JPH04294310A - Internal focusing telephoto lens - Google Patents

Internal focusing telephoto lens

Info

Publication number
JPH04294310A
JPH04294310A JP3059980A JP5998091A JPH04294310A JP H04294310 A JPH04294310 A JP H04294310A JP 3059980 A JP3059980 A JP 3059980A JP 5998091 A JP5998091 A JP 5998091A JP H04294310 A JPH04294310 A JP H04294310A
Authority
JP
Japan
Prior art keywords
group
positive
lens component
negative
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3059980A
Other languages
Japanese (ja)
Inventor
Susumu Sato
進 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP3059980A priority Critical patent/JPH04294310A/en
Publication of JPH04294310A publication Critical patent/JPH04294310A/en
Priority to US08/110,208 priority patent/US5323270A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To keep superior image forming performance from an infinite distance to a short distance while suppressing the movement quantity of a focusing group in focusing operation small by employing positive, negative, and positive three-group constitution. CONSTITUTION:A 1st group G1 has a front group G11 with positive refracting power and a rear group G12 with weaker refracting power than the front group, which consists of a positive lens element L11, a positive lens element L12, and a negative lens element L22 in order from the object side; and a 2nd group G2 has at least a negative lens element L21 and a negative lens element L22 in order from the object side and a 3rd group G3 has at least two positive lens elements and at least one negative lens element and satisfies specific conditions of (1) 0.43<PHI/f1<0.75, (2) 0.39<f1/F<0.55, and (3) 0.13<f22/f21<0.35. Here, PHI is the effective diameter of the object-side lens surface of the most object-side positive lens element in the 1st group, F the focal length of the whole system, f21 the focal length of the negative lens element L21 in the 2nd group, and f22 the focal length of the negative lens element L22.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、一眼レフレックスカメ
ラ及び電子スチルカメラなどのオートフォーカスカメラ
用内焦望遠レンズに関するものである。 【0002】 【従来の技術】従来この種の対物レンズは、焦点合わせ
をする時に、フォーカシング群の移動距離が非常に長か
った。つまり、撮影倍率を上げると移動距離が長くなる
傾向にあった。その為オートフォーカス駆動用モーター
の負担が大きくなり、フォーカシング用の機構が大型化
するという欠点があった。 【0003】 【発明が解決しようとする課題】本発明は、優れた光学
性能を維持しつつ、フォーカシング移動量が小さい内焦
望遠レンズを提供するものである。 【0004】 【課題を解決する為の手段】本発明と上記問題点に鑑み
てなされたものであり、例えば図1に示す如く、物体側
より順に、正屈折力の第1群G1、負屈折力の第2群G
2、正屈折力の第3群G3より構成し、前記正屈折力の
第1群G1と前記負屈折力の第2群G2とで略アフォー
カル系を形成し、該第2群G2でフォーカシングを行う
内焦望遠レンズにおいて、前記第1群G1は、正屈折力
の前群G11と、該前群に対して弱い正の屈折力を持つ
後群G12とを有し、前記前群G11は、物体側より順
に、正レンズ成分L11 、正レンズ成分L12 、負
レンズ成分L13 とで構成され、前記第2群G2は、
物体側から順に、負レンズ成分L21 と、同じく負レ
ンズ成分L22 とを少なくとも有し、前記第3群G3
は、少なくとも2つの正レンズ成分と少なくとも1つの
負レンズ成分とを有するようにしたものである。 【0005】そして、上記基本構成に基づいて、以下の
条件を満足するようにしたものである。 (1)  0.43<Φ/f1 <0.75(2)  
0.39<f1 /F<0.55(3)  0.13<
f22/f21<0.35但し、 Φ:第1群中の最も物体側正レンズ成分の物体側レンズ
面の有効径 F:全系の焦点距離 f1 :第1群の焦点距離 f21:第2群中の負レンズ成分L21 の焦点距離f
22:第2群中の負レンズ成分L22 の焦点距離であ
る。 【0006】 【作用】本発明の撮影光学系の基本構成は、正負正の3
群構成であり、負の第2群G2の移動によって焦点合わ
せを行なっている。この構成のフォーカシング方式は、
第1群G1の結像による被写体に対する像点の近傍に、
第2群G2の焦点を合致させている。従って第1群G1
と第2群G2との合成光学系による像点が、略無限遠距
離に形成される。よって、第3群G3に入射する光線は
、常に略アフォーカル光線となり、全光学系の像点は常
に一定の位置となる。以上のことから、薄肉系の屈折力
の配置を考えることによって、厚肉系のフォーカシング
の移動量を一義的に決定することができる。ゆえに本発
明の目的とする、負群のフォーカシングの移動量を少な
くするには、物点の移動量に対する第1群G1(焦点距
離f1)による像の移動量を小さくすれば良い。 【0007】第1群G1が薄肉レンズとして焦点距離が
f1 =f1’、物点距離がa、像点距離がbとすれば
、レンズの結像の関係式より     1/a+1/b=1/f1   →  f1 
=a/(a/b+1)  (A)次に縦倍率αを考える
と縦倍率αは次式で表される。       α=(−b/a)2 =b2 /a2  
 →  b=a√α>0    (B)ここで、合焦時
には、物点が特定の場所から移動して、物点距離aが変
化することになるが、ある物点距離aに対して合焦して
いる場合、即ちa=一定とした場合において、負の第2
群のフォーカシングのための移動量、すなわち物点の移
動量に対する第1群による像点の移動量を少なくするた
めには、縦倍率αを小さくすればよい。 いま、(A)式に(B)式を代入すれば、      
f1 =a/(1/√α+1)           
                 (C)となる。従
って、αが小さくなるとf1 も小さくなる。 故に、第1群G1の焦点距離f1 を小さくすればフォ
ーカシング移動量を小さくできる。 【0008】しかし、第1群G1のパワー(屈折力)が
あまり強いと、第1群G1自体の球面収差が大きくなり
すぎて、撮影光学系全体としての収差が悪化する。ゆえ
にフォーカシング移動量を小さくし、かつ良好なる球面
収差を得る為には、第1群に関する最適な有効径に関す
る(1)式,第1群の最適なパワーに関する(2)式,
及び合焦時での収差変動を抑えるための(3)式を満足
しなければならない。 【0009】(1)式は、第1群の焦点距離f1 に対
する第1群中の最も物体側正レンズ成分の物体側レンズ
面の有効径Φの比を規定する条件式である。(1)式の
上限をこえると、第1群G1の焦点距離が有効径に対し
て小さすぎる為、第1群G1自体の球面収差が大きくな
りすぎて、第2群G2と第3群G3をレンズ枚数の少な
い構成として補正することが困難である。また、二次の
色の球面収差も大きくなり、第1群G1をレンズ枚数の
すくない構成とすることが困難となる。(1)式の下限
をこえると、第1群G1の焦点距離が長くなる為フォー
カシング移動量が大きくなり目的に反する。 【0010】(2)式は、全系の焦点距離Fに対する第
1群の焦点距離の比に関する条件式である。(2)式の
上限をこえると第1群の焦点距離が長い為、光学系の全
長が長くなり、またフォーカシング移動量が大きくなり
好ましくない。(2)式の下限をこえると、第1群G1
の焦点距離が短かすぎる為、第1群G1が少ない構成の
ままで大口径化をこころみると、凸レンズの中心厚を厚
くしなければならず、撮影光学系の重量が重くなり好ま
しくない。 【0011】(3)式は、合焦群としての第2群中の負
レンズ成分L21 と負レンズとの最適なパワー配分に
関する条件であり、無限遠から至近距離にわたり良好な
る結像性能を確保するためのものである。 (3)式の下限を越えると、近距離合焦に際する球面収
差の変動が甚大となり、合焦性能を確保することが難し
くなる。逆に(3)式の上限を越えると、合焦時での球
