JPH04292856A - Manufacture of sintered type separator for storage battery - Google Patents

Manufacture of sintered type separator for storage battery

Info

Publication number
JPH04292856A
JPH04292856A JP3130848A JP13084891A JPH04292856A JP H04292856 A JPH04292856 A JP H04292856A JP 3130848 A JP3130848 A JP 3130848A JP 13084891 A JP13084891 A JP 13084891A JP H04292856 A JPH04292856 A JP H04292856A
Authority
JP
Japan
Prior art keywords
dispersion medium
sintered
resin powder
sheet
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3130848A
Other languages
Japanese (ja)
Inventor
Ryuji Masuda
竜司 増田
Manabu Nakayama
学 中山
Hideo Endo
秀夫 遠藤
Akio Tanaka
昭雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Muki Co Ltd
Original Assignee
Nippon Muki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Muki Co Ltd filed Critical Nippon Muki Co Ltd
Priority to JP3130848A priority Critical patent/JPH04292856A/en
Publication of JPH04292856A publication Critical patent/JPH04292856A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To obtain a sintered type separator having the capability of preventing substantial dispersion in hole diameter and active material penetration, and increasing battery service life. CONSTITUTION:Thermoplastic resin powder is mixed with an organic dispersion medium, thereby preparing a dispersion product. This product is molded into a sheet form, and the obtained wet molded sheet is gradually heated for vaporizing the concerned organic dispersion medium, thereby obtaining a dry molded sheet. Finally, the concerned resin powder is subjected to sintering treatment.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、蓄電池用焼結式セパレ
ータの製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a sintered separator for storage batteries.

【0002】0002

【従来の技術】従来、蓄電池用焼結式セパレータは、一
般に、ポリ塩化ビニル樹脂粉末をステンレス板上に適当
な厚さに展開し、これを焼結することにより製造してい
る。
2. Description of the Related Art Conventionally, sintered separators for storage batteries have generally been manufactured by spreading polyvinyl chloride resin powder on a stainless steel plate to an appropriate thickness and sintering the spread.

【0003】0003

【発明が解決しようとする課題】上記の焼結式セパレー
タの製造法では、樹脂粉末を均一な厚さに展開すること
が難しく、又該粉末は、その展開されたまゝの状態で焼
結されるので、得られる焼結セパレータは厚さが不均一
となり勝ちで、而も孔径に大きいバラツキを生じて機械
的特性の劣化をもたらし、又、特に厚さ0.5mm以下
の肉薄の蓄電池用セパレータを製造する場合は、特に上
記の機械的特性の不均一性による引張強度などの劣化が
著しくなり、又、30μm以上の大きい孔径が散在する
と、蓄電池極板から遊離した微細な活物質粒子が透過し
易くなり、そのため、蓄電池寿命の短縮をもたらすなど
の問題がある。
[Problems to be Solved by the Invention] In the above method for producing a sintered separator, it is difficult to spread the resin powder to a uniform thickness, and the powder is not sintered in the spread state. Therefore, the thickness of the obtained sintered separator tends to be non-uniform, and large variations in pore diameter occur, resulting in deterioration of mechanical properties. When manufacturing batteries, the deterioration of tensile strength etc. is particularly significant due to the non-uniformity of the mechanical properties mentioned above, and if large pores with a diameter of 30 μm or more are scattered, fine active material particles liberated from the battery electrode plates may pass through. This causes problems such as shortening the life of the storage battery.

【0004】そこで、かゝる問題を解消するべく、本発
明者は、該樹脂粉末に有機系分散媒を添加し、その分散
物を型に流し込んで均一な厚さにシート状に成形し、次
で該有機系分散媒の沸点以上で且つ該樹脂粉末の焼結温
度で加熱して、一挙に焼結式セパレータを製造すること
を試みた。しかし乍ら、得られた焼結式セパレータは、
クラックや歪みを生じ、均一なシートが得られなかった
。又その孔径に大きなバラツキを生じ、又、特に有機系
分散媒の沸騰跡と見られる表面に直線的に連続する長手
の孔が生じ、その活物質の通過が更に容易となり、電池
寿命の低下をもたらした。そこで、更に上記の問題を解
決するべく鋭意試験、研究を行った結果、上記の問題を
解消することができた。
Therefore, in order to solve this problem, the present inventor added an organic dispersion medium to the resin powder, poured the dispersion into a mold, and formed it into a sheet with a uniform thickness. Next, an attempt was made to manufacture a sintered separator all at once by heating above the boiling point of the organic dispersion medium and at the sintering temperature of the resin powder. However, the obtained sintered separator was
Cracks and distortions occurred, and a uniform sheet could not be obtained. In addition, large variations in pore size occur, and long, linear pores are formed on the surface, which appear to be traces of boiling of the organic dispersion medium, making it easier for the active material to pass through, resulting in a reduction in battery life. Brought. Therefore, as a result of intensive testing and research to further solve the above problem, we were able to solve the above problem.

【0005】[0005]

【課題を解決するための手段】本発明は、上記のように
、従来の焼結式セパレータの製造法による不都合を解消
し、大きなバラツキがなく、厚さ0.5mm以下でも最
大孔径約20μm以下に調整された優れた焼結式セパレ
ータの製造法を提供したもので、その手段は、熱可塑性
樹脂粉末を、有機系分散媒と共に混合して分散物を調製
し、該分散物をシート状に成形し、次で、得られた湿潤
成形シートを緩徐に加熱して該有機系分散媒を蒸発させ
て該成形シート状を乾燥せしめた後、該乾燥成形シート
の焼結処理することを特徴とする。
[Means for Solving the Problems] As described above, the present invention eliminates the disadvantages of the conventional sintered separator manufacturing method, eliminates large variations, and has a maximum pