JPH04292867A - Power generating set - Google Patents

Power generating set

Info

Publication number
JPH04292867A
JPH04292867A JP3080635A JP8063591A JPH04292867A JP H04292867 A JPH04292867 A JP H04292867A JP 3080635 A JP3080635 A JP 3080635A JP 8063591 A JP8063591 A JP 8063591A JP H04292867 A JPH04292867 A JP H04292867A
Authority
JP
Japan
Prior art keywords
fuel gas
power generation
fuel
supply pipe
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3080635A
Other languages
Japanese (ja)
Other versions
JP2634963B2 (en
Inventor
Hidenobu Misawa
三澤 英延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP3080635A priority Critical patent/JP2634963B2/en
Priority to US07/852,540 priority patent/US5336569A/en
Priority to EP92302379A priority patent/EP0505184B1/en
Priority to DE69220400T priority patent/DE69220400T2/en
Priority to CA002063482A priority patent/CA2063482C/en
Publication of JPH04292867A publication Critical patent/JPH04292867A/en
Application granted granted Critical
Publication of JP2634963B2 publication Critical patent/JP2634963B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To reduce a gradient of fuel concentration and the like in view of the longitudinal direction of a bottomed cylindrical solid electrolytic fuel cell element and to decrease a temperature difference caused thereby, in the case where electric power is generated by this element installed in a generator room. CONSTITUTION:A bottomed cylindrical element 5 is installed in a generator room 13. The generator room 13 and an exhaust gas room 3 are partitioned by an opening-end-side partition wall 4. The generator room 13 and a fuel gas room 14 are partitioned by a bottomed-part-side partition wall 11. A fuel gas supply pipe 15 made up of porous material is insertedly passed into a supply pipe fixing hole 18 to be fixed. The fuel gas in the fuel gas room 14 flows into an internal side space 15b as shown by an arrow F, and then, flows out to the generating room 13 as shown by an arrow G.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、固体電解質型燃料電池
素子を用いた発電装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation device using a solid electrolyte fuel cell element.

【0002】0002

【従来の技術】最近、燃料電池が発電装置として注目さ
れている。これは、燃料が有する化学エネルギーを直接
電気エネルギーに変換できる装置で、カルノーサイクル
の制約を受けないため、本質的に高いエネルギー変換効
率を有し、燃料の多様化が可能で(ナフサ、天然ガス、
メタノール、石炭改質ガス、重油等)、低公害で、しか
も発電効率が設備規模によって影響されず、極めて有望
な技術である。特に固体電解質型燃料電池 (SOFC
) は、1000℃の高温で作動するため電極反応が極
めて活発で、高価な白金などの貴金属触媒を全く必要と
せず、分極が小さく、出力電圧も比較的高いため、エネ
ルギー変換効率が他の燃料電池にくらべ著しく高い。更
に、構造材は全て固体から構成されるため、安定且つ長
寿命である。
2. Description of the Related Art Recently, fuel cells have been attracting attention as power generation devices. This is a device that can directly convert the chemical energy of fuel into electrical energy, and because it is not subject to the restrictions of the Carnot cycle, it has inherently high energy conversion efficiency and can be used for a variety of fuels (naphtha, natural gas, etc.). ,
It is an extremely promising technology as it produces low pollution (methanol, reformed coal gas, heavy oil, etc.), and its power generation efficiency is not affected by the scale of the facility. In particular, solid oxide fuel cells (SOFC)
) operates at a high temperature of 1,000°C, resulting in extremely active electrode reactions, does not require any precious metal catalysts such as expensive platinum, has low polarization, and has a relatively high output voltage, so its energy conversion efficiency is higher than that of other fuels. Significantly more expensive than batteries. Furthermore, since all the structural materials are made of solid materials, they are stable and have a long life.

【0003】このうち、特に有底円筒状のSOFC素子
を用いた発電装置について図3に示す。図3においては
、有底円筒状の多孔質支持体6の表面に、空気電極7、
固体電解質8、燃料電極9を順次形成し、有底円筒状の
SOFC素子5を構成する。このSOFC素子5を発電
室13内の所定位置に固定する。但し、通常はSOFC
素子5を直列及び並列に多数接続して集合電池を構成す
るのであるが、図3においては便宜上SOFC素子5を
一個だけ図示する。発電室13の下方には燃料ガス室1
4を設け、燃料ガス室14と発電室13とを有底部側隔
壁11で区分する。燃料ガス室14の下側には断熱隔壁
12が設けられる。発電室13の上方には排ガス室3を
設け、排ガス室3と発電室13とを開口端側隔壁4で区
分する。開口端側隔壁4には貫通孔4aを形成し、この
貫通孔4aにSOFC素子5の開口端部を挿通する。 排ガス室3の上側に断熱隔壁1を設け、その貫通孔に酸
化ガス供給管2を挿通し、保持する。酸化ガス供給管2
の先端開口は、SOFC素子5の内側空間10に位置し
、SOFC素子5の有底部へと向って開口する。
[0003] Among these, a power generation device using a bottomed cylindrical SOFC element is shown in FIG. In FIG. 3, an air electrode 7,
A solid electrolyte 8 and a fuel electrode 9 are sequentially formed to constitute a bottomed cylindrical SOFC element 5. This SOFC element 5 is fixed at a predetermined position within the power generation chamber 13. However, usually SOFC
Although a large number of elements 5 are connected in series and parallel to form an assembled battery, only one SOFC element 5 is shown in FIG. 3 for convenience. A fuel gas chamber 1 is located below the power generation chamber 13.
4 is provided, and the fuel gas chamber 14 and the power generation chamber 13 are separated by the bottomed side partition wall 11. A heat insulating partition wall 12 is provided below the fuel gas chamber 14 . An exhaust gas chamber 3 is provided above the power generation chamber 13, and the exhaust gas chamber 3 and the power generation chamber 13 are separated by an open end side partition wall 4. A through hole 4a is formed in the partition wall 4 on the open end side, and the open end of the SOFC element 5 is inserted into the through hole 4a. A heat insulating partition wall 1 is provided above the exhaust gas chamber 3, and an oxidizing gas supply pipe 2 is inserted and held in the through hole thereof. Oxidizing gas supply pipe 2
The tip opening is located in the inner space 10 of the SOFC element 5 and opens toward the bottomed part of the SOFC element 5.