面収差の曲がり大きくなって、やはり十分な合焦性能を
維持できない。 【0012】本発明において合焦時における収差変動を
抑えるには、以下の条件を満足することが望ましい。 (4)  −1.3<(Rb +Ra )/(Rb −
Ra )<3.0但し、 Ra :第2群G2中の負レンズ成分L21 の物体側
の曲率半径 Rb :第2群G2中の負レンズ成分L21 の像側の
曲率半径である。 【0013】(4)式の上限を越えると、第2群G2の
負レンズ成分の屈折力が弱くなり、近距離合焦に際する
球面収差の変動が甚大となり、合焦性能を確保すること
が難しくなる。逆に(4)式の下限を越えると、第2群
G2の負レンズ成分の像側面の曲率半径Rb が小さく
なり過ぎ、これにより、無限遠から至近距離にわたり球
面収差の曲がりが大きくなる。よって、結像性能の劣化
を招くので好ましくない。 【0014】さらに、本発明において近距離合焦時での
良好なる収差補正を果たすには、以下の条件を満足する
ことがより望ましい。 (5)    R21<0 但し、 R21:第2群G2の最も物体側面の曲率半径である。 【0015】この(5)式を外れると、第2群G2中の
負レンズ成分L21 の負のパワーが強くなる傾向とな
り、これは、上記(3)式の下限を越えた場合と近い状
態となる。従って、近距離合焦に際する球面収差の変動
をより十分かつ確実に抑えることが難しくなる。さて、
本発明では、第1群G1は焦点距離が非常に短い為、球
面収差が大きくなる傾向にある。そこで第1群G1は、
物体側より順に、物体側に凸面を向けた正レンズ成分L
11、両凸形状の正レンズ成分L12、両凹の形状の負
レンズ成分L13で構成される全体として正屈折力の前
群G11と、正の屈折力の後群G12とを配置した構成
とすることが望ましい。 【0016】今、軸上物点からの光線をランド光線と呼
ぶことにする。望遠レンズの第1レンズに入射するラン
ド光線は近距離物点から発する光線であるとしても、第
1入射面には光軸に対して略平行に入射する。そのため
第1群G1中の物体側に凸面を向けた正レンズ成分L1
1は、微小プリズムの集合と考えれば、最小偏角の形に
近いものである必要があり、物体側面を凸面とし、像側
面をゆるい曲率にする。像側面の曲率半径の符号は第1
群G1内の収差構造によって正負どちらでも良い。正レ
ンズ成分L11でランド光線が収斂光束となる為、この
光束をより収斂させる様に正レンズ成分L12も最小偏
角をとる様に物体側により曲率の強い面を向けた両凸形
状の正レンズ成分にして、第1群G1中の正の屈折力を
正レンズ成分L11と正レンズ成分L12とでほぼ決定
づける。しかし、この2つの正レンズ成分だけでは球面
収差及び色収差が大きくなりすぎるので正レンズ成分L
12の直後に負レンズ成分L13を配置して適切な補正
を行っている。 (1)式の上限付近の条件では、第1群G1の屈折力が
非常に強いので、正レンズL11及びL12の持つ正の
屈折力を分配すべく、前群の直後に正レンズ成分L14
を有する後群G12を配置している。 【0017】そして、第1群G1中の後群G12につい
て言及すれば、より良好な収差を得る為に後群G12中
の正レンズ成分L14は、物体側から順に、物体側に凸
面を向けた負メニスカスレンズと物体側に凸面を向けた
正メニスカスレンズとで構成することが好ましい。後群
は球面収差補正用である為、ランド光線以外の光線には
影響を及ぼさない様に物体側に凸面を向けたメニスカス
形状が好ましい。 【0018】尚、後群G12中の負メニスカスレンズと
正メニスカスレンズとは、収差補正上の自由度を確保す
るという観点に立てば、互い分離されていることが良い
ものの、鏡筒構造を簡単にしてコストの低減をするとい
う観点に立てば、互いに接合されていることが望ましい
。 また、第1群G1の後群G12中の正レンズ成分L14
の構成枚数を減らすとともに、鏡筒構造を簡単にしてコ
ストの低減を達成するには、弱い屈折力を有する正レン
ズで構成することも可能である。 【0019】さらに、本発明において、より良好に収差
を補正する為には、第1群G1の後群G12中の正レン
ズ成分L14の屈折率をNa、アッベ数をνaとすれば
、(6)    Na<1.60 (7)    65<νa を満たすことがより望ましい。 【0020】(6)式の上限を越えるとペッツバール和
の値が負に大きくなり好ましくない。なお、(6)式の
範囲を満足すれば、ペッツバール和の値を適切な値とす
ることが原理的に可能であるが、存在する光学材料の範
囲を考慮すれば、(6)式の下限値を1.42とするこ
とがより好ましい。 (7)式の下限を越えると、第1群G1中の色収差を少
なくすることが困難であり望ましくない。なお、(7)
式の範囲を満足すれば、第1群G1中での色収差の発生
を小さく抑えることが原理的に可能であるが、存在する
光学材料の範囲を考慮すれば、上限値を97とすること
がより望ましい。 【0021】また、正の第3群G3のより好ましい構成
として、第3群G3は、物体側から順に、正レンズ成分
と、物体側に凹面を向けた負メニスカスレンズ成分と、
像側に凸面を向けた正レンズ成分とで構成されることが
良い。このとき、第3群G3中の最も物体側の正レンズ
成分の屈折率をnb、アッベ数をνbとするとき、以下
の条件を満足することがより好ましい。 (8)  nb<1.58 (9)  45<νb (8)式を外れると、ペッツバール和が負に大きくなり
好ましくない。 (9)式を外れると、軸上の色収差,特に二次の色収差
をレンズ枚数の少ない構成のままで補正することが困難
なので好ましくない。 【0022】 【実施例】図1,図4,図7には本発明による実施例1
〜3のレンズ構成図を示しており、各実施例とも、正屈
折力の第1群G1、負屈折力の第2群G2、正屈折力の
第3群G3より構成し、第1群G1と第2群G2とで略
アフォーカル系を形成し、無限遠から近距離への合焦に
際して第2群G2が像側へ移動する。 【0023】そして、各実施例とも、第1群G1は、両
凸形状の正レンズL11(正レンズ成分)と、物体側に
より強い曲率の面を向けた正レンズL12(正レンズ成
分)と、両凹形状の負レンズL13 負レンズ成分)よ
り構成される前群G11と、正レンズ成分L14 より
なる後群G12とで成っている。第2群G2は、像側に
より強い曲率の面を向けた正レンズとこれに接合されて
両凹形状の負レンズとでなる負レンズ成分L21 と、
両凹形状の負レンズL22(負レンズ成分)とで構成さ
れ、第3群G3は、正レンズL31(正レンズ成分)と
、像側に凸面を向けた負メニスカスレンズL32(負レ
ンズ成分)と、正レンズL33(正レンズ成分)とから
構成されている。 【0024】次に各実施例の相違する点を説明すれば、
まず実施例1及び2では、第1群G1の後群G12を構
成している正レンズ成分L14 は、物体側に凸面を向
けた正メニスカスレンズとこれに接合されて物体側に凸
面を向けた正メニスカスレンズより構成されている。実
施例3では、第1群G1の後群G12を構成している正
レンズ成分L14 は、弱い屈折力を有する両凸形状の
正レンズで構成されている。 【0025】なお、各実施例とも、開口絞りSは第3群
G3の像側に配置されている。以下に本発明の各実施例
の諸元の値を掲げる。実施例の諸元表中における左端の
数字は物体側からの順序を表し、rはレンズ面の曲率半
径、dはレンズ面間隔、屈折率n及びアッベ数νはd線
(λ=587.6 nm)に対する値であり、Fは全系
の焦点距離、FN はFナンバー、βは撮影倍率、D0
は物体から第1レンズ面までの距離を表している。 【0026】 【実施例1】F=294.0 、FN=2.9 物体から像面までの距離をRとすると、無限遠から至近
距離R=2500 までの合焦群の移動量Δxは10.
89 である。 Φ/f1 =0.678 , f1 /F=0.511
 , f22/f21=0.164 (Rb +Ra 
)/(Rb −Ra )=−0.98 , R21=−
9945.000 Na =1.59319 , νa
 =67.87 , Nb =1.49782 , ν
b =82.52  【0027】 【実施例2】F=294.0 、FN=2.9 物体から像面までの距離をRとすると、無限遠から至近
距離R=2500 までの合焦群の移動量Δxは10.
89 である。 Φ/f1 =0.678 , f1 /F=0.511
 , f22/f21=0.185 (Rb +Ra 
)/(Rb −Ra )=−0.98 , R21=−
9945.000 Na =1.48749 , νa
 =70.41 , Nb =1.51860 , ν
b =69.98  【0028】 【実施例3】F=392.3 、FN=3.6 物体から像面までの距離をRとすると、無限遠から至近
距離R=3500 までの合焦群の移動量Δxは13.
19 である。 Φ/f1 =0.559 , f1 /F=0.504
 , f22/f21=0.131 (Rb +Ra 
)/(Rb −Ra )=−0.05 , R21=−
550.000Na =1.49782 , νa =
82.52 , Nb =1.49782 , νb 
=82.52   以上の各実施例では、無限遠から至
近距離への合焦による合焦群(第2群)の移動量は、小
さいことが分かる。 【0029】次に、図2,図5及び図8にはそれぞれ実
施例1〜3の無限遠合焦状態での収差図を示しており、
図3,図6及び図9にはそれぞれ実施例1〜3の至近距
離焦状態での収差図を示している。各収差図に示される
とおり、いずれの実施例においても無限遠から至近距離
にわたり優れた結像性能を有していることが明らかであ
る。 【0030】 【発明の効果】本発明によれば、合焦時における合焦群
の移動量を小さく抑えながらも、無限遠から至近距離に
わたり優れた結像性能を維持できる内焦望遠レンズを達
成することができる。
Description: TECHNICAL FIELD The present invention relates to an internal focusing telephoto lens for autofocus cameras such as single-lens reflex cameras and electronic still cameras. [0002] Conventionally, in this type of objective lens, when focusing, the focusing group had to move a very long distance. In other words, as the imaging magnification was increased, the moving distance tended to become longer. This increases the burden on the autofocus drive motor and increases the size of the focusing mechanism. SUMMARY OF THE INVENTION The present invention provides an internal focusing telephoto lens that maintains excellent optical performance and has a small amount of focusing movement. [Means for Solving the Problems] This has been made in view of the present invention and the above-mentioned problems. For example, as shown in FIG. 2nd group of power G
2. Consisting of a third group G3 with positive refractive power, the first group G1 with positive refractive power and the second group G2 with negative refractive power form a substantially afocal system, and the second group G2 performs focusing. In the internal focusing telephoto lens that performs , the second group G2 is composed of, in order from the object side, a positive lens component L11, a positive lens component L12, and a negative lens component L13.
In order from the object side, the third group G3 has at least a negative lens component L21 and a negative lens component L22.
has at least two positive lens components and at least one negative lens component. [0005] Based on the above basic configuration, the following conditions are satisfied. (1) 0.43<Φ/f1<0.75(2)
0.39<f1 /F<0.55(3) 0.13<
f22/f21<0.35 However, Φ: Effective diameter of the object-side lens surface of the positive lens component closest to the object in the first group F: Focal length of the entire system f1: Focal length of the first group f21: Second group The focal length f of the negative lens component L21 in
22: Focal length of the negative lens component L22 in the second group. [Operation] The basic configuration of the photographing optical system of the present invention is that
This is a group configuration, and focusing is performed by movement of the negative second group G2. The focusing method for this configuration is
Near the image point for the subject formed by the first group G1,
The second group G2 is brought into focus. Therefore, the first group G1
An image point by the combined optical system of the second group G2 and the second group G2 is formed at a substantially infinite distance. Therefore, the light beam incident on the third group G3 always becomes a substantially afocal light beam, and the image point of the entire optical system is always at a constant position. From the above, by considering the refractive power arrangement of the thin-walled system, the amount of focusing movement for the thick-walled system can be uniquely determined. Therefore, in order to reduce the amount of focusing movement of the negative group, which is the object of the present invention, it is sufficient to reduce the amount of movement of the image by the first group G1 (focal length f1) relative to the amount of movement of the object point. If the first group G1 is a thin lens and the focal length is f1 = f1', the object point distance is a, and the image point distance is b, then from the relational expression for lens imaging, 1/a+1/b=1/ f1 → f1
=a/(a/b+1) (A) Next, considering the vertical magnification α, the vertical magnification α is expressed by the following formula. α=(-b/a)2 =b2/a2
→ b=a√α>0 (B) Here, when focusing, the object point moves from a specific location and the object point distance a changes, but when focusing for a certain object point distance a, In the case of focusing, that is, when a=constant, the negative second
In order to reduce the amount of movement of the group for focusing, that is, the amount of movement of the image point by the first group relative to the amount of movement of the object point, the vertical magnification α may be reduced. Now, if we substitute equation (B) into equation (A), we get
f1 = a/(1/√α+1)
(C). Therefore, as α becomes smaller, f1 also becomes smaller. Therefore, by reducing the focal length f1 of the first group G1, the amount of focusing movement can be reduced. However, if the power (refractive power) of the first group G1 is too strong, the spherical aberration of the first group G1 itself becomes too large, and the aberration of the photographic optical system as a whole worsens. Therefore, in order to reduce the amount of focusing movement and obtain good spherical aberration, equation (1) regarding the optimal effective diameter for the first group, equation (2) regarding the optimal power of the first group,
