JPH04294068A - Power generating device - Google Patents

Power generating device

Info

Publication number
JPH04294068A
JPH04294068A JP3081221A JP8122191A JPH04294068A JP H04294068 A JPH04294068 A JP H04294068A JP 3081221 A JP3081221 A JP 3081221A JP 8122191 A JP8122191 A JP 8122191A JP H04294068 A JPH04294068 A JP H04294068A
Authority
JP
Japan
Prior art keywords
fuel gas
power generation
partition wall
sofc
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3081221A
Other languages
Japanese (ja)
Other versions
JP2698482B2 (en
Inventor
Shoji Seike
清家 捷二
Hidenobu Misawa
三澤 英延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3081221A priority Critical patent/JP2698482B2/en
Priority to US07/852,540 priority patent/US5336569A/en
Priority to DE69220400T priority patent/DE69220400T2/en
Priority to EP92302379A priority patent/EP0505184B1/en
Priority to CA002063482A priority patent/CA2063482C/en
Publication of JPH04294068A publication Critical patent/JPH04294068A/en
Application granted granted Critical
Publication of JP2698482B2 publication Critical patent/JP2698482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To lessen the concentration gradient of the fuel gas in the longitudinal direction of solid electrolyte fuel cell(SOFC) element and reduce the temp. difference generated thereby, wherein the fuel gas is that which is flowing in the power generating chamber of a power generation device of such a construction that cluster cells consisting of a plurality of SOFC elements having bottom and formed cylindrical in connections with one another and an electricity collecting body are installed in the power generating chamber and power generation is conducted by supplying the fuel gas to the chamber. CONSTITUTION:A power generating chamber 12 is provided with a bulkhead 7 at open end side, bulkhead 4 at the side part, and a bulkhead 3 at the bottom equipped side. Cluster cells consisting of a combination of SOFC elements 6 and an electricity collecting plate 5 are installed in this power generating chamber. A fuel chamber gas 2 is supplied also at the periphery of the side bulkhead 4. A fuel gas supply hole 4a is provided in this side bulkhead 4, and the fuel gas is supplied to the power generating chamber 12 as shown by arrow C.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、有底筒状の固体電解質
型燃料電池素子を用いた発電装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation device using a solid electrolyte fuel cell element having a cylindrical shape with a bottom.

【0002】0002

【従来の技術】最近、燃料電池が発電装置として注目さ
れている。これは、燃料が有する化学エネルギーを直接
電気エネルギーに変換できる装置で、カルノーサイクル
の制約を受けないため、本質的に高いエネルギー変換効
率を有し、燃料の多様化が可能で(ナフサ、天然ガス、
メタノール、石炭改質ガス、重油等)、低公害で、しか
も発電効率が設備規模によって影響されず、極めて有望
な技術である。特に固体電解質型燃料電池(SOFC)
は、1000℃の高温で作動するため電極反応が極めて
活発で、高価な白金などの貴金属触媒を全く必要とせず
、分極が小さく、出力電圧も比較的高いため、エネルギ
ー変換効率が他の燃料電池にくらべ著しく高い。更に、
構造材は全て固体から構成されるため、安定且つ長寿命
である。
2. Description of the Related Art Recently, fuel cells have been attracting attention as power generation devices. This is a device that can directly convert the chemical energy of fuel into electrical energy, and because it is not subject to the restrictions of the Carnot cycle, it has inherently high energy conversion efficiency and can be used for a variety of fuels (naphtha, natural gas, etc.). ,
It is an extremely promising technology as it produces low pollution (methanol, reformed coal gas, heavy oil, etc.), and its power generation efficiency is not affected by the scale of the facility. Especially solid oxide fuel cells (SOFC)
Because it operates at a high temperature of 1000°C, the electrode reaction is extremely active, it does not require any precious metal catalyst such as expensive platinum, it has low polarization, and its output voltage is relatively high, so its energy conversion efficiency is higher than that of other fuel cells. significantly higher than that of Furthermore,
Since all structural materials are made of solid materials, they are stable and have a long lifespan.

【0003】このうち、特に有底円筒状のSOFC素子
を用いた発電装置について図5に示す。図5においては
、有底円筒状の多孔質支持体17の表面に、空気電極1
8、固体電解質19、燃料電極20を順次形成し、有底
円筒状のSOFC素子6を構成する。このSOFC素子
6を発電室12内の所定位置に固定する。但し、通常は
SOFC素子6を直列及び並列に多数接続して集合電池
を構成するのであるが、図5においては便宜上SOFC
素子6を一個だけ図示する。発電室12の下方には燃料
ガス室22を設け、燃料ガス室22と発電室12とを有
底部側隔壁3で区分する。燃料ガス室22の下側には断
熱隔壁21が設けられる。発電室12の上方には排ガス
室8を設け、排ガス室8と発電室12とを開口端側隔壁
7で区分する。開口端側隔壁7には貫通孔7a を形成
し、この貫通孔7a にSOFC素子6の開口端部を挿
通する。排ガス室8の上側に断熱隔壁11を設け、その
貫通孔に酸化ガス供給管10を挿通し、保持する。酸化
ガス供給管10の先端開口は、SOFC素子6の筒内空
間15でSOFC素子6の有底部へと向って開口する。
[0003] Among these, a power generation device using a bottomed cylindrical SOFC element is shown in FIG. In FIG. 5, an air electrode 1 is placed on the surface of a bottomed cylindrical porous support 17.
8. Solid electrolyte 19 and fuel electrode 20 are sequentially formed to form bottomed cylindrical SOFC element 6. This SOFC element 6 is fixed at a predetermined position within the power generation chamber 12. However, although a large number of SOFC elements 6 are normally connected in series and parallel to form an assembled battery, in FIG.
Only one element 6 is shown. A fuel gas chamber 22 is provided below the power generation chamber 12, and the fuel gas chamber 22 and the power generation chamber 12 are separated by a bottomed side partition wall 3. A heat insulating partition wall 21 is provided below the fuel gas chamber 22 . An exhaust gas chamber 8 is provided above the power generation chamber 12, and the exhaust gas chamber 8 and the power generation chamber 12 are separated by an open end side partition wall 7. A through hole 7a is formed in the partition wall 7 on the open end side, and the open end of the SOFC element 6 is inserted into this through hole 7a. A heat insulating partition wall 11 is provided above the exhaust gas chamber 8, and the oxidizing gas supply pipe 10 is inserted and held in the through hole thereof. The opening at the tip of the oxidizing gas supply pipe 10 opens toward the bottomed portion of the SOFC element 6 in the cylinder space 15 of the SOFC element 6 .