【0004】この発電装置の動作時に、矢印Aのように
、酸化ガスを酸化ガス室より酸化ガス供給管2へと供給
すると、酸化ガス供給口より流出した酸化ガスが有底部
で反転し、多孔質支持体6の内側空間10内を流れ、矢
印Bのように排ガス室3内に流出する。一方、底部の断
熱隔壁12の燃料ガス供給孔12a より矢印Cのよう
に燃料ガスを供給すると、燃料ガス室14内の圧力が高
くなるので、有底部側隔壁11の燃料ガス供給口11a
 を通して燃料ガスが矢印Dのように発電室13内へと
供給される。この燃料ガスが燃料電極9の表面に沿って
流れると、燃料電極9の表面で上記燃料ガスと固体電解
質内を拡散してきた酸素イオンとが反応し、その結果、
空気電極7と燃料電極9との間に電流が流れる。発電に
使用された燃料ガスは、開口端側隔壁4とSOFC素子
5の開口端部との間隙を通り抜け、矢印Eのように排ガ
ス室3内に流れる。このSOFC素子5は1000℃程
度の高温下で使用されるため、シール部なしで構成でき
る図3に示す形態が好ましい態様といえる。
During operation of this power generation device, when oxidizing gas is supplied from the oxidizing gas chamber to the oxidizing gas supply pipe 2 as shown by arrow A, the oxidizing gas flowing out from the oxidizing gas supply port is reversed at the bottomed part and the porous The gas flows through the inner space 10 of the air support 6 and flows out into the exhaust gas chamber 3 in the direction of arrow B. On the other hand, when fuel gas is supplied from the fuel gas supply hole 12a of the bottom heat insulating partition wall 12 as shown by arrow C, the pressure inside the fuel gas chamber 14 increases.
Fuel gas is supplied into the power generation chamber 13 as shown by arrow D through the power generation chamber 13 . When this fuel gas flows along the surface of the fuel electrode 9, the fuel gas and oxygen ions that have diffused in the solid electrolyte react on the surface of the fuel electrode 9, and as a result,
A current flows between the air electrode 7 and the fuel electrode 9. The fuel gas used for power generation passes through the gap between the open end side partition wall 4 and the open end of the SOFC element 5, and flows into the exhaust gas chamber 3 as shown by arrow E. Since this SOFC element 5 is used at a high temperature of about 1000° C., the form shown in FIG. 3, which can be constructed without a sealing part, is a preferable form.

【0005】[0005]

【発明が解決しようとする課題】SOFCの実用化にお
いてはコストの低減と電力密度の向上が必要である。こ
のためSOFC素子5を長尺化して一本当たりの発電出
力を上げることが要請されている。しかし、図3に示す
ような構成のSOFCにおいては、特に燃料ガス流の濃
度勾配に起因して著しい温度勾配が生ずるという問題が
あった。即ち、燃料ガス供給口11a の近辺では、ま
だ燃料含有量が多いため、この付近では電気化学的反応
に消費される燃料の量が多く、温度が上昇する。この温
度上昇によって、燃料電極9における酸素イオンと燃料
との電気化学的反応がますます活性化する。
[Problems to be Solved by the Invention] In order to put SOFC into practical use, it is necessary to reduce costs and improve power density. For this reason, it is required to increase the power generation output per SOFC element 5 by increasing its length. However, the SOFC having the configuration as shown in FIG. 3 has a problem in that a significant temperature gradient occurs, particularly due to the concentration gradient of the fuel gas flow. That is, since the fuel content is still large in the vicinity of the fuel gas supply port 11a, a large amount of fuel is consumed in the electrochemical reaction in this vicinity, and the temperature rises. This temperature increase further activates the electrochemical reaction between oxygen ions and fuel at the fuel electrode 9.

【0006】一方、燃料ガス供給口11a から離れる
につれ、燃料ガス中の燃料濃度が減少し、この結果電気
化学的反応に消費される燃料の量が減少する。このため
、燃料電極9の温度があまり上昇せず、従って電気化学
的反応が一層不活発となる。しかも、濃度が減少した燃
料ガス中には、電気化学的反応の結果としてかなりCO
2 や水蒸気等が含まれており、これらが燃料電極9の
表面に付着して反応を阻害するため、ますます反応が不
活発となる。このため、燃料ガス流の上流側と下流側と
では大きな温度勾配が生じ、長期間発電装置を作動させ
た場合にクラック発生の原因となりうるし、発電効率自
体にも悪影響がある。そして、この傾向は、SOFC素
子5が長くなるにつれて一層激しく、顕著になる。
On the other hand, as the distance from the fuel gas supply port 11a increases, the fuel concentration in the fuel gas decreases, and as a result, the amount of fuel consumed in the electrochemical reaction decreases. Therefore, the temperature of the fuel electrode 9 does not rise much, and therefore the electrochemical reaction becomes even more inactive. Furthermore, the reduced concentration of fuel gas contains a significant amount of CO as a result of electrochemical reactions.
2 and water vapor, etc., which adhere to the surface of the fuel electrode 9 and inhibit the reaction, making the reaction even more inactive. For this reason, a large temperature gradient occurs between the upstream and downstream sides of the fuel gas flow, which can cause cracks to occur when the power generation device is operated for a long period of time, and has a negative effect on the power generation efficiency itself. This tendency becomes more severe and noticeable as the SOFC element 5 becomes longer.

【0007】本発明の課題は、有底筒状のSOFC素子
を発電室内に設置して発電を行う発電装置において、発
電室内を流れる燃料ガス中の燃料濃度の勾配を小さくし
、これにより生ずる温度差を低減することであるる。
An object of the present invention is to reduce the gradient of fuel concentration in the fuel gas flowing inside the power generation chamber in a power generation device in which a bottomed cylindrical SOFC element is installed in the power generation chamber, and to reduce the temperature caused by this. The goal is to reduce the difference.

【0008】[0008]

【課題を解決するための手段】本発明は、有底筒状の固
体電解質型燃料電池素子が発電室内に設置され、前記素
子の開口端側に設けられた開口端側隔壁によって前記発
電室と排ガス室とが区分され、この開口端側隔壁に形成
された貫通孔に前記素子の開口端部が挿通され、前記素
子の有底部側に設けられた有底部側隔壁によって前記発
電室と燃料ガス室とが区分され、前記発電室に燃料ガス
供給管が突出しており、前記素子の内側空間に酸化ガス
を供給しかつ前記燃料ガス室から前記燃料ガス供給管の
内側空間を通して前記発電室へと燃料ガスを供給するよ
うに構成された発電装置に係るものである。
[Means for Solving the Problems] In the present invention, a bottomed cylindrical solid oxide fuel cell element is installed in a power generation chamber, and an open end side partition wall provided on an open end side of the element connects the power generation chamber to the power generation chamber. The open end of the element is inserted into a through hole formed in the partition wall on the open end side, and the partition wall on the bottom side provided on the bottom side of the element separates the power generation chamber from the fuel gas. A fuel gas supply pipe protrudes into the power generation chamber, and supplies oxidizing gas to the inner space of the element and connects the fuel gas chamber to the power generation chamber through the inner space of the fuel gas supply pipe. The present invention relates to a power generation device configured to supply fuel gas.

【0009】燃料ガスとは、水素、改質水素、一酸化炭
素等の燃料を含むガスをいう。「酸化ガス」とは、酸素
、過酸化水素等の酸化剤を含むガスをいう。
[0009] Fuel gas refers to gas containing fuel such as hydrogen, reformed hydrogen, and carbon monoxide. "Oxidizing gas" refers to a gas containing an oxidizing agent such as oxygen and hydrogen peroxide.

【0010】0010

【実施例】図1は、本発明の実施例に係る発電装置を示
す断面図である。図3における部材と同一機能部材には
同一符号を付し、その説明は省略することがある。また
、図1においては、有底円筒状のSOFC素子5を便宜
上一個だけ図示したが、むろん、こうした有底円筒状の
SOFC素子5を直列及び並列に接続して集合電池を構
成し、この集合電池を発電室13内に設置することがで
きる。
Embodiment FIG. 1 is a sectional view showing a power generation device according to an embodiment of the present invention. Components with the same functions as those in FIG. 3 are given the same reference numerals, and their explanations may be omitted. In addition, in FIG. 1, only one bottomed cylindrical SOFC element 5 is shown for convenience, but it goes without saying that such a bottomed cylindrical SOFC element 5 can be connected in series and parallel to form an assembled battery. A battery can be installed within the power generation room 13.

【0011】発電室13を形成する隔壁のうち、有底円
筒状のSOFC素子5の開口端側には開口端側隔壁4が
設けられ、この開口端側隔壁4にはSOFC素子5の位
置に対応して円形貫通孔4aが設けられ、円形貫通孔4
aにSOFC素子5の開口端部が挿通されている。SO
FC素子5の内側空間10には酸化ガス供給管2が挿入
される。発電室13を形成する隔壁のうち、SOFC素
子5の有底部側に設けられた有底部側隔壁11は、SO
FC素子5の長さ方向に対してほぼ垂直をなしている。 本実施例では、SOFC素子5の有底部が有底部側隔壁
11上に載置されている。開口端側隔壁4によって、発
電室13と排ガス室3とが区分され、有底部側隔壁11
によって、発電室13と燃料ガス室14とが区分されて
いる。
Among the partition walls forming the power generation chamber 13, an open end partition wall 4 is provided on the open end side of the bottomed cylindrical SOFC element 5. Correspondingly, a circular through hole 4a is provided, and a circular through hole 4a is provided.
The open end of the SOFC element 5 is inserted through a. S.O.
The oxidizing gas supply pipe 2 is inserted into the inner space 10 of the FC element 5 . Among the partition walls forming the power generation chamber 13, the bottom part side partition wall 11 provided on the bottom part side of the SOFC element 5 is
It is substantially perpendicular to the length direction of the FC element 5. In this embodiment, the bottomed portion of the SOFC element 5 is placed on the bottomed portion side partition wall 11 . The power generation chamber 13 and the exhaust gas chamber 3 are separated by the open end side partition wall 4, and the bottomed side partition wall 11
The power generation chamber 13 and the fuel gas chamber 14 are separated by.

