなく、前述の最初の実施
例と同様の効果を得ることができる。
As mentioned above, in this embodiment, each optical fiber 2
2 are arranged at an angle δ, and the optical axis of the light after passing through the light incidence surface 21a is made to coincide with the axis of each optical fiber 22. As shown in FIG. The same effect as the first embodiment described above can be obtained without making the entrance surface 21 arc-shaped.

【0020】[0020]

【発明の効果】請求項1〜請求項3記載の発明によれば
、光ファイバアレイの光入射面を凹型の円弧状面により
構成しているので、拡散光の集光効率を高めることがで
きる。また請求項2記載の発明によれば、各光ファイバ
の光入射面近傍部の軸線を光ファイバアレイの光入射面
の法線に一致させているので、請求項1の効果に加え、
光ファイバの集光効率を高めるとともに、光ファイバか
らの出射光の広がりを小さくすることができ、積分球を
小型化することができる。
According to the invention described in claims 1 to 3, since the light incident surface of the optical fiber array is constituted by a concave arc-shaped surface, it is possible to improve the efficiency of converging diffused light. . Further, according to the invention as claimed in claim 2, since the axis of each optical fiber near the light entrance surface is made to coincide with the normal line of the light entrance surface of the optical fiber array, in addition to the effect of claim 1,
In addition to increasing the light collection efficiency of the optical fiber, the spread of light emitted from the optical fiber can be reduced, and the integrating sphere can be made smaller.

【0021】さらに請求項3記載の発明によれば、試料
表面と光ファイバアレイの間の光路中にトロイダルレン
ズを配置しているので、請求項1または請求項2記載の
効果に加え、結像関係をレンズ周辺部まで成立させるこ
とができ、集光効率を一層高めることができる。請求項
4記載の発明では、光ファイバと積分球の間に変形コー
ンを配置しているので、光ファイバアレイの光入射面が
大きい場合でも、積分球の光入射口を小さくすることが
でき、積分球を小型化することができる。
Furthermore, according to the invention described in claim 3, since the toroidal lens is disposed in the optical path between the sample surface and the optical fiber array, in addition to the effects described in claim 1 or claim 2, imaging is improved. This relationship can be established up to the periphery of the lens, and the light collection efficiency can be further improved. In the invention as claimed in claim 4, since the deformed cone is arranged between the optical fiber and the integrating sphere, even when the light entrance surface of the optical fiber array is large, the light entrance of the integrating sphere can be made small. The integrating sphere can be made smaller.

【0022】請求項5記載の発明では、各光ファイバの
光入射面通過直後の光の光軸と各光ファイバの光入射面
近傍部の軸線とを一致させているので、光ファイバアレ
イの光入射面を円弧状面にすることなく、光ファイバの
集光効率を高めるとともに、光ファイバからの出射光の
広がりを小さくすることができ、積分球を小型化するこ
とができる。
In the invention as claimed in claim 5, since the optical axis of the light immediately after passing through the light entrance surface of each optical fiber is made to coincide with the axis of the portion near the light entrance surface of each optical fiber, the light of the optical fiber array is Without making the incident surface an arcuate surface, the light collection efficiency of the optical fiber can be increased, the spread of the light emitted from the optical fiber can be reduced, and the integrating sphere can be downsized.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】請求項1および請求項2記載の発明に係る試料
表面欠陥検出装置の一実施例を示すその全体斜視図。
FIG. 1 is an overall perspective view showing an embodiment of a sample surface defect detection device according to the invention as set forth in claims 1 and 2;

【図2】図1における光ファイバの配列を説明するため
の概略全体図。
FIG. 2 is a schematic overall diagram for explaining the arrangement of optical fibers in FIG. 1.

【図3】請求項4記載の発明に係る試料表面欠陥検出装
置の一実施例を示すその要部側面図。
FIG. 3 is a side view of a main part of an embodiment of the sample surface defect detection device according to the invention as set forth in claim 4;

【図4】図3における変形コーンおよび積分球の斜視図
FIG. 4 is a perspective view of the deformed cone and integrating sphere in FIG. 3.