【0004】この発電装置の動作時に、矢印Fのように
、酸化ガスを酸化ガス室より酸化ガス供給管10へと供
給すると、酸化ガス供給口より流出した酸化ガスが有底
部で反転し、多孔質支持体17の筒内空間15内を流れ
、矢印Dのように排ガス室8内に流出する。一方、底部
の断熱隔壁21の燃料ガス供給孔21a より矢印Aの
ように燃料ガスを供給すると、燃料ガス室22内の圧力
が高くなるので、有底部側隔壁3の燃料ガス供給口3a
 を通して燃料ガスが矢印Bのように発電室12内へと
供給される。この燃料ガスが燃料電極20の表面に沿っ
て流れると、燃料電極20の表面で上記燃料ガスと固体
電解質内を拡散してきた酸素イオンとが反応し、その結
果、空気電極18と燃料電極20との間に電流が流れる
。発電に使用された燃料ガスは、開口端側隔壁7とSO
FC素子6の開口端部との間隙を通り抜け、矢印Eのよ
うに排ガス室8内に流れる。このSOFC素子6は10
00℃程度の高温下で使用されるため、シール部なしで
構成できる図5に示す形態が好ましい態様といえる。
During operation of this power generation device, when oxidizing gas is supplied from the oxidizing gas chamber to the oxidizing gas supply pipe 10 as shown by arrow F, the oxidizing gas flowing out from the oxidizing gas supply port is reversed at the bottomed part, and the porous gas is turned around. The gas flows inside the cylinder space 15 of the gas support 17 and flows out into the exhaust gas chamber 8 as indicated by arrow D. On the other hand, when fuel gas is supplied from the fuel gas supply hole 21a of the bottom heat insulating partition wall 21 as shown by arrow A, the pressure inside the fuel gas chamber 22 increases, so the fuel gas supply port 3a of the bottom side partition wall 3
Fuel gas is supplied into the power generation chamber 12 in the direction of arrow B through the power generation chamber 12 . When this fuel gas flows along the surface of the fuel electrode 20, the fuel gas and the oxygen ions that have diffused in the solid electrolyte react on the surface of the fuel electrode 20, and as a result, the air electrode 18 and the fuel electrode 20 react with each other. A current flows between them. The fuel gas used for power generation is transferred to the open end side partition wall 7 and the SO
The gas passes through the gap between the open end of the FC element 6 and flows into the exhaust gas chamber 8 as shown by arrow E. This SOFC element 6 has 10
Since it is used at a high temperature of about 00° C., the form shown in FIG. 5, which can be constructed without a sealing part, is a preferable form.

【0005】[0005]

【発明が解決しようとする課題】SOFCの実用化にお
いてはコストの低減と電力密度の向上が必要である。こ
のためSOFC素子6を長尺化して一本当たりの発電出
力を上げることが要請されている。しかし、図5に示す
ような構成のSOFCにおいては、特に燃料ガス流の濃
度勾配に起因して著しい温度勾配が生ずるという問題が
あった。即ち、燃料ガス供給口3a の近辺では、まだ
燃料含有量が多いため、この付近では電気化学的反応に
消費される燃料の量が多く温度が上昇する。この温度上
昇によって、燃料電極20における酸素イオンと燃料と
の電気化学的反応がますます活性化する。
[Problems to be Solved by the Invention] In order to put SOFC into practical use, it is necessary to reduce costs and improve power density. For this reason, it is required to increase the power generation output per SOFC element 6 by increasing its length. However, the SOFC having the configuration shown in FIG. 5 has a problem in that a significant temperature gradient occurs, particularly due to the concentration gradient of the fuel gas flow. That is, in the vicinity of the fuel gas supply port 3a, since the fuel content is still large, the amount of fuel consumed in the electrochemical reaction is large in this vicinity, and the temperature rises. This temperature increase further activates the electrochemical reaction between oxygen ions and fuel at the fuel electrode 20.

【0006】一方、燃料ガス供給口3a から離れるに
つれ、燃料ガス中の燃料濃度が減少し、この結果電気化
学的反応に消費される燃料の量が減少する。このため、
燃料電極20の温度があまり上昇せず、従って電気化学
的反応が一層不活発となる。しかも、濃度が減少した燃
料ガス中には、電気化学的反応の結果としてかなりCO
2 や水蒸気等が含まれており、これらが燃料電極20
の表面に付着して反応を阻害するため、ますます反応が
不活発となる。このため、燃料ガス流の上流側と下流側
とでは大きな温度勾配が生じ、長期間発電装置を作動さ
せた場合に、クラック発生の原因となりうるし、発電効
率自体にも悪影響がある。そして、この傾向は、SOF
C素子6が長くなるにつれて一層激しく、顕著になる。
On the other hand, as the distance from the fuel gas supply port 3a increases, the fuel concentration in the fuel gas decreases, and as a result, the amount of fuel consumed in the electrochemical reaction decreases. For this reason,
The temperature of the fuel electrode 20 does not rise much, so the electrochemical reaction becomes more inactive. Furthermore, the reduced concentration of fuel gas contains a significant amount of CO as a result of electrochemical reactions.
2, water vapor, etc., are contained in the fuel electrode 20.
The reaction becomes even more inactive as it adheres to the surface and inhibits the reaction. For this reason, a large temperature gradient occurs between the upstream and downstream sides of the fuel gas flow, which can cause cracks to occur when the power generation device is operated for a long period of time, and has an adverse effect on the power generation efficiency itself. And this trend is SOF
As the C element 6 becomes longer, it becomes more severe and noticeable.

【0007】本発明の課題は、有底筒状のSOFC素子
を接続した集合電池を発電室内に設置して発電を行う発
電装置において、発電室内を流れる燃料ガス中の燃料濃
度の勾配を小さくし、これにより生ずる温度差を低減す
ることである。
[0007] An object of the present invention is to reduce the gradient of fuel concentration in fuel gas flowing inside the power generation chamber in a power generation device that generates electricity by installing an assembled battery connected to bottomed cylindrical SOFC elements in the power generation chamber. , to reduce the resulting temperature difference.

【0008】[0008]

【課題を解決するための手段】本発明は、複数の有底筒
状固体電解質型燃料電池素子を少なくとも直列に接続し
て集合電池を構成し、この集合電池の正極と負極とをそ
れぞれ集電体に接続し、この集合電池と集電体とを発電
室内に収容し、この発電室を形成する隔壁のうち前記素
子の開口端部側に設けられた開口端側隔壁に複数の貫通
孔を形成してこれらの貫通孔にそれぞれ前記素子の開口
端部を挿通し、前記素子の筒内空間へと酸化ガスを供給
すると共に、前記発電室を形成する隔壁のうち前記素子
の長さ方向に対してほぼ垂直となるように前記素子の有
底部側に設けられた有底部側隔壁から燃料ガスを前記発
電室へと供給し、かつ前記発電室を形成する隔壁のうち
前記素子の長さ方向に対してほぼ平行となるように設け
られた側部隔壁から燃料ガスを前記発電室へと供給する
ように構成された発電装置に係るものである。
[Means for Solving the Problems] The present invention constructs an assembled battery by connecting at least a plurality of bottomed cylindrical solid electrolyte fuel cell elements in series, and a positive electrode and a negative electrode of the assembled battery are used to collect current, respectively. The assembled battery and the current collector are housed in a power generation chamber, and a plurality of through holes are formed in an open end side partition wall provided on the open end side of the element among the partition walls forming the power generation chamber. The open ends of the element are inserted into these through holes to supply oxidizing gas to the cylindrical space of the element. Fuel gas is supplied to the power generation chamber from a bottomed side partition wall provided on the bottomed side of the element so as to be substantially perpendicular to the bottom side, and in the longitudinal direction of the element among the partition walls forming the power generation chamber. This invention relates to a power generation device configured to supply fuel gas to the power generation chamber from a side partition wall provided substantially parallel to the power generation chamber.