【0012】有底部側隔壁11には所定位置に例えば円
形の供給管取り付け孔18が形成され、各供給管取り付
け孔18に燃料ガス供給管15が挿通され、固定されて
いる。本実施例では、SOFC素子5の長さ方向と、燃
料ガス供給管15の長さ方向とをほぼ一致させる。各燃
料ガス供給管15は、一端を封止した円筒形状をなして
おり、多孔質材料によって形成されている。各燃料ガス
供給管15の開口15a 側は、若干燃料ガス室14に
突出しており、開口15a が燃料ガス室14に面して
いる。また、各燃料ガス供給管15は発電室13に突出
している。
For example, circular supply pipe attachment holes 18 are formed at predetermined positions in the bottomed side partition wall 11, and a fuel gas supply pipe 15 is inserted and fixed into each supply pipe attachment hole 18. In this embodiment, the length direction of the SOFC element 5 and the length direction of the fuel gas supply pipe 15 are made to substantially match. Each fuel gas supply pipe 15 has a cylindrical shape with one end sealed, and is made of a porous material. The opening 15a side of each fuel gas supply pipe 15 slightly protrudes into the fuel gas chamber 14, and the opening 15a faces the fuel gas chamber 14. Further, each fuel gas supply pipe 15 projects into the power generation chamber 13.

【0013】この発電装置を動作させるときには、酸化
ガス供給管2の内側空間へと矢印Aのように酸化ガスを
供給する。この酸化ガスは、酸化ガス供給管2の先端に
ある開口から吹き出し、SOFC素子5の有底部に衝突
して流れの向きを変え、内側空間10内を図1において
上方へと流れ、矢印Bのように排ガス室3へと流入する
When operating this power generator, oxidizing gas is supplied to the inner space of the oxidizing gas supply pipe 2 as indicated by arrow A. This oxidizing gas blows out from the opening at the tip of the oxidizing gas supply pipe 2, collides with the bottomed part of the SOFC element 5, changes the flow direction, and flows upward in the inner space 10 in FIG. 1, as indicated by the arrow B. The gas flows into the exhaust gas chamber 3 like this.

【0014】また、燃料ガス供給口12a から矢印C
のように燃料ガスを燃料ガス室14へと供給する。これ
により燃料ガス室14内の圧力が上昇し、各開口15a
 から矢印Fのように燃料ガスが内側空間15b へと
流入する。そして、各燃料ガス供給管15が多孔質材料
からなっているので、燃料ガス供給管15の全面から矢
印Gに示すように燃料ガスが発電室13に流入する。発
電に充分利用され、減損した燃料ガスは、最終的に各S
OFC素子5と開口端側隔壁4との間隙を通り抜け、矢
印Eのように排ガス室3に流入し、減損した酸化ガスと
混合される。
Further, from the fuel gas supply port 12a to the arrow C
Fuel gas is supplied to the fuel gas chamber 14 as shown in FIG. As a result, the pressure inside the fuel gas chamber 14 increases, and each opening 15a
From there, fuel gas flows into the inner space 15b as indicated by arrow F. Since each fuel gas supply pipe 15 is made of a porous material, fuel gas flows into the power generation chamber 13 from the entire surface of the fuel gas supply pipe 15 as shown by arrow G. The depleted fuel gas, which has been fully utilized for power generation, is eventually transferred to each S.
It passes through the gap between the OFC element 5 and the partition wall 4 on the open end side, flows into the exhaust gas chamber 3 as shown by arrow E, and is mixed with the depleted oxidizing gas.

【0015】本実施例によれば、多孔質材料からなる燃
料ガス供給管15の表面から矢印Gに示すように燃料ガ
スを供給しているので、SOFC素子5の長さ方向にみ
て新鮮な燃料ガスが比較的均一に供給される。即ち、S
OFC素子5の開口端部に近い側にも、新鮮で減損のな
い燃料ガスを常時供給できる。従って、発電室13内に
おける燃料濃度の勾配が小さくなり、均一化されるので
、SOFC素子5の長さ方向における温度勾配も小さく
できる。この結果、発電装置を長時間作動させてもSO
FC素子5にクラック等が発生しにくくなり、また電気
化学的反応のムラも少なくできることからSOFC素子
5における発電効率も従来より向上させることができる
According to this embodiment, since the fuel gas is supplied from the surface of the fuel gas supply pipe 15 made of a porous material as shown by the arrow G, fresh fuel can be seen in the longitudinal direction of the SOFC element 5. Gas is supplied relatively uniformly. That is, S
Fresh, undepleted fuel gas can also be constantly supplied to the side near the open end of the OFC element 5. Therefore, the gradient of fuel concentration within the power generation chamber 13 is reduced and made uniform, so that the temperature gradient in the length direction of the SOFC element 5 can also be reduced. As a result, even if the generator is operated for a long time, the SO
Since cracks and the like are less likely to occur in the FC element 5 and unevenness in electrochemical reactions can be reduced, the power generation efficiency of the SOFC element 5 can also be improved compared to the conventional one.

【0016】燃料ガス供給管15は、高温の燃料ガスに
対して安定でなければならない。この点で、燃料ガス供
給管15を、耐還元金属粉末を焼結してなる多孔質金属
や、耐還元金属粉末とセラミックス粉末の混合物を焼結
してなる多孔質サーメットで形成すると好ましい。ここ
で、セラミックス粉末としては、アルミナやジルコニア
を主成分とするセラミックスの粉末を例示できる。耐還
元金属粉末としては、Ni−Cr , Ni−Fe−C
r,Ni−Fe−Cr−Al , Co−Ni−Cr 
, Fe−Cr , Fe−Cr−Al 等の合金の粉
末や、Ni , Co , Feの粉末を例示できる。
The fuel gas supply pipe 15 must be stable against high temperature fuel gas. In this respect, it is preferable to form the fuel gas supply pipe 15 with a porous metal formed by sintering reduction-resistant metal powder or a porous cermet formed by sintering a mixture of reduction-resistant metal powder and ceramic powder. Here, as the ceramic powder, a ceramic powder containing alumina or zirconia as a main component can be exemplified. As the reduction-resistant metal powder, Ni-Cr, Ni-Fe-C
r, Ni-Fe-Cr-Al, Co-Ni-Cr
Examples include powders of alloys such as , Fe-Cr, and Fe-Cr-Al, and powders of Ni, Co, and Fe.