【図5】図3における変形コーン中の光束経路を示す図
FIG. 5 is a diagram showing the light flux path in the deformed cone in FIG. 3;

【図6】図3における変形コーンの作用説明図。FIG. 6 is an explanatory diagram of the action of the deformed cone in FIG. 3;

【図7】請求項5記載の発明に係る試料表面欠陥検出装
置の一実施例を示す概略全体図。
FIG. 7 is a schematic overall view showing an embodiment of the sample surface defect detection device according to the invention as set forth in claim 5;

【図8】図7における光ファイバの作用説明図。FIG. 8 is an explanatory diagram of the operation of the optical fiber in FIG. 7;

【符号の説明】[Explanation of symbols]

1    レーザ光源(レーザ光走査手段)2    
レンズ系(レーザ光走査手段)3    ポリゴンミラ
ー(レーザ光走査手段)4    Fθレンズ(レーザ
光走査手段)5    試料表面 6    光検出器(光電変換手段) 8、21  光ファイバアレイ 8    光入射面 9    積分球 10、22  光ファイバ 10a、22a  光ファイバの光入射面近傍部11 
   変形コーン 11a  円形開口 11b  変形コーン状反射面
1 Laser light source (laser light scanning means) 2
Lens system (laser beam scanning means) 3 Polygon mirror (laser beam scanning means) 4 Fθ lens (laser beam scanning means) 5 Sample surface 6 Photodetector (photoelectric conversion means) 8, 21 Optical fiber array 8 Light incidence surface 9 Integration Spheres 10, 22 Optical fibers 10a, 22a Portion 11 near the light incident surface of the optical fiber
Deformed cone 11a Circular opening 11b Deformed cone-shaped reflective surface