【0009】燃料ガスとは、水素、改質水素、一酸化炭
素等の燃料を含むガスをいう。「酸化ガス」とは、酸素
、過酸化水素等の酸化剤を含むガスをいう。
[0009] Fuel gas refers to gas containing fuel such as hydrogen, reformed hydrogen, and carbon monoxide. "Oxidizing gas" refers to a gas containing an oxidizing agent such as oxygen and hydrogen peroxide.

【0010】0010

【実施例】図1は、本発明の実施例に係る発電装置を示
す概略断面図、図2は図1の発電装置の一部を示す概略
平面図である。図5における部材と同一機能部材には同
一符号を付し、その説明は省略することがある。また、
図3に図2の部分拡大断面図を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a schematic sectional view showing a power generating apparatus according to an embodiment of the present invention, and FIG. 2 is a schematic plan view showing a part of the power generating apparatus shown in FIG. Components with the same functions as those in FIG. 5 are given the same reference numerals, and their explanations may be omitted. Also,
FIG. 3 shows a partially enlarged sectional view of FIG. 2.

【0011】まず、有底筒状のSOFC素子6を直列及
び並列に接続して集合電池を形成する。この際、図1、
図2においては、直列及び並列共に4列毎としたが、こ
の列数は適当に変更してよい。有底円筒状の多孔質支持
体17の外周には空気電極18が設けられ、空気電極1
8の外周に沿って固体電解質19、燃料電極20が配設
され、また図3において上側の領域では空気電極18上
にインターコネクター16が設けられ、この上に接続端
子13を付着させている。そして、SOFC素子6を直
列接続するには、SOFC素子6の空気電極18と隣接
するSOFC素子の燃料電極20とをインターコネクタ
ー16、接続端子13、金属フェルト9を介して接続し
、またSOFC素子6を並列接続するには、隣接するS
OFC素子6の燃料電極20間を金属フェルト14で接
続する。
First, SOFC elements 6 each having a cylindrical shape with a bottom are connected in series and in parallel to form an assembled battery. At this time, Figure 1,
In FIG. 2, every four columns are used in both series and parallel, but the number of columns may be changed as appropriate. An air electrode 18 is provided on the outer periphery of the bottomed cylindrical porous support 17.
A solid electrolyte 19 and a fuel electrode 20 are arranged along the outer periphery of the electrode 8, and an interconnector 16 is provided on the air electrode 18 in the upper region in FIG. 3, and a connecting terminal 13 is attached thereon. To connect the SOFC elements 6 in series, the air electrode 18 of the SOFC element 6 and the fuel electrode 20 of the adjacent SOFC element are connected via the interconnector 16, the connection terminal 13, and the metal felt 9, and the SOFC element 6 in parallel, connect adjacent S
The fuel electrodes 20 of the OFC element 6 are connected with a metal felt 14.

【0012】このようにしてSOFC素子6を直列及び
並列に接続して、図2に示すように4×4列にSOFC
素子6を配置した集合電池を構成する。ただし、図1、
図2においては、便宜上、各SOFC素子6の詳細な構
造等は図示せず、またインターコネクター16と接続端
子13とを一体化して図示してある。このようにして構
成した集合電池の正極と負極とを、それぞれ金属フェル
ト9を介して集電板5に電気的に接続する。この集電板
5は一対で集合電池の集電体として作用するものであり
、各集電板5は図示しないリード線に接続されている。 この集合電池と集電板5とは、一体化された状態で発電
室12に収容される。
By connecting the SOFC elements 6 in series and in parallel in this way, the SOFC elements 6 are arranged in 4×4 rows as shown in FIG.
A battery assembly is constructed in which the elements 6 are arranged. However, Figure 1,
In FIG. 2, for convenience, the detailed structure of each SOFC element 6 is not shown, and the interconnector 16 and the connection terminal 13 are shown integrated. The positive and negative electrodes of the assembled battery constructed in this way are electrically connected to the current collector plate 5 via metal felts 9, respectively. A pair of current collector plates 5 act as a current collector for the assembled battery, and each current collector plate 5 is connected to a lead wire (not shown). The assembled battery and current collector plate 5 are housed in the power generation chamber 12 in an integrated state.

【0013】発電室12を形成する隔壁のうち、有底円
筒状のSOFC素子6の開口端部側には開口端側隔壁7
が設けられ、この開口端側隔壁7にはSOFC素子6の
位置に対応して4×4 列の円形貫通孔7a が設けら
れ、各円形貫通孔7a にそれぞれSOFC素子6の開
口端部が挿通されている。各SOFC素子6の筒内空間
15にはそれぞれ酸化ガス供給管10が挿入される。各
SOFC素子6の筒内空間15に供給された酸化ガスは
、筒内空間15内を図において上方へと流れ、矢印Dの
ように排ガス室8へと流入する。
Among the partition walls forming the power generation chamber 12, there is an open end partition wall 7 on the open end side of the bottomed cylindrical SOFC element 6.
4×4 rows of circular through holes 7a are provided in this open end side partition wall 7 corresponding to the positions of the SOFC elements 6, and the open ends of the SOFC elements 6 are inserted into each circular through hole 7a. has been done. An oxidizing gas supply pipe 10 is inserted into the cylinder space 15 of each SOFC element 6, respectively. The oxidizing gas supplied to the cylinder space 15 of each SOFC element 6 flows upward in the cylinder space 15 in the figure, and flows into the exhaust gas chamber 8 as indicated by arrow D.