and formula (3) for suppressing aberration fluctuations during focusing. Equation (1) is a conditional expression that defines the ratio of the effective diameter Φ of the object-side lens surface of the most object-side positive lens component in the first group to the focal length f1 of the first group. If the upper limit of equation (1) is exceeded, the focal length of the first group G1 is too small relative to the effective diameter, and the spherical aberration of the first group G1 itself becomes too large, causing the second group G2 and the third group G3 to It is difficult to correct this by using a configuration with a small number of lenses. Moreover, the spherical aberration of the secondary color also increases, making it difficult to configure the first group G1 with a small number of lenses. If the lower limit of equation (1) is exceeded, the focal length of the first group G1 becomes longer, which increases the amount of focusing movement, which is contrary to the purpose. Equation (2) is a conditional expression regarding the ratio of the focal length of the first group to the focal length F of the entire system. If the upper limit of equation (2) is exceeded, the focal length of the first group becomes long, so the overall length of the optical system becomes long, and the amount of focusing movement becomes large, which is not preferable. If the lower limit of equation (2) is exceeded, the first group G1
Since the focal length of the lens is too short, if an attempt is made to increase the aperture with the configuration in which the first group G1 is small, the center thickness of the convex lens must be increased, which is undesirable as it increases the weight of the photographic optical system. Equation (3) is a condition regarding the optimal power distribution between the negative lens component L21 in the second group as the focusing group and the negative lens, and ensures good imaging performance from infinity to close range. It is for. If the lower limit of equation (3) is exceeded, the fluctuation of spherical aberration during short-distance focusing becomes significant, making it difficult to ensure focusing performance. On the other hand, if the upper limit of equation (3) is exceeded, the curvature of the spherical aberration during focusing becomes large, and sufficient focusing performance cannot be maintained. In the present invention, in order to suppress aberration fluctuations during focusing, it is desirable to satisfy the following conditions. (4) -1.3<(Rb +Ra)/(Rb-
Ra)<3.0 However, Ra: Radius of curvature on the object side of the negative lens component L21 in the second group G2 Rb: Radius of curvature on the image side of the negative lens component L21 in the second group G2. When the upper limit of equation (4) is exceeded, the refractive power of the negative lens component of the second group G2 becomes weaker, and the variation in spherical aberration during close-range focusing becomes significant, making it difficult to ensure focusing performance. becomes difficult. Conversely, if the lower limit of equation (4) is exceeded, the radius of curvature Rb of the image side surface of the negative lens component of the second group G2 becomes too small, and as a result, the curvature of the spherical aberration increases from infinity to close range. Therefore, this is not preferable because it causes deterioration of imaging performance. Furthermore, in order to achieve good aberration correction during short-distance focusing in the present invention, it is more desirable to satisfy the following conditions. (5) R21<0 However, R21: The radius of curvature of the second group G2 closest to the object side. When this equation (5) is exceeded, the negative power of the negative lens component L21 in the second group G2 tends to become stronger, which is similar to the situation when the lower limit of the above equation (3) is exceeded. Become. Therefore, it becomes difficult to more fully and reliably suppress fluctuations in spherical aberration during short-distance focusing. Now,
In the present invention, since the first group G1 has a very short focal length, spherical aberration tends to increase. Therefore, the first group G1 is
Starting from the object side, the positive lens component L has a convex surface facing the object side.
11. A configuration in which a front group G11 having a positive refractive power and a rear group G12 having a positive refractive power are arranged as a whole, which is composed of a biconvex positive lens component L12 and a biconcave negative lens component L13. This is desirable. Now, the light ray from the on-axis object point will be called a land ray. Even though the land ray that is incident on the first lens of the telephoto lens is a ray that is emitted from a close object point, it is incident on the first incident surface substantially parallel to the optical axis. Therefore, the positive lens component L1 in the first group G1 has a convex surface facing the object side.