【0017】燃料ガス供給管15の開気孔率としては、
10〜90%とすることが好ましく、30〜70%とす
ると更に好ましい。開気孔率が90%を超えると、燃料
ガス供給管15の強度が低下し、開気孔率が10%未満
であると、燃料ガスの透過量が少なくなる。燃料ガス供
給管15の開気孔率を全体に一様にしてもよいが、長さ
方向にみて開気孔率に一定の勾配又は段階的な勾配を設
け、燃料入口側の気孔率が大きく、上部に向かうに従っ
て気孔率が小さくなるようにし、素子の温度が均一にな
るようにすれば、更に好ましい。
The open porosity of the fuel gas supply pipe 15 is as follows:
It is preferably 10 to 90%, and more preferably 30 to 70%. If the open porosity exceeds 90%, the strength of the fuel gas supply pipe 15 will decrease, and if the open porosity is less than 10%, the amount of fuel gas permeation will decrease. Although the open porosity of the fuel gas supply pipe 15 may be made uniform throughout, the open porosity may have a constant gradient or a stepwise gradient in the length direction, so that the porosity on the fuel inlet side is large and the porosity is large on the fuel inlet side. It is more preferable that the porosity decreases as the temperature increases toward , so that the temperature of the element becomes uniform.

【0018】燃料ガス供給管15の開気孔率に長さ方向
にみて勾配を設けるには、以下の2つの方法を例示でき
る。 (1) 多孔質金属又は多孔質サーメットからなる燃料
ガス供給管15を焼成によって製造する際に、燃料ガス
供給管15の形状をした粉末成形体の一端部を保持し、
この粉末成形体の他端に均等におもりをつけて粉末成形
体を吊り下げる。これにより、粉末成形体の一端部に近
い側には比較的大きな荷重がかかって若干引き延ばされ
、開気孔率が大きくなる。また、粉末成形体の他端部に
近い側にはあまり荷重がかからないので、開気孔率が比
較的小さくなる。 (2) 多孔質金属又は多孔質サーメットからなる管状
の焼結体を作製する。次いで、この焼結体の開気孔中へ
と充填材を含浸させてある程度開気孔を充填し、次いで
焼結体を乾燥又は加熱して充填材を定着させる。この際
、管状の焼結体の各部分における充填材の含浸量を変え
ることで、この焼結体の開気孔率に勾配を設けることが
できる。
The following two methods can be used to create a gradient in the open porosity of the fuel gas supply pipe 15 in the longitudinal direction. (1) When manufacturing the fuel gas supply pipe 15 made of porous metal or porous cermet by firing, hold one end of the powder compact in the shape of the fuel gas supply pipe 15,
A weight is evenly attached to the other end of the powder compact and the powder compact is suspended. As a result, a relatively large load is applied to the side near one end of the powder compact, causing it to be slightly stretched, increasing its open porosity. Further, since not much load is applied to the side near the other end of the powder compact, the open porosity becomes relatively small. (2) A tubular sintered body made of porous metal or porous cermet is produced. Next, a filler is impregnated into the open pores of this sintered body to fill the open pores to some extent, and then the sintered body is dried or heated to fix the filler. At this time, by changing the amount of filler impregnated in each part of the tubular sintered body, it is possible to provide a gradient in the open porosity of this sintered body.

【0019】また、燃料ガス供給管15の側壁面からの
燃料ガスの透過量を制御するには、以下の方法がある。 即ち、燃料ガス供給管15を二重構造にする。具体的に
は、まず多孔質金属からなる管状の焼結体を作製する。 この焼結体においては開気孔率を一定とする。次いで、
この焼結体の側周面にスラリーを帯状に複数列互いに間
隔を置いて塗布し、焼結する。この際、帯状に塗布した
スラリーの幅を大きくしたり,スラリーとスラリーとの
間隔を小さくすれば、燃料ガスの透過が抑えられる。逆
に、帯状のスラリーの幅を小さくしたり、スラリー間の
間隔を大きくすれば、燃料ガスの透過が促進される。更
に、スラリー中に含有される耐還元金属粉末、セラミッ
クス粉末の粒径を小さくすれば燃料ガスが透過しにくく
なり、これらの粒径を大きくすれば燃料ガスが透過し易
くなる。この場合、管状の焼結体は内側空間15b 側
に向けてバックアップ材として用い、スラリーを塗布し
て焼結した側を発電室へ向けることが好ましい。
Furthermore, the following method can be used to control the amount of fuel gas permeating from the side wall surface of the fuel gas supply pipe 15. That is, the fuel gas supply pipe 15 has a double structure. Specifically, first, a tubular sintered body made of porous metal is produced. This sintered body has a constant open porosity. Then,
A plurality of strips of slurry are applied to the side peripheral surface of the sintered body at intervals from each other, and the slurry is sintered. At this time, the permeation of fuel gas can be suppressed by increasing the width of the slurry applied in the form of a band or by decreasing the distance between the slurries. Conversely, by reducing the width of the slurry strips or increasing the spacing between the slurry strips, the permeation of fuel gas is promoted. Further, if the particle size of the reduction-resistant metal powder or ceramic powder contained in the slurry is made smaller, it becomes difficult for fuel gas to pass through the slurry, and if these particle sizes are made larger, the fuel gas becomes easier to pass through. In this case, it is preferable that the tubular sintered body is used as a backup material toward the inner space 15b, and the side on which the slurry has been applied and sintered is directed toward the power generation chamber.

【0020】空気電極7はドーピングされたか、又はド
ーピングされていないLaMnO3 , CaMnO3
 , LaNiO3 , LaCoO3 , LaCr
O3 等の導電性ペロブスカイト形酸化物で製造でき、
ストロンチュウムをドーピングしたLaMnO3が好ま
しい。固体電解質8は、イットリア安定化ジルコニア、
イットリア部分安定化ジルコニア等で製造するのが好ま
しい。燃料電極9は、一般にはニッケル−ジルコニアサ
ーメット又はコバルト−ジルコニアサーメットが好まし
い。
The air electrode 7 is made of doped or undoped LaMnO3, CaMnO3.
, LaNiO3, LaCoO3, LaCr
It can be made from conductive perovskite oxides such as O3,
Strontium-doped LaMnO3 is preferred. The solid electrolyte 8 is yttria-stabilized zirconia,
Preferably, it is made of yttria partially stabilized zirconia or the like. Fuel electrode 9 is generally preferably nickel-zirconia cermet or cobalt-zirconia cermet.

【0021】図2は本発明の他の実施例に係る発電装置
を示す断面図である。図1に示した部材と同一機能部材
には同一符号を付け、その説明は省略することがある。 本実施例においては、燃料ガス供給管16を緻密質材料
で形成し、かつ燃料ガス供給管16の側周壁に複数個の
燃料ガス供給口17を形成した。そして、発電装置の動
作時に、燃料ガス室14内へと矢印Cのように燃料ガス
を供給すると、開口16aから内側空間16b へと矢
印Fのように燃料ガスが流入する。そして、一旦内側空
間16b に流入した燃料ガスは、内側空間16b に
おける圧力分布及び燃料ガス供給口17の大きさや位置
に応じた流速で、矢印Gのように各燃料ガス供給口17
から発電室13内に流出する。
FIG. 2 is a sectional view showing a power generation device according to another embodiment of the present invention. Components with the same functions as those shown in FIG. 1 are given the same reference numerals, and their explanations may be omitted. In this embodiment, the fuel gas supply pipe 16 is made of a dense material, and a plurality of fuel gas supply ports 17 are formed in the side peripheral wall of the fuel gas supply pipe 16. When the power generating apparatus is operated, when fuel gas is supplied into the fuel gas chamber 14 as shown by arrow C, the fuel gas flows from the opening 16a into the inner space 16b as shown by arrow F. Once the fuel gas has flowed into the inner space 16b, the fuel gas flows through each fuel gas supply port 17 as shown by arrow G at a flow rate depending on the pressure distribution in the inner space 16b and the size and position of the fuel gas supply port 17.
It flows out into the power generation chamber 13 from there.

【0022】本実施例においても、燃料ガス供給管16
の側壁面から燃料ガス供給口17を通して燃料ガスを供
給しているので、図1の実施例と同様の効果を奏しうる
。ただ、SOFC素子5の長さ方向にみて燃料濃度をよ
り一層安定に均一にするには、燃料ガス供給口17の位
置と大きさとを適切に制御しなくてはならない。また、
図1の実施例と図2の実施例とを比較すると、図2の例
でも大きな効果が得られるが、図1の多孔質ガス供給管
の場合は更に大きな効果が得られる。また図1に示す多
孔質ガス供給管は、複数の孔を設けた図2のガス供給管
に比べて、孔開け加工等が必要ないため、製作コストが
一層低い。
Also in this embodiment, the fuel gas supply pipe 16
Since the fuel gas is supplied from the side wall surface of the fuel gas through the fuel gas supply port 17, the same effect as the embodiment shown in FIG. 1 can be achieved. However, in order to make the fuel concentration more stable and uniform in the length direction of the SOFC element 5, the position and size of the fuel gas supply port 17 must be appropriately controlled. Also,
Comparing the embodiment shown in FIG. 1 and the embodiment shown in FIG. 2, the example shown in FIG. 2 also provides a great effect, but the porous gas supply pipe shown in FIG. 1 provides an even greater effect. Further, the porous gas supply pipe shown in FIG. 1 requires no drilling or the like, and therefore has a lower manufacturing cost than the gas supply pipe shown in FIG. 2 which has a plurality of holes.

【0023】燃料ガス供給管16は、SOFC素子5の
動作時に使用する燃料ガスに対して耐性があり、かつS
OFC素子の動作温度で安定な耐熱性の金属又はセラミ
ックスで形成する。こうした耐熱性の金属としては、例
えば、Ni−Cr , Ni−Fe−Cr , Ni−
Fe−Cr−Al, Co−Ni−Cr , Fe−C
r , Fe−Cr−Al  等の各組成の合金がある
The fuel gas supply pipe 16 is resistant to the fuel gas used during the operation of the SOFC element 5 and is
It is made of a heat-resistant metal or ceramic that is stable at the operating temperature of the OFC element. Examples of such heat-resistant metals include Ni-Cr, Ni-Fe-Cr, Ni-
Fe-Cr-Al, Co-Ni-Cr, Fe-C
There are alloys with various compositions such as r, Fe-Cr-Al, etc.