【0014】発電室12を形成する隔壁のうち、SOF
C素子6の有底部側に設けられた有底部側隔壁3は、S
OFC素子6の長さ方向に対してほぼ垂直をなしている
。 本実施例では、SOFC素子6の有底部が、有底部側隔
壁3上に載置されている。また、発電室12を形成する
隔壁のうち、16個のSOFC素子6からなる集合電池
と2枚の集電板5とを挟むように、一対の側部隔壁4が
設けられている。これらの側部隔壁4は、SOFC素子
6の長さ方向に対してほぼ平行となっており、かつ一対
の側部隔壁4が互いにほぼ平行に配置されている。また
、側部隔壁4と集電板5とは、若干の間隔を置いて対向
している。有底部側隔壁3及び一対の側部隔壁4を包囲
するように、断熱材からなる略直方体形状の缶体1が形
成され、缶体1と有底部側隔壁3及び側部隔壁4との間
に燃料ガス室2が設けられる。燃料ガス室2は図1にお
いては略コの字状断面をなしており、燃料ガス室2の上
端と排ガス室8とは缶体1によって区分されている。缶
体1の底部には燃料ガス供給口1a が設けられている
Among the partition walls forming the power generation chamber 12, SOF
The bottomed part side partition wall 3 provided on the bottomed part side of the C element 6 is S
It is substantially perpendicular to the length direction of the OFC element 6. In this embodiment, the bottomed portion of the SOFC element 6 is placed on the bottomed portion side partition wall 3. Further, among the partition walls forming the power generation chamber 12, a pair of side partition walls 4 are provided so as to sandwich the battery assembly made up of 16 SOFC elements 6 and the two current collector plates 5. These side partitions 4 are substantially parallel to the length direction of the SOFC element 6, and a pair of side partitions 4 are arranged substantially parallel to each other. Further, the side partition wall 4 and the current collector plate 5 are opposed to each other with a slight interval therebetween. A substantially rectangular parallelepiped-shaped can body 1 made of a heat insulating material is formed so as to surround the bottomed side partition wall 3 and the pair of side partition walls 4, and between the can body 1 and the bottomed side partition wall 3 and the pair of side partition walls 4. A fuel gas chamber 2 is provided in the fuel gas chamber 2. The fuel gas chamber 2 has a substantially U-shaped cross section in FIG. 1, and the upper end of the fuel gas chamber 2 and the exhaust gas chamber 8 are separated by the can body 1. A fuel gas supply port 1a is provided at the bottom of the can body 1.

【0015】有底部側隔壁3には、複数の燃料ガス供給
口3a が互いに所定間隔を置いて規則的に設けられて
いる。また、各側部隔壁4には、それぞれ縦横に基盤目
状に燃料ガス供給口4a が設けられている。更に、各
集電板5にも縦横に基盤目状に貫通孔5a が形成され
ており、各貫通孔5aと各燃料ガス供給口4a とは寸
法及び位置合わせをして、ガスが両者を通り抜け易いよ
うにする。
A plurality of fuel gas supply ports 3a are regularly provided in the bottomed side partition wall 3 at predetermined intervals. In addition, each side partition wall 4 is provided with fuel gas supply ports 4a arranged vertically and horizontally in a grid pattern. Furthermore, through-holes 5a are formed in each current collector plate 5 in the shape of a grid in the vertical and horizontal directions, and each through-hole 5a and each fuel gas supply port 4a are dimensioned and aligned to allow gas to pass through them. Make it easy.

【0016】この発電装置を動作させるときには、燃料
ガス供給口1a から矢印Aのように燃料ガスを燃料ガ
ス室2へと供給する。これにより燃料ガス室2の圧力が
上昇するので、各燃料ガス供給口3a から矢印Bのよ
うに燃料ガスが発電室12内へと供給される。これと共
に、各側部隔壁4の燃料ガス供給口4a 及び各集電板
5の貫通孔5a を通って矢印Cのように燃料ガスが発
電室12内へと供給される。この燃料ガスは、主として
図2において上下方向に矢印Gのように流れる。この理
由は後述する。発電に充分利用され、減損した燃料ガス
は、最終的に各SOFC素子6と開口端側隔壁7との間
隙を通り抜け、矢印Eのように排ガス室8に流入し、減
損した酸化ガスと混合される。
When operating this power generating apparatus, fuel gas is supplied from the fuel gas supply port 1a to the fuel gas chamber 2 as shown by arrow A. As a result, the pressure in the fuel gas chamber 2 increases, so that fuel gas is supplied into the power generation chamber 12 as shown by arrow B from each fuel gas supply port 3a. At the same time, fuel gas is supplied into the power generation chamber 12 as indicated by arrow C through the fuel gas supply ports 4a of each side partition 4 and the through holes 5a of each current collector plate 5. This fuel gas mainly flows in the vertical direction as indicated by arrow G in FIG. The reason for this will be explained later. The depleted fuel gas that has been fully utilized for power generation finally passes through the gap between each SOFC element 6 and the partition wall 7 on the open end side, flows into the exhaust gas chamber 8 as shown by arrow E, and is mixed with the depleted oxidizing gas. Ru.

【0017】空気電極18はドーピングされたか、又は
ドーピングされていないLaMnO3, CaMnO3
, LaNiO3, LaCoO3, LaCrO3等
の導電性ペロブスカイト形酸化物で製造でき、ストロン
チウムをドーピングしたLaMnO3が好ましい。固体
電解質19は、イットリア安定化ジルコニア、イットリ
ア部分安定化ジルコニア等で製造するのが好ましい。燃
料電極20は、一般にはニッケル−ジルコニアサーメッ
ト又はコバルト−ジルコニアサーメットが好ましい。イ
ンターコネクター16としては、ドーピングされたか又
はドーピングされていない、ペロブスカイト形LaCr
O3, LaMnO3等が好ましい。
The air electrode 18 is made of doped or undoped LaMnO3, CaMnO3.
, LaNiO3, LaCoO3, LaCrO3, etc., and strontium-doped LaMnO3 is preferred. The solid electrolyte 19 is preferably made of yttria-stabilized zirconia, yttria-partially stabilized zirconia, or the like. Fuel electrode 20 is generally preferably a nickel-zirconia cermet or a cobalt-zirconia cermet. The interconnect 16 is made of perovskite LaCr, doped or undoped.
O3, LaMnO3, etc. are preferred.

【0018】側部隔壁4は、SOFC素子の動作時に使
用する燃料ガスに対して耐性があり、かつSOFC素子
の動作温度で安定な耐熱性の金属又はセラミックスで形
成する。こうした耐熱性の金属としては、例えば、Ni
−Cr, Ni−Fe−Cr, Ni−Fe−Cr−A
l, Co−Ni−Cr, Fe−Cr, Fe−Cr
−Al等の各組成の合金がある。
The side partition wall 4 is made of a heat-resistant metal or ceramic that is resistant to the fuel gas used during operation of the SOFC element and stable at the operating temperature of the SOFC element. Examples of such heat-resistant metals include Ni
-Cr, Ni-Fe-Cr, Ni-Fe-Cr-A
l, Co-Ni-Cr, Fe-Cr, Fe-Cr
There are alloys of various compositions such as -Al.