1, when considered as a collection of minute prisms, must have a shape close to the minimum deviation angle, with the object side surface being a convex surface and the image side surface having a gentle curvature. The sign of the radius of curvature on the image side is the first
It may be either positive or negative depending on the aberration structure within the group G1. Since the land ray becomes a convergent light beam in the positive lens component L11, in order to further converge this light beam, the positive lens component L12 is also a biconvex positive lens with a surface with a stronger curvature facing the object side so as to take the minimum deviation angle. In terms of components, the positive refractive power in the first group G1 is almost determined by the positive lens component L11 and the positive lens component L12. However, since the spherical aberration and chromatic aberration become too large with only these two positive lens components, the positive lens component L
A negative lens component L13 is placed immediately after lens 12 to perform appropriate correction. Under conditions near the upper limit of equation (1), the refractive power of the first group G1 is very strong, so in order to distribute the positive refractive power of the positive lenses L11 and L12, the positive lens component L14 is placed immediately after the front group.
A rear group G12 is arranged. Regarding the rear group G12 in the first group G1, in order to obtain better aberrations, the positive lens component L14 in the rear group G12 has a convex surface facing the object side in order from the object side. It is preferable to include a negative meniscus lens and a positive meniscus lens with a convex surface facing the object side. Since the rear group is for correcting spherical aberration, it is preferable to have a meniscus shape with a convex surface facing the object side so as not to affect rays other than the land rays. Although it is better for the negative meniscus lens and the positive meniscus lens in the rear group G12 to be separated from each other from the viewpoint of securing the degree of freedom in correcting aberrations, it is possible to simplify the lens barrel structure. From the viewpoint of reducing costs, it is desirable that they be joined together. In addition, the positive lens component L14 in the rear group G12 of the first group G1
In order to reduce the number of components, simplify the lens barrel structure, and reduce costs, it is also possible to configure the lens with a positive lens having weak refractive power. Furthermore, in the present invention, in order to better correct aberrations, if the refractive index of the positive lens component L14 in the rear group G12 of the first group G1 is Na and the Abbe number is νa, then (6 ) Na<1.60 (7) It is more desirable to satisfy 65<νa. If the upper limit of equation (6) is exceeded, the value of the Petzval sum becomes negative, which is not preferable. Note that it is theoretically possible to set the Petzval sum to an appropriate value as long as the range of equation (6) is satisfied; however, if the range of existing optical materials is considered, the lower limit of equation (6) More preferably, the value is 1.42. If the lower limit of equation (7) is exceeded, it is difficult to reduce the chromatic aberration in the first group G1, which is not desirable. Furthermore, (7)
If the range of the formula is satisfied, it is theoretically possible to suppress the occurrence of chromatic aberration in the first group G1, but if the range of existing optical materials is considered, the upper limit value can be set to 97. More desirable. Further, as a more preferable configuration of the positive third group G3, the third group G3 includes, in order from the object side, a positive lens component, a negative meniscus lens component with a concave surface facing the object side,
It is preferable to include a positive lens component with a convex surface facing the image side. At this time, when the refractive index of the positive lens component closest to the object in the third group G3 is nb and the Abbe number is νb, it is more preferable that the following conditions are satisfied. (8) nb<1.58 (9) 45<νb If the equation (8) is not satisfied, the Petzval sum becomes negative and undesirable. Deviation from equation (9) is not preferred because it is difficult to correct axial chromatic aberration, especially secondary chromatic aberration, with a configuration with a small number of lenses. [Example] FIGS. 1, 4, and 7 show Example 1 according to the present invention.