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】試料表面上にレーザ光を走査するレーザ光
走査手段と、試料表面からのレーザ光の反射光を受光し
電気信号に変換する光電変換手段と、を備えた試料表面
欠陥検出装置において、前記試料表面からのレーザ光の
反射光を光電変換手段に集光する積分球と、複数の光フ
ァイバからなり、試料表面からのレーザ光の反射光を入
射して積分球に導く光ファイバアレイと、を設け、前記
光ファイバアレイの光入射面が凹型の円弧状面により構
成されることを特徴とする試料表面欠陥検出装置。
1. A sample surface defect detection device comprising: a laser beam scanning means for scanning a laser beam on a sample surface; and a photoelectric conversion means for receiving reflected light of the laser beam from the sample surface and converting it into an electrical signal. an integrating sphere that focuses the reflected laser beam from the sample surface onto the photoelectric conversion means; and an optical fiber that is made up of a plurality of optical fibers and which receives the laser beam reflected from the sample surface and guides it to the integrating sphere. An apparatus for detecting defects on a sample surface, comprising: an optical fiber array, wherein a light incident surface of the optical fiber array is constituted by a concave arc-shaped surface.
【請求項2】前記光ファイバアレイを構成する各光ファ
イバの光入射面近傍部の軸線が光ファイバアレイの光入
射面の法線に一致することを特徴とする請求項1記載の
試料表面欠陥検出装置。
2. The sample surface defect according to claim 1, wherein the axis of each optical fiber constituting the optical fiber array in the vicinity of the light entrance surface coincides with the normal to the light entrance surface of the optical fiber array. Detection device.
【請求項3】前記試料表面と光ファイバアレイの間の光
路中にトロイダルレンズを設けたことを特徴とする請求
項1または請求項2記載の試料表面欠陥検出装置。
3. The sample surface defect detection apparatus according to claim 1, further comprising a toroidal lens provided in an optical path between the sample surface and the optical fiber array.
【請求項4】試料表面上にレーザ光を走査するレーザ光
走査手段と、試料表面からのレーザ光の反射光を受光し
電気信号に変換する光電変換手段と、を備えた試料表面
欠陥検出装置において、前記試料表面からのレーザ光の
反射光を光電変換手段に集光する積分球と、複数の光フ
ァイバからなり、試料表面からのレーザ光の反射光を入
射して積分球に導く光ファイバアレイと、光ファイバア
レイと積分球の間に配置され、レーザ光の走査方向に長
い偏平な円形開口および該円形開口から入射したレーザ
光を反射させる変形コーン状反射面を有し、光ファイバ
アレイから円形開口を通してレーザ光を入射して変形コ
ーン状反射面により反射させながら積分球に導く変形コ
ーンと、を設けたことを特徴とする試料表面欠陥検出装
置。
4. A sample surface defect detection device comprising: a laser beam scanning means for scanning a laser beam on the sample surface; and a photoelectric conversion means for receiving reflected light of the laser beam from the sample surface and converting it into an electrical signal. an integrating sphere that focuses the reflected laser beam from the sample surface onto the photoelectric conversion means; and an optical fiber that is made up of a plurality of optical fibers and which receives the laser beam reflected from the sample surface and guides it to the integrating sphere. an optical fiber array, the optical fiber array has a flat circular aperture that is disposed between the optical fiber array and the integrating sphere and is long in the scanning direction of the laser beam, and a deformed cone-shaped reflecting surface that reflects the laser beam incident from the circular aperture; A sample surface defect detection device comprising: a deformed cone that directs a laser beam into an integrating sphere while being reflected by a deformed cone-shaped reflecting surface.
【請求項5】試料表面上にレーザ光を走査するレーザ光
走査手段と、試料表面からのレーザ光の反射光を受光し
電気信号に変換する光電変換手段と、を備えた試料表面
欠陥検出装置において、前記試料表面からのレーザ光の
反射光を光電変換手段に集光する積分球と、複数の光フ
ァイバからなり、試料表面からのレーザ光の反射光を入
射して積分球に導く光ファイバアレイと、を設け、前記
各光ファイバの光入射面通過直後の光の光軸と各光ファ
イバの光入射面近傍部の軸線とが一致するように、各光
ファイバの光入射面における光の入射角と光ファイバの
屈折率に基づいて、各光ファイバが配列されたことを特
徴とする試料表面欠陥検出装置。
5. A sample surface defect detection device comprising: a laser beam scanning means for scanning a laser beam on the sample surface; and a photoelectric conversion means for receiving reflected light of the laser beam from the sample surface and converting it into an electrical signal. an integrating sphere that focuses the reflected laser beam from the sample surface onto the photoelectric conversion means; and an optical fiber that is made up of a plurality of optical fibers and which receives the laser beam reflected from the sample surface and guides it to the integrating sphere. an array, and adjusts the light at the light entrance surface of each optical fiber so that the optical axis of the light immediately after passing through the light entrance surface of each optical fiber coincides with the axis near the light entrance surface of each optical fiber. A sample surface defect detection device characterized in that each optical fiber is arranged based on an incident angle and a refractive index of the optical fiber.
JP6225891A 1991-03-27 1991-03-27 Sample surface-defect detecting device Pending JPH04296642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6225891A JPH04296642A (en) 1991-03-27 1991-03-27 Sample surface-defect detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6225891A JPH04296642A (en) 1991-03-27 1991-03-27 Sample surface-defect detecting device

Publications (1)

Publication Number Publication Date
JPH04296642A true JPH04296642A (en) 1992-10-21

Family

ID=13194945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6225891A Pending JPH04296642A (en) 1991-03-27 1991-03-27 Sample surface-defect detecting device

Country Status (1)