【0019】本実施例によれば、図2に示すようないわ
ゆるセルユニット単位の側部隔壁4からも発電室12へ
と燃料ガスを供給したので、新鮮で減損の少ない燃料ガ
スを各SOFC素子6の開口端部に近い側にも常時供給
できる。従って、発電室12内における燃料濃度の勾配
が小さくなり、均一化されるので、SOFC素子6の長
さ方向における温度勾配も小さくできる。この結果、発
電装置を長時間作動させてもSOFC素子6にクラック
等が発生しにくくなり、また電気化学的反応のムラも少
なくできることから各SOFC素子6における発電効率
も従来より向上させることができる。
According to this embodiment, since the fuel gas is also supplied to the power generation chamber 12 from the side partition wall 4 of each so-called cell unit as shown in FIG. 2, fresh and less depleted fuel gas is supplied to each SOFC element. 6 can also be constantly supplied to the side near the open end. Therefore, the gradient of fuel concentration within the power generation chamber 12 is reduced and made uniform, so that the temperature gradient in the length direction of the SOFC element 6 can also be reduced. As a result, cracks are less likely to occur in the SOFC elements 6 even if the power generation device is operated for a long time, and unevenness in electrochemical reactions can also be reduced, making it possible to improve the power generation efficiency of each SOFC element 6 compared to the past. .

【0020】また、従来は、側部隔壁4から燃料ガスを
発電室12内に供給していないので、当然、燃料ガス室
は図1において有底部側隔壁3の下側のみにあり、側部
隔壁4の外は例えば低温の大気であったので、側部隔壁
4に相当の断熱効果を付与する必要があった。言い換え
ると、側部隔壁4は当然に断熱隔壁として設計されてい
たのである。従って、側部隔壁4は相当に厚くしなけれ
ばならず、例えば数十mm程度の厚さが必要であった。 これに対し、本実施例では、燃料室2内に高温の燃料ガ
スが充満しているのであるから、側部隔壁4を薄くして
も発電室12内を充分にSOFC素子6の動作温度に保
持できる。従って、集合電池単位(セルユニット単位)
で側部隔壁4を薄くした分だけ小型化できる。
Furthermore, conventionally, fuel gas was not supplied into the power generation chamber 12 from the side partition wall 4, so naturally the fuel gas chamber was located only below the bottomed side partition wall 3 in FIG. For example, since the atmosphere outside the partition wall 4 was at a low temperature, it was necessary to provide the side partition wall 4 with a considerable heat insulating effect. In other words, the side partitions 4 were naturally designed as heat-insulating partitions. Therefore, the side partition wall 4 had to be considerably thick, for example, on the order of several tens of millimeters. On the other hand, in this embodiment, since the fuel chamber 2 is filled with high-temperature fuel gas, even if the side partition wall 4 is made thinner, the inside of the power generation chamber 12 is sufficiently heated to the operating temperature of the SOFC element 6. Can be retained. Therefore, in aggregate battery unit (cell unit unit)
The size can be reduced by making the side partition wall 4 thinner.

【0021】また、本実施例では、側部隔壁4からの燃
料ガスの流れを図2において上下方向にしたことも重要
である。図2における上下方向、即ち、SOFC素子6
の直列接続方向では、各SOFC素子6に長さ方向に向
って帯状のインターコネクターが設けられ、これに対応
して帯状の金属フェルト9がSOFC素子6間を塞いで
いるので、燃料ガスが通りにくい。一方、SOFC素子
6を並列に接続する金属フェルト14は、金属フェルト
9やインターコネクター16のように帯状のものでなく
ともよく、隣り合うSOFC素子6の間の一箇所又は二
箇所、あるいは高々数箇所に互いに間隔を置いて設けれ
ばよいものである。従って、金属フェルト14を設けて
いない部分では、隣り合うSOFC素子6の間を燃料ガ
スが容易に通り抜ける。従って、矢印Cの方向に燃料ガ
スを供給すれば、発電室12の全域に亘って一層容易に
燃料ガスを行き渡らせることができる。
In this embodiment, it is also important that the fuel gas flows from the side partition wall 4 in the vertical direction in FIG. The vertical direction in FIG. 2, that is, the SOFC element 6
In the series connection direction, each SOFC element 6 is provided with a band-shaped interconnector in the length direction, and correspondingly, a band-shaped metal felt 9 closes the space between the SOFC elements 6, so that fuel gas cannot pass through. Hateful. On the other hand, the metal felt 14 that connects the SOFC elements 6 in parallel does not have to be strip-shaped like the metal felt 9 or the interconnector 16, and can be placed at one or two places between adjacent SOFC elements 6, or at most several places. It is sufficient if they are provided at different locations at intervals. Therefore, in the portion where the metal felt 14 is not provided, the fuel gas easily passes between the adjacent SOFC elements 6. Therefore, by supplying the fuel gas in the direction of the arrow C, the fuel gas can be spread throughout the entire area of the power generation chamber 12 more easily.

【0022】図1の実施例において、SOFC素子6の
長さ方向にみて燃料濃度をより一層安定に均一にするに
は、燃料ガス供給口4a 及び貫通孔5a の面積及び
個数を適切に設計する必要がある。
In the embodiment shown in FIG. 1, in order to make the fuel concentration more stable and uniform in the length direction of the SOFC element 6, the area and number of the fuel gas supply port 4a and the through hole 5a are appropriately designed. There is a need.

【0023】図4は、他の実施例に係る発電装置を示す
、図1と同様の概略断面図である。本実施例においては
、有底部側隔壁23及び一対の側部隔壁24を、いずれ
も多孔質材料によって形成する。これにより、燃料ガス
室2内の燃料ガスは、排ガス室8と燃料ガス室2との差
圧により、矢印Bのように有底部側隔壁23を透過して
発電室12に流入し、矢印Cのように側部隔壁24を透
過して発電室12に流入する。側部隔壁24を透過した
燃料ガスは、更に貫通孔5a を通過し、燃料電極の表
面に沿って流れる。本実施例においても、図1の実施例
と同様の効果を奏しうる。しかも、側部隔壁24全体を
多孔質材料としているのであるから、側部隔壁24全体
に非常に均一に燃料ガスを供給できるものと考えられる
FIG. 4 is a schematic sectional view similar to FIG. 1, showing a power generation device according to another embodiment. In this embodiment, the bottomed side partition wall 23 and the pair of side partition walls 24 are both formed of a porous material. As a result, the fuel gas in the fuel gas chamber 2 passes through the bottomed side partition wall 23 as shown by arrow B and flows into the power generation chamber 12 due to the pressure difference between the exhaust gas chamber 8 and fuel gas chamber 2, and flows into the power generation chamber 12 as shown by arrow C. It passes through the side partition wall 24 and flows into the power generation chamber 12 as shown in FIG. The fuel gas that has passed through the side partition wall 24 further passes through the through hole 5a and flows along the surface of the fuel electrode. In this embodiment as well, the same effects as in the embodiment of FIG. 1 can be achieved. Moreover, since the entire side partition wall 24 is made of a porous material, it is considered that fuel gas can be supplied to the entire side partition wall 24 very uniformly.