【0024】上記の各実施例においては、SOFC素子
5を上下方向に保持した。即ち、SOFC素子5の長さ
方向は鉛直方向であった。しかし、SOFC素子5を水
平方向に保持し、SOFC素子5の長さ方向を水平方向
に一致させて発電装置を作製することもできる。また、
燃料ガス供給管15,16の外側輪郭及び内側輪郭の幅
方向の断面形状は、円形の他、正方形、ひし形、長方形
、六角形等としてもよい。SOFC素子5の有底部を除
く外側輪郭及び内側輪郭の幅方向の断面形状も、円形の
他、正方形、ひし形、長方形、六角形等としてもよい。 また、SOFC素子5を直列及び並列に接続してなる集
合電池は、通常断熱隔壁の内側に収容される。この断熱
隔壁は、開口端側隔壁4及び有底部側隔壁11と直交し
、両者と共に発電室13を形成しているものである。図
1,図2に示した燃料ガス供給管15, 16をこの断
熱隔壁に取りつけ、断熱隔壁から発電室13内へと向っ
て突出させてもよい。また、図1,図2において、有底
部側隔壁11に更に燃料ガス供給口を設けてもよい。
In each of the above embodiments, the SOFC element 5 was held in the vertical direction. That is, the length direction of the SOFC element 5 was the vertical direction. However, it is also possible to manufacture a power generation device by holding the SOFC element 5 in the horizontal direction and making the length direction of the SOFC element 5 coincide with the horizontal direction. Also,
The cross-sectional shapes in the width direction of the outer and inner contours of the fuel gas supply pipes 15 and 16 may be circular, square, diamond, rectangular, hexagonal, or the like. The cross-sectional shape in the width direction of the outer contour and inner contour of the SOFC element 5 excluding the bottomed portion may also be a square, a diamond, a rectangle, a hexagon, etc. in addition to a circle. Further, an assembled battery formed by connecting SOFC elements 5 in series and parallel is usually housed inside a heat insulating partition. This heat insulating partition wall is perpendicular to the open end side partition wall 4 and the bottomed side partition wall 11, and together forms the power generation chamber 13. The fuel gas supply pipes 15 and 16 shown in FIGS. 1 and 2 may be attached to this heat-insulating partition and protrude from the heat-insulating partition into the power generation chamber 13. Further, in FIGS. 1 and 2, a fuel gas supply port may be further provided in the bottomed portion side partition wall 11.

【0025】更に、図1、図2及び図3に示した各発電
装置を用い、SOFC素子5の長さ方向における温度勾
配を測定した。但し、測定点としては、図2に示したよ
うな測定点a,b,c,d,e,f,g,hを選択し、
各測定点の間隔はそれぞれ60mmとした。図1、図3
の発電装置においても同様である。燃料ガスとしては、
水素96%、水蒸気4%のものを用い、酸化ガスとして
は大気を用いた。SOFC素子の温度を測定するには、
熱電対を用いた。また、図1、図2及び図3に示すSO
FC素子の一本当りの出力も比較した。結果を下記表1
に示す。図3の発電装置
Furthermore, the temperature gradient in the length direction of the SOFC element 5 was measured using each of the power generating apparatuses shown in FIGS. 1, 2, and 3. However, as measurement points, select measurement points a, b, c, d, e, f, g, h as shown in FIG.
The interval between each measurement point was 60 mm. Figure 1, Figure 3
The same applies to the power generation device. As fuel gas,
A gas containing 96% hydrogen and 4% water vapor was used, and air was used as the oxidizing gas. To measure the temperature of the SOFC element,
A thermocouple was used. In addition, the SO shown in FIGS. 1, 2, and 3
The output of each FC element was also compared. The results are shown in Table 1 below.
Shown below. Figure 3 power generation device

【0026】[0026]

【表1】[Table 1]

【0027】以上の結果から解るように、図1、図2の
発電装置によれば、測定点a〜hの間の温度勾配を小さ
くでき、これにより全体の出力を大きくできる。
As can be seen from the above results, according to the power generation apparatus shown in FIGS. 1 and 2, the temperature gradient between the measurement points a to h can be reduced, and thereby the overall output can be increased.

【0028】[0028]

【発明の効果】本発明によれば、発電室に燃料ガス供給
管が突出しており、燃料ガス室から燃料ガス供給管の内
側空間を通して発電室へと燃料ガスを供給するように構
成したので、発電室に突出した燃料ガス供給管から、S
OFC素子の長さ方向にみて新鮮な燃料ガスが比較的均
一に供給される。即ち、SOFC素子の開口端部に近い
側にも、新鮮で減損のない燃料ガスを常時供給できる。 従って、発電室内における燃料濃度の勾配が小さくなり
、均一化されるので、SOFC素子の長さ方向における
温度勾配も小さくできる。この結果、発電装置を長時間
作動させてもSOFC素子にクラック等が発生しにくく
なり、また電気化学的反応のムラも少なくできることか
らSOFC素子における発電効率も従来より向上させる
ことができる。
According to the present invention, the fuel gas supply pipe protrudes into the power generation chamber, and the fuel gas is supplied from the fuel gas chamber to the power generation chamber through the inner space of the fuel gas supply pipe. From the fuel gas supply pipe protruding into the power generation room,
Fresh fuel gas is supplied relatively uniformly along the length of the OFC element. That is, fresh and undepleted fuel gas can be constantly supplied even to the side near the open end of the SOFC element. Therefore, the gradient of fuel concentration within the power generation chamber is reduced and made uniform, so that the temperature gradient in the length direction of the SOFC element can also be reduced. As a result, cracks are less likely to occur in the SOFC element even if the power generation device is operated for a long time, and unevenness in electrochemical reactions can also be reduced, making it possible to improve the power generation efficiency of the SOFC element than before.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例に係る発電装置を示す要部断面
図である。
FIG. 1 is a sectional view of a main part of a power generation device according to an embodiment of the present invention.

【図2】他の実施例に係る発電装置を示す要部断面図で
ある。
FIG. 2 is a sectional view of a main part showing a power generation device according to another embodiment.

【図3】従来例に係る発電装置を示す要部断面図である
FIG. 3 is a sectional view of a main part of a power generation device according to a conventional example.