Country Link
JP (1) JPH04296642A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997040353A1 (en) * 1996-04-25 1997-10-30 Nishimoto Sangyo Co., Ltd. Pixel gray level detector
US7113624B2 (en) 2002-10-15 2006-09-26 Palo Alto Research Center Incorporated Imaging apparatus and method employing a large linear aperture
US7145645B2 (en) 1999-11-04 2006-12-05 Regents Of The University Of Minnesota Imaging of biological samples using electronic light detector
US7280261B2 (en) 2004-12-20 2007-10-09 Palo Alto Research Center Incorporated Method of scanning and light collection for a rare cell detector
US7286224B2 (en) 2004-12-21 2007-10-23 Palo Alto Research Center Incorporated Time-multiplexed scanning light source for multi-probe, multi-laser fluorescence detection systems
US7305112B2 (en) 2002-10-15 2007-12-04 The Scripps Research Institute Method of converting rare cell scanner image coordinates to microscope coordinates using reticle marks on a sample media
JP2011117960A (en) * 2009-11-30 2011-06-16 Mitsutoyo Corp High-intensity pulsed light source configuration
JP2013167620A (en) * 2012-02-15 2013-08-29 Samsung Electro-Mechanics Co Ltd Laser scan device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997040353A1 (en) * 1996-04-25 1997-10-30 Nishimoto Sangyo Co., Ltd. Pixel gray level detector
US6078041A (en) * 1996-04-25 2000-06-20 Nishimoto Sangyo Co., Ltd. Integrating cylindrical pixel density detector
US7145645B2 (en) 1999-11-04 2006-12-05 Regents Of The University Of Minnesota Imaging of biological samples using electronic light detector
US7113624B2 (en) 2002-10-15 2006-09-26 Palo Alto Research Center Incorporated Imaging apparatus and method employing a large linear aperture
US7277569B2 (en) 2002-10-15 2007-10-02 Palo Alto Research Center Incorporated Apparatus and method for detecting and locating rare cells
US7305112B2 (en) 2002-10-15 2007-12-04 The Scripps Research Institute Method of converting rare cell scanner image coordinates to microscope coordinates using reticle marks on a sample media
US7280261B2 (en) 2004-12-20 2007-10-09 Palo Alto Research Center Incorporated Method of scanning and light collection for a rare cell detector
US7286224B2 (en) 2004-12-21 2007-10-23 Palo Alto Research Center Incorporated Time-multiplexed scanning light source for multi-probe, multi-laser fluorescence detection systems
JP2011117960A (en) * 2009-11-30 2011-06-16 Mitsutoyo Corp High-intensity pulsed light source configuration
JP2013167620A (en) * 2012-02-15 2013-08-29 Samsung Electro-Mechanics Co Ltd Laser scan device

Similar Documents

Publication Publication Date Title
EP0880690B1 (en) Fluorescence imaging system compatible with macro and micro scanning objectives
JP3330617B2 (en) Optical scanning device
CN102183359B (en) Method and device for detecting collimation of light beams
JP2000258699A5 (en)
US20230139155A1 (en) Optical receiving apparatus and light detection and ranging system
JPH04296642A (en) Sample surface-defect detecting device
US4078858A (en) Measuring head
US5978095A (en) Confocal microscopic equipment
US20200116981A1 (en) Monocentric Reception Arrangement
JPS6273143A (en) Optical type web monitor device
US5905575A (en) Spherical surface inspection equipment for optically examining the surface of a sphere
CN116931245B (en) Infrared confocal imaging system
JP2005195348A (en) Illumination optical apparatus
JPH10510638A (en) Method and apparatus for transmitting a light beam with low diffusion incident on an optical waveguide provided for illuminating pixels of a video image
JPH04303751A (en) Detecting apparatus for defect of sample surface
JP2003060213A (en) Wide aperture wide-angle high speed light-receiving unit
JP3754164B2 (en) Sample inspection equipment
JP2955862B2 (en) Image reading device
JPH11201913A (en) Flaw inspection apparatus
JPS61193560A (en) Picture reading device
JP2883362B2 (en) Synchronous detection device for optical scanning device
JPH0385511A (en) Synchronization detector for optical scanner
JPS62170905A (en) Condensing device
JPH03131811A (en) Confocal scanning type transmission microscope
JPS63285512A (en) Detector for surface tilt of optical deflector