【0024】ただ、仮に側部隔壁24全体にまったく同
じ流量の燃料ガスを供給すると、やはり図4において有
底部付近では若干燃料濃度が高くなるものと考えられる
。 そこで、側部隔壁24の図4において下端から上端へと
向って徐々に気孔率を大きくし、燃料ガスの透過量が徐
々に大きくなるようにすると好ましい。また、有底部側
隔壁23及び側部隔壁24は、高温の燃料ガスに対して
安定でなければならない。この点で、これらを耐還元金
属粉末を焼結してなる多孔質金属や、耐還元金属粉末と
セラミックス粉末との混合物を焼結してなる多孔質サー
メットで形成すると好ましい。ここで、セラミックス粉
末としては、アルミナやジルコニアを主成分とするセラ
ミックスの粉末を例示できる。耐還元金属粉末としては
、Ni−Cr, Ni−Fe−Cr, Ni−Fe−C
r−Al, Co−Ni−Cr, Fe−Cr, Fe
−Cr−Al等の合金の粉末や、Ni, Co, Fe
の粉末を例示できる。
However, if the same flow rate of fuel gas were to be supplied to the entire side partition wall 24, it is thought that the fuel concentration would be slightly higher near the bottomed portion in FIG. Therefore, it is preferable to gradually increase the porosity of the side partition wall 24 from the lower end to the upper end in FIG. 4 so that the amount of fuel gas permeation gradually increases. Furthermore, the bottomed side partition wall 23 and the side partition wall 24 must be stable against high-temperature fuel gas. In this respect, it is preferable to form these with a porous metal formed by sintering a reduction-resistant metal powder or a porous cermet formed by sintering a mixture of a reduction-resistant metal powder and a ceramic powder. Here, as the ceramic powder, a ceramic powder containing alumina or zirconia as a main component can be exemplified. Reduction-resistant metal powders include Ni-Cr, Ni-Fe-Cr, Ni-Fe-C
r-Al, Co-Ni-Cr, Fe-Cr, Fe
-Alloy powder such as Cr-Al, Ni, Co, Fe
An example is a powder of

【0025】側部隔壁24の開気孔率としては、10〜
90%とすることが好ましい。開気孔率が90%を超え
ると、側部隔壁24の強度が低下し、開気孔率が10%
未満であると、燃料ガスの透過量が少なくなる。
The open porosity of the side partition wall 24 is 10 to 10.
It is preferable to set it to 90%. When the open porosity exceeds 90%, the strength of the side partition wall 24 decreases, and the open porosity decreases to 10%.
If it is less than that, the permeation amount of fuel gas will decrease.

【0026】側部隔壁24の開気孔率に勾配を設けるに
は、以下の2つの方法を例示できる。 (1)  多孔質金属又は多孔質サーメットからなる側
部隔壁24を焼成によって製造する際に、側部隔壁の形
状をした粉末成形体の一端部を保持し、この粉末成形体
の他端に均等におもりをつけて粉末成形体を吊り下げる
。これにより、粉末成形体の一端部に近い側には比較的
大きな荷重がかかって若干引き延ばされ、開気孔率が大
きくなる。また、粉末成形体の他端部に近い側にはあま
り荷重がかからないので、開気孔率が比較的小さくなる
。 (2)  多孔質金属又は多孔質サーメットからなる壁
状の焼結体を作製する。次いで、この焼結体の開気孔中
へと充填材を含浸させてある程度開気孔を充填し、次い
で焼結体を乾燥又は加熱して充填材を定着させる。この
際、壁状の焼結体の各部分における充填材の含浸量を変
えることで、この焼結体の開気孔率に勾配を設けること
ができる。
The following two methods can be used to provide a gradient in the open porosity of the side partition walls 24. (1) When manufacturing the side partition wall 24 made of porous metal or porous cermet by firing, hold one end of the powder molded body in the shape of the side partition wall, and apply an equal amount to the other end of this powder molded body. Attach a weight and suspend the powder compact. As a result, a relatively large load is applied to the side near one end of the powder compact, causing it to be slightly stretched, increasing its open porosity. Further, since not much load is applied to the side near the other end of the powder compact, the open porosity becomes relatively small. (2) A wall-shaped sintered body made of porous metal or porous cermet is produced. Next, a filler is impregnated into the open pores of this sintered body to fill the open pores to some extent, and then the sintered body is dried or heated to fix the filler. At this time, by changing the amount of filler impregnated in each part of the wall-shaped sintered body, it is possible to provide a gradient in the open porosity of this sintered body.

【0027】また、側部隔壁24からの燃料ガスの透過
量を制御するには、以下の方法がある。即ち、側部隔壁
24を二重構造にする。具体的には、まず多孔質金属か
らなる壁状の焼結体を製作する。この焼結体においては
開気孔率を一定とする。次いで、この焼結体にスラリー
を帯状に複数列互いに間隔を置いて塗布し、焼結する。 この際、帯状に塗布したスラリーの幅を大きくしたり、
スラリーとスラリーとの間隔を小さくすれば、燃料ガス
の透過が抑えられる。逆に、帯状のスラリーの幅を小さ
くしたり、スラリー間の間隔を大きくすれば、燃料ガス
の透過が促進される。更に、スラリー中に含有される耐
還元性金属粉末、セラミックス粉末の粒径を小さくすれ
ば燃料ガスが透過しにくくなり、これらの粒径を大きく
すれば燃料ガスが透過し易くなる。この場合、壁状の焼
結体は燃料ガス室側に向けてバックアップ材として用い
、スラリーを塗布して焼結した側を発電室へ向けること
が好ましい。
Furthermore, the following method can be used to control the amount of fuel gas permeating through the side partition wall 24. That is, the side partition wall 24 has a double structure. Specifically, first, a wall-shaped sintered body made of porous metal is manufactured. This sintered body has a constant open porosity. Next, a plurality of strips of slurry are applied to the sintered body at intervals, and the slurry is sintered. At this time, the width of the slurry applied in a band shape may be increased,
By reducing the distance between the slurries, the permeation of fuel gas can be suppressed. Conversely, by reducing the width of the slurry strips or increasing the spacing between the slurry strips, the permeation of fuel gas is promoted. Furthermore, if the particle size of the reduction-resistant metal powder or ceramic powder contained in the slurry is made smaller, it becomes difficult for fuel gas to pass through it, and if these particle sizes are made larger, it becomes easier for fuel gas to pass through it. In this case, it is preferable that the wall-shaped sintered body is used as a backup material toward the fuel gas chamber, and the side on which the slurry has been applied and sintered is directed toward the power generation chamber.

【0028】上記の各実施例においては、各SOFC素
子6を上下方向に保持した。即ち、各SOFC素子6の
長さ方向は鉛直方向であった。しかし、各SOFC素子
6を水平方向に保持し、各SOFC素子6の長さ方向を
水平方向に一致させて発電装置を作製することもできる
In each of the above embodiments, each SOFC element 6 was held in the vertical direction. That is, the length direction of each SOFC element 6 was the vertical direction. However, it is also possible to manufacture a power generation device by holding each SOFC element 6 horizontally and making the length direction of each SOFC element 6 coincide with the horizontal direction.