- 3 lens configuration diagrams are shown, and each example is composed of a first group G1 with positive refractive power, a second group G2 with negative refractive power, and a third group G3 with positive refractive power. and the second group G2 form a substantially afocal system, and the second group G2 moves toward the image side when focusing from infinity to a short distance. In each embodiment, the first group G1 includes a biconvex positive lens L11 (positive lens component), a positive lens L12 (positive lens component) having a surface with a stronger curvature facing the object side, It consists of a front group G11 consisting of a biconcave negative lens L13 (negative lens component), and a rear group G12 consisting of a positive lens component L14. The second group G2 includes a negative lens component L21 consisting of a positive lens with a surface of stronger curvature facing the image side and a biconcave negative lens cemented to the positive lens;
The third group G3 includes a biconcave negative lens L22 (negative lens component), a positive lens L31 (positive lens component), and a negative meniscus lens L32 (negative lens component) with a convex surface facing the image side. , a positive lens L33 (positive lens component). Next, the differences between each embodiment will be explained as follows.
First, in Examples 1 and 2, the positive lens component L14 constituting the rear group G12 of the first group G1 is a positive meniscus lens with a convex surface facing the object side, and a positive meniscus lens cemented to this with a convex surface facing the object side. It consists of a positive meniscus lens. In the third embodiment, the positive lens component L14 constituting the rear group G12 of the first group G1 is composed of a biconvex positive lens having weak refractive power. In each embodiment, the aperture stop S is arranged on the image side of the third group G3. The values of the specifications of each embodiment of the present invention are listed below. The leftmost number in the specification table of the example represents the order from the object side, r is the radius of curvature of the lens surface, d is the distance between lens surfaces, refractive index n and Abbe number ν are the d-line (λ = 587.6 nm), F is the focal length of the entire system, FN is the F number, β is the imaging magnification, and D0
represents the distance from the object to the first lens surface. [Example 1] F=294.0, FN=2.9 If the distance from the object to the image plane is R, the movement amount Δx of the focusing group from infinity to the closest distance R=2500 is 10.
It is 89. Φ/f1 =0.678, f1/F=0.511
, f22/f21=0.164 (Rb +Ra
)/(Rb-Ra)=-0.98, R21=-
9945.000 Na =1.59319, νa
=67.87, Nb =1.49782, ν
b = 82.52 [Example 2] F = 294.0, FN = 2.9 If the distance from the object to the image plane is R, movement of the focusing group from infinity to close distance R = 2500 The amount Δx is 10.
It is 89. Φ/f1 =0.678, f1/F=0.511
, f22/f21=0.185 (Rb +Ra
)/(Rb-Ra)=-0.98, R21=-
9945.000 Na =1.48749, νa
=70.41, Nb =1.51860, ν
b = 69.98 [Example 3] F = 392.3, FN = 3.6 When the distance from the object to the image plane is R, the movement of the focusing group from infinity to the closest distance R = 3500 The amount Δx is 13.
It is 19. Φ/f1 =0.559, f1/F=0.504
, f22/f21=0.131 (Rb +Ra
)/(Rb-Ra)=-0.05, R21=-
550.000Na = 1.49782, νa =
82.52, Nb =1.49782, νb
=82.52 In each of the above examples, it can be seen that the amount of movement of the focusing group (second group) due to focusing from infinity to close range is small. Next, FIGS. 2, 5, and 8 show aberration diagrams of Examples 1 to 3 in the infinity focus state, respectively.
FIGS. 3, 6, and 9 each show aberration diagrams of Examples 1 to 3 in a close focus state. As shown in each aberration diagram, it is clear that all examples have excellent imaging performance from infinity to close range. According to the present invention, it is possible to achieve an internal focusing telephoto lens that can maintain excellent imaging performance from infinity to close range while keeping the amount of movement of the focusing group small during focusing. be able to.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例1のレンズ構成図FIG. 1: Lens configuration diagram of Example 1 of the present invention