【符号の説明】[Explanation of symbols]

2  酸化ガス供給管 3  排ガス室 4  開口端側隔壁 4a  開口端側隔壁に形成された貫通孔5  SOF
C素子 10  SOFC素子の内側空間 11  有底部側隔壁 13  発電室 14  燃料ガス室 15, 16  燃料ガス供給管 15b, 16b  燃料ガス供給管の内側空間17 
 燃料ガス供給口 A, B  酸化ガスの流れ
2 Oxidizing gas supply pipe 3 Exhaust gas chamber 4 Open end side partition wall 4a Through hole 5 formed in the open end side partition wall SOF
C element 10 Inner space 11 of SOFC element Bottomed side partition 13 Power generation chamber 14 Fuel gas chambers 15, 16 Fuel gas supply pipes 15b, 16b Inner space 17 of fuel gas supply pipe
Fuel gas supply ports A, B Oxidizing gas flow

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  有底筒状の固体電解質型燃料電池素子
が発電室内に設置され、前記素子の開口端側に設けられ
た開口端側隔壁によって前記発電室と排ガス室とが区分
され、この開口端側隔壁に形成された貫通孔に前記素子
の開口端部が挿通され、前記素子の有底部側に設けられ
た有底部側隔壁によって前記発電室と燃料ガス室とが区
分され、前記発電室に燃料ガス供給管が突出しており、
前記素子の内側空間に酸化ガスを供給しかつ前記燃料ガ
ス室から前記燃料ガス供給管の内側空間を通して前記発
電室へと燃料ガスを供給するように構成された発電装置
Claim 1: A cylindrical solid oxide fuel cell element with a bottom is installed in a power generation chamber, and the power generation chamber and the exhaust gas chamber are separated by an open end partition wall provided on the open end side of the element. The open end of the element is inserted into a through hole formed in the open end side partition wall, and the power generation chamber and the fuel gas chamber are separated by the bottom side partition wall provided on the bottom side of the element. A fuel gas supply pipe protrudes into the chamber,
A power generation device configured to supply oxidizing gas to an inner space of the element and to supply fuel gas from the fuel gas chamber to the power generation chamber through the inner space of the fuel gas supply pipe.
JP3080635A 1991-03-20 1991-03-20 Power generator Expired - Lifetime JP2634963B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3080635A JP2634963B2 (en) 1991-03-20 1991-03-20 Power generator
US07/852,540 US5336569A (en) 1991-03-20 1992-03-17 Power generating equipment
EP92302379A EP0505184B1 (en) 1991-03-20 1992-03-19 Power generating equipment comprising solid oxide fuel cells
DE69220400T DE69220400T2 (en) 1991-03-20 1992-03-19 Power generating device containing solid oxide fuel cells
CA002063482A CA2063482C (en) 1991-03-20 1992-03-19 Power generating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3080635A JP2634963B2 (en) 1991-03-20 1991-03-20 Power generator

Publications (2)

Publication Number Publication Date
JPH04292867A true JPH04292867A (en) 1992-10-16
JP2634963B2 JP2634963B2 (en) 1997-07-30

Family

ID=13723833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3080635A Expired - Lifetime JP2634963B2 (en) 1991-03-20 1991-03-20 Power generator

Country Status (1)

Country Link
JP (1) JP2634963B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145454A (en) * 1984-12-19 1986-07-03 Matsushita Electric Ind Co Ltd Apparatus for measuring and inspecting ultrasonic probe
JPH034454A (en) * 1989-05-31 1991-01-10 Fujikura Ltd Solid electrolyte type fuel cell module

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145454A (en) * 1984-12-19 1986-07-03 Matsushita Electric Ind Co Ltd Apparatus for measuring and inspecting ultrasonic probe
JPH034454A (en) * 1989-05-31 1991-01-10 Fujikura Ltd Solid electrolyte type fuel cell module

Also Published As

Publication number Publication date
JP2634963B2 (en) 1997-07-30

Similar Documents

Publication Publication Date Title
JP3731650B2 (en) Fuel cell
US5336569A (en) Power generating equipment
JP5215979B2 (en) Structure of solid oxide fuel cell
WO2003099710A1 (en) Direct hydrocarbon reforming in protonic ceramic fuel cells by electrolyte steam permeation
JPH11162492A (en) Start/stop method for solid electrolyte fuel cell
JP2018087501A (en) Control device of hybrid power system, hybrid power system, control method of hybrid power system, and control program of hybrid power system
US9130219B1 (en) Method of making redox materials for solid oxide redox flow battery
JP2007523441A (en) Hydrogen diffusion electrode for protic ceramic fuel cells
JP2698482B2 (en) Power generator
US8361671B2 (en) Solid electrolyte fuel-cell device
US7470480B2 (en) Solid electrolyte fuel-cell device
JP2018088324A (en) Control device for hybrid power generation system, hybrid power generation system, control method for hybrid power generation system and control program for hybrid power generation system
US20070026285A1 (en) Proton conducting solid oxide electrolytes, electrochemical cells utilizing the proton conducting materials and methods of making the same
KR20220034198A (en) Fuel cell system and its control method
JPH03280359A (en) Fuel cell with solid electrolyte
JP6239229B2 (en) Fuel cell system and fuel cell operating method
JPH04292866A (en) Generating set
JP2597730B2 (en) Method for producing bottomed porous support tube for solid oxide fuel cell
JPH04292867A (en) Power generating set
JP2008251277A (en) Single chamber type solid oxide fuel cell system
JP2007335314A (en) Single room type solid oxide fuel cell, single room type solid oxide fuel cell system, and operation method of this single room type solid oxide fuel cell
JPH03238760A (en) Fuel cell of solid electrolyte type
JP3929136B2 (en) Electrochemical cell and electrochemical device
JPH0758618B2 (en) Solid oxide fuel cell
JP2770541B2 (en) Solid electrolyte fuel cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

EXPY Cancellation because of completion of term