【0029】更に、図1及び図5に示した各発電装置を
用い、SOFC素子の長さ方向における温度勾配を測定
した。但し、測定点としては、図1に示したような測定
点a,b,c,d,eを選択し、各測定点の間隔はそれ
ぞれ100mmとした。燃料ガスとしては、水素96%
、水蒸気4%のものを用い、酸化ガスとしては大気を用
いた。 SOFC素子の温度を測定するには、熱電対を用いた。 また、図1及び図5に示すSOFC素子の一本当たりの
出力も比較した。結果を下記に示す。   以上の結果から解るように、図1の発電装置によれ
ば、測定点a〜eの間の温度勾配を小さくでき、これに
より全体の出力を大きくできる。
Furthermore, using each of the power generation devices shown in FIGS. 1 and 5, the temperature gradient in the length direction of the SOFC element was measured. However, as measurement points, measurement points a, b, c, d, and e as shown in FIG. 1 were selected, and the interval between each measurement point was 100 mm. 96% hydrogen as fuel gas
, 4% water vapor was used, and air was used as the oxidizing gas. A thermocouple was used to measure the temperature of the SOFC element. In addition, the output per SOFC element shown in FIGS. 1 and 5 was also compared. The results are shown below. As can be seen from the above results, according to the power generating apparatus shown in FIG. 1, the temperature gradient between measurement points a to e can be reduced, and thereby the overall output can be increased.

【0030】[0030]

【発明の効果】本発明によれば、集合電池と集電体とを
収容する発電室を形成する隔壁のうち、有底筒状のSO
FC素子の長さ方向に対してほぼ平行となるように設け
られた側部隔壁から燃料ガスを発電室へ供給するので、
新鮮で減損の少ない燃料ガスを各SOFC素子の開口端
部に近い側にも常時供給できる。従って、発電室内にお
ける燃料濃度の勾配が小さくなり、均一化されるので、
SOFC素子の長さ方向における温度勾配も小さくでき
る。この結果、発電装置を長時間作動させてもSOFC
素子にクラック等が発生しにくくなり、また電気化学的
反応のムラも少なくできることから各SOFC素子にお
ける発電効率も従来より向上させることができる。
Effects of the Invention According to the present invention, among the partition walls forming the power generation chamber that accommodates the assembled battery and the current collector, the bottomed cylindrical SO
Since the fuel gas is supplied to the power generation chamber from the side partition wall provided almost parallel to the length direction of the FC element,
Fresh fuel gas with little depletion can be constantly supplied to the side near the open end of each SOFC element. Therefore, the gradient of fuel concentration in the power generation chamber becomes smaller and more uniform.
The temperature gradient in the length direction of the SOFC element can also be reduced. As a result, even if the generator is operated for a long time, the SOFC
Since cracks and the like are less likely to occur in the device and unevenness in electrochemical reactions can be reduced, the power generation efficiency of each SOFC device can also be improved compared to the conventional method.

【0031】しかも、高温の燃料ガスを側部隔壁の外側
から発電室へと供給するのであるから、側部隔壁に対し
て従来のように断熱機能を付与し、発電室内の熱が側部
隔壁から外へと逃げないようにする必要はない。従って
、側部隔壁を薄くしても発電室内を充分にSOFC素子
の動作温度に保持できるので、集合電池単位で見て側部
隔壁を薄くした分だけ発電装置を小型化できる。
Moreover, since high-temperature fuel gas is supplied from the outside of the side partition to the power generation chamber, the side partition is provided with a heat insulating function as in the past, and the heat inside the power generation chamber is transferred to the side partition. There is no need to avoid running away. Therefore, even if the side partitions are made thinner, the inside of the power generation chamber can be sufficiently maintained at the operating temperature of the SOFC element, so that the power generation device can be downsized by the amount that the side partitions are made thinner in terms of each battery assembly.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例に係る発電装置を概略的に示す
部分断面図である。
FIG. 1 is a partial sectional view schematically showing a power generation device according to an embodiment of the present invention.

【図2】図1の発電装置を概略的に示す平面図である。FIG. 2 is a plan view schematically showing the power generation device of FIG. 1;

【図3】図2に示す集合電池の一部を拡大した断面図で
ある。
FIG. 3 is an enlarged cross-sectional view of a part of the battery assembly shown in FIG. 2;

【図4】他の実施例に係る発電装置を概略的に示す部分
断面図である。
FIG. 4 is a partial cross-sectional view schematically showing a power generation device according to another embodiment.

【図5】従来の発電装置を示す断面図である。FIG. 5 is a sectional view showing a conventional power generation device.

【符号の説明】[Explanation of symbols]

1  缶体 2,22  燃料ガス室 3,23  有底部側隔壁 3a ,4a   燃料ガス供給口 4,24  側部隔壁 5  集電板 5a   貫通孔 6  有底円筒状のSOFC素子 7  開口端側隔壁 7a   SOFC素子の開口端部が挿通された貫通孔
9  帯状の金属フェルト 10  酸化ガス供給管 12  発電室 16  帯状のインターコネクター A,B,C,E,G  燃料ガスの流れD,F  酸化
ガスの流れ
1 Can bodies 2, 22 Fuel gas chambers 3, 23 Bottomed side partitions 3a, 4a Fuel gas supply ports 4, 24 Side partitions 5 Current collector plate 5a Through hole 6 Bottomed cylindrical SOFC element 7 Open end side partition 7a Through hole 9 into which the open end of the SOFC element is inserted Band-shaped metal felt 10 Oxidizing gas supply pipe 12 Power generation chamber 16 Band-shaped interconnectors A, B, C, E, G Fuel gas flow D, F Oxidizing gas flow