【図2】本発
明の実施例1の無限遠合焦状態での諸収差図
[Fig. 2] Diagrams of various aberrations in the infinity focus state of Example 1 of the present invention

【図3】本発明の実施例1の至近距離合焦状態での諸収
差図
[Fig. 3] Various aberration diagrams in the close-range focusing state of Example 1 of the present invention

【図4】本発明の実施例2のレンズ構成図FIG. 4: Lens configuration diagram of Example 2 of the present invention

【図5】本発
明の実施例2の無限遠合焦状態での諸収差図
[Fig. 5] Various aberration diagrams in the infinity focus state of Example 2 of the present invention

【図6】本発明の実施例2の至近距離合焦状態での諸収
差図
[Fig. 6] Various aberration diagrams in the close-range focusing state of Example 2 of the present invention

【図7】本発明の実施例3のレンズ構成図FIG. 7: Lens configuration diagram of Example 3 of the present invention

【図8】本発
明の実施例3の無限遠合焦状態での諸収差図
FIG. 8 is a diagram of various aberrations in the infinity focus state of Example 3 of the present invention.

【図9】本発明の実施例3の至近距離合焦状態での諸収
差図
[Fig. 9] Various aberration diagrams in the close-range focusing state of Example 3 of the present invention

【主要部分の符号の説明】G1 ・・・・・・第1群、
G11・・・・・・前群、G12・・・・・・後群、G
2 ・・・・・・第2群、G3 ・・・・・・第3群、
S・・・・・・開口絞り
[Explanation of symbols of main parts] G1...First group,
G11...Front group, G12...Rear group, G
2...2nd group, G3...3rd group,
S...Aperture diaphragm

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】物体側より順に、正屈折力の第1群G1、
負屈折力の第2群G2、正屈折力の第3群G3より構成
し、前記正屈折力の第1群G1と前記負屈折力の第2群
G2とで略アフォーカル系を形成し、該第2群G2でフ
ォーカシングを行う内焦望遠レンズにおいて、前記第1
群G1は、正屈折力の前群G11と、該前群に対して弱
い正の屈折力を持つ後群G12とを有し、前記前群G1
1は、物体側より順に、正レンズ成分L11 、正レン
ズ成分L12 、負レンズ成分L13 とで構成され、
前記第2群G2は、物体側から順に、負レンズ成分L2
1 と、同じく負レンズ成分L22 とを少なくとも有
し、前記第3群G3は、少なくとも2つの正レンズ成分
と少なくとも1つの負レンズ成分とを有し、かつ以下の
条件を満足することを特徴とする内焦望遠レンズ。 (1)  0.43<Φ/f1 <0.75(2)  
0.39<f1 /F<0.55(3)  0.13<
f22/f21<0.35但し、 Φ:第1群中の最も物体側正レンズ成分の物体側レンズ
面の有効径 F:全系の焦点距離 f1 :第1群の焦点距離 f21:第2群中の負レンズ成分L21 の焦点距離f
22:第2群中の負レンズ成分L22 の焦点距離であ
る。
Claim 1: In order from the object side, a first group G1 having a positive refractive power;
Consisting of a second group G2 having a negative refractive power and a third group G3 having a positive refractive power, the first group G1 having a positive refractive power and the second group G2 having a negative refractive power form a substantially afocal system, In the internal focusing telephoto lens that performs focusing with the second group G2, the first
The group G1 includes a front group G11 having a positive refractive power and a rear group G12 having a weaker positive refractive power than the front group G1.
1 is composed of, in order from the object side, a positive lens component L11, a positive lens component L12, and a negative lens component L13,
The second group G2 includes, in order from the object side, a negative lens component L2.
1 and a negative lens component L22, and the third group G3 has at least two positive lens components and at least one negative lens component, and satisfies the following conditions. Internal focusing telephoto lens. (1) 0.43<Φ/f1<0.75(2)
0.39<f1 /F<0.55(3) 0.13<
f22/f21<0.35 However, Φ: Effective diameter of the object-side lens surface of the positive lens component closest to the object in the first group F: Focal length of the entire system f1: Focal length of the first group f21: Second group The focal length f of the negative lens component L21 in
22: Focal length of the negative lens component L22 in the second group.
【請求項2】前記第2群G2中の負レンズ成分L21 
の物体側の曲率半径と像側の曲率半径とをそれぞれRa
 ,Rb とするとき、 (4)  −1.3<(Rb +Ra )/(Rb −
Ra )<3.0を満足することを特徴とする請求項1
記載の内焦望遠レンズ。
2. Negative lens component L21 in the second group G2
The radius of curvature on the object side and the radius of curvature on the image side are respectively Ra
, Rb, (4) −1.3<(Rb +Ra)/(Rb −
Claim 1 characterized in that it satisfies Ra ) < 3.0.
Internal focusing telephoto lens as described.
【請求項3】前記第2群G2の最も物体側面の曲率半径
をR21とするとき、(5)    R21<0を満足
することを特徴とする請求項2記載の内焦望遠レンズ。
3. The internal focusing telephoto lens according to claim 2, wherein (5) R21<0 is satisfied, where R21 is the radius of curvature of the second group G2 closest to the object side.
JP3059980A 1991-01-23 1991-03-25 Internal focusing telephoto lens Pending JPH04294310A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3059980A JPH04294310A (en) 1991-03-25 1991-03-25 Internal focusing telephoto lens
US08/110,208 US5323270A (en) 1991-01-23 1993-08-23 Internal focusing telephoto lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3059980A JPH04294310A (en) 1991-03-25 1991-03-25 Internal focusing telephoto lens

Publications (1)

Publication Number Publication Date
JPH04294310A true JPH04294310A (en) 1992-10-19

Family

ID=13128828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3059980A Pending JPH04294310A (en) 1991-01-23 1991-03-25 Internal focusing telephoto lens

Country Status (1)

Country Link
JP (1) JPH04294310A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610769A (en) * 1994-06-23 1997-03-11 Nikon Corporation Internal focusing telephoto lens system
US5751486A (en) * 1994-10-20 1998-05-12 Nikon Corporation Shake-preventing correction optical system
JP2000227546A (en) * 1999-02-04 2000-08-15 Asahi Optical Co Ltd Middle telephotographic lens
US7715116B2 (en) 2007-04-11 2010-05-11 Hoya Corporation Telephoto lens system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5610769A (en) * 1994-06-23 1997-03-11 Nikon Corporation Internal focusing telephoto lens system
US5751486A (en) * 1994-10-20 1998-05-12 Nikon Corporation Shake-preventing correction optical system
JP2000227546A (en) * 1999-02-04 2000-08-15 Asahi Optical Co Ltd Middle telephotographic lens
US7715116B2 (en) 2007-04-11 2010-05-11 Hoya Corporation Telephoto lens system

Similar Documents

Publication Publication Date Title
JPH05173071A (en) Wide angle zoom lens
JP3541283B2 (en) Inner focus telephoto lens
JPH07152002A (en) Zoom lens having vibrationproof function
JPH0792431A (en) Zoom lens equipped with vibration-proof function
JP6582535B2 (en) Optical system and imaging apparatus having this optical system
JPH05188294A (en) Inverse telephoto type large-aperture wide-angle lens
JPH06201988A (en) Large aperture ratio internal focusing telephoto lens
JPH08220424A (en) Gauss type lens having vibration proof function
JPH07199070A (en) Zoom lens
JP3536128B2 (en) Zoom lens with anti-vibration function
JP2012150248A (en) Variable power optical system, optical apparatus, and method for manufacturing variable power optical system
JP3160846B2 (en) Telephoto zoom lens
JP3491136B2 (en) Large aperture telephoto zoom lens
JPH0812326B2 (en) Reverse telephoto wide-angle lens
US5438455A (en) Internal focus telephoto lens for an auto focus camera
JPH06130330A (en) Zoom lens equipped with vibration preventing function
JPH06308383A (en) Intermediate telephoto lens for underwater camera
JP3102040B2 (en) Inner focus telephoto lens for autofocus camera
JPH0318162B2 (en)
JP4032502B2 (en) Large aperture ratio in-focus super telephoto lens
JPH04294310A (en) Internal focusing telephoto lens
JP5359558B2 (en) Lens system, optical equipment
JPH0792390A (en) Zoom lens
JP2000098266A (en) Ocular
JP2605372B2 (en) Zoom lens for finite distance