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  複数の有底筒状固体電解質型燃料電池
素子を少なくとも直列に接続して集合電池を構成し、こ
の集合電池の正極と負極とをそれぞれ集電体に接続し、
この集合電池と集電体とを発電室内に収容し、この発電
室を形成する隔壁のうち前記素子の開口端部側に設けら
れた開口端側隔壁に複数の貫通孔を形成してこれらの貫
通孔にそれぞれ前記素子の開口端部を挿通し、前記素子
の筒内空間へと酸化ガスを供給すると共に、前記発電室
を形成する隔壁のうち前記素子の長さ方向に対してほぼ
垂直となるように前記素子の有底部側に設けられた有底
部側隔壁から燃料ガスを前記発電室へと供給し、かつ前
記発電室を形成する隔壁のうち前記素子の長さ方向に対
してほぼ平行となるように設けられた側部隔壁から燃料
ガスを前記発電室へと供給するように構成された発電装
置。
1. A plurality of bottomed cylindrical solid electrolyte fuel cell elements are connected at least in series to constitute an assembled battery, and a positive electrode and a negative electrode of the assembled battery are respectively connected to a current collector,
The assembled battery and the current collector are housed in a power generation chamber, and a plurality of through holes are formed in the open end side partition wall that is provided on the open end side of the element among the partition walls forming the power generation chamber. The open ends of the elements are inserted into the respective through holes to supply oxidizing gas to the cylindrical space of the element. Fuel gas is supplied from the bottomed side partition wall provided on the bottomed side of the element to the power generation chamber so that the partition wall forming the power generation chamber is substantially parallel to the length direction of the element. A power generation device configured to supply fuel gas to the power generation chamber from a side partition wall provided so as to be.
JP3081221A 1991-03-20 1991-03-22 Power generator Expired - Lifetime JP2698482B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3081221A JP2698482B2 (en) 1991-03-22 1991-03-22 Power generator
US07/852,540 US5336569A (en) 1991-03-20 1992-03-17 Power generating equipment
DE69220400T DE69220400T2 (en) 1991-03-20 1992-03-19 Power generating device containing solid oxide fuel cells
EP92302379A EP0505184B1 (en) 1991-03-20 1992-03-19 Power generating equipment comprising solid oxide fuel cells
CA002063482A CA2063482C (en) 1991-03-20 1992-03-19 Power generating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3081221A JP2698482B2 (en) 1991-03-22 1991-03-22 Power generator

Publications (2)

Publication Number Publication Date
JPH04294068A true JPH04294068A (en) 1992-10-19
JP2698482B2 JP2698482B2 (en) 1998-01-19

Family

ID=13740428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3081221A Expired - Lifetime JP2698482B2 (en) 1991-03-20 1991-03-22 Power generator

Country Status (1)

Country Link
JP (1) JP2698482B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005123014A (en) * 2003-10-16 2005-05-12 Kyocera Corp Fuel cell assembly
JP2005235528A (en) * 2004-02-18 2005-09-02 Tokyo Gas Co Ltd Power generation device
JP2006252916A (en) * 2005-03-10 2006-09-21 Toto Ltd Solid oxide type fuel cell
JP2007200809A (en) * 2006-01-30 2007-08-09 Hitachi Ltd Fuel-cell power generation system and power generation method
JP2008277046A (en) * 2007-04-26 2008-11-13 Hitachi Ltd Cylindrical fuel battery
US7862939B2 (en) 2003-03-28 2011-01-04 Kyocera Corporation Fuel cell assembly and electricity generation unit used in same
JP2011018604A (en) * 2009-07-10 2011-01-27 Toto Ltd Fuel battery
JP2011029177A (en) * 2009-07-02 2011-02-10 Toto Ltd Fuel cell
WO2012111822A1 (en) * 2011-02-17 2012-08-23 Jx日鉱日石エネルギー株式会社 Fuel cell module
JP2013065415A (en) * 2011-09-15 2013-04-11 Toto Ltd Solid oxide fuel cell device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145454A (en) * 1984-12-19 1986-07-03 Matsushita Electric Ind Co Ltd Apparatus for measuring and inspecting ultrasonic probe
JPH034454A (en) * 1989-05-31 1991-01-10 Fujikura Ltd Solid electrolyte type fuel cell module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145454A (en) * 1984-12-19 1986-07-03 Matsushita Electric Ind Co Ltd Apparatus for measuring and inspecting ultrasonic probe
JPH034454A (en) * 1989-05-31 1991-01-10 Fujikura Ltd Solid electrolyte type fuel cell module

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862939B2 (en) 2003-03-28 2011-01-04 Kyocera Corporation Fuel cell assembly and electricity generation unit used in same
US8309263B2 (en) 2003-03-28 2012-11-13 Kyocera Corporation Fuel cell assembly and electricity generation unit used in same
JP2005123014A (en) * 2003-10-16 2005-05-12 Kyocera Corp Fuel cell assembly
JP4616549B2 (en) * 2003-10-16 2011-01-19 京セラ株式会社 Fuel cell assembly
JP2005235528A (en) * 2004-02-18 2005-09-02 Tokyo Gas Co Ltd Power generation device
JP2006252916A (en) * 2005-03-10 2006-09-21 Toto Ltd Solid oxide type fuel cell
JP4719580B2 (en) * 2006-01-30 2011-07-06 株式会社日立製作所 Fuel cell power generation system and power generation method
JP2007200809A (en) * 2006-01-30 2007-08-09 Hitachi Ltd Fuel-cell power generation system and power generation method
JP2008277046A (en) * 2007-04-26 2008-11-13 Hitachi Ltd Cylindrical fuel battery
JP2011029177A (en) * 2009-07-02 2011-02-10 Toto Ltd Fuel cell
JP4725866B2 (en) * 2009-07-10 2011-07-13 Toto株式会社 Fuel cell
JP2011018604A (en) * 2009-07-10 2011-01-27 Toto Ltd Fuel battery
US8580459B2 (en) 2009-07-10 2013-11-12 Toto Ltd. Fuel cell with flow channel member for supplying reactive gas
WO2012111822A1 (en) * 2011-02-17 2012-08-23 Jx日鉱日石エネルギー株式会社 Fuel cell module
JP5947226B2 (en) * 2011-02-17 2016-07-06 Jxエネルギー株式会社 Fuel cell module
JP2013065415A (en) * 2011-09-15 2013-04-11 Toto Ltd Solid oxide fuel cell device

Also Published As

Publication number Publication date
JP2698482B2 (en) 1998-01-19

Similar Documents

Publication Publication Date Title
EP0505186B1 (en) Solid electrolyte type fuel cell
JP3731650B2 (en) Fuel cell
US5185219A (en) Solid oxide fuel cells
US5336569A (en) Power generating equipment
JPH03241670A (en) Solid electrolyte type fuel cell
JP6483837B2 (en) Conductive member, cell stack, module, and module housing device
JP2698482B2 (en) Power generator
JP2790666B2 (en) Fuel cell generator
KR20140020629A (en) Current collector for solid oxide fuel cell and solid oxide fuel cell having the same
JP4475861B2 (en) Solid oxide fuel cell unit
JP2698481B2 (en) Power generator
JP2005085520A (en) Solid oxide fuel cell
JPH03238760A (en) Fuel cell of solid electrolyte type
JP2597730B2 (en) Method for producing bottomed porous support tube for solid oxide fuel cell
JPH03280359A (en) Fuel cell with solid electrolyte
JPH0758618B2 (en) Solid oxide fuel cell
JP2793275B2 (en) Fuel cell generator
CN112166516B (en) fuel cell system
JP3363985B2 (en) Substrate tube for internal reforming of solid oxide fuel cell
JP2634963B2 (en) Power generator
JP2005294152A (en) Solid oxide fuel cell
JPH06196196A (en) Solid electrolyte type fuel cell
JPH03102779A (en) Power generation device with fuel cell
JPH11185774A (en) Stack structure of unit cell for solid electrolyte fuel cell
JP5573813B2 (en) Power generator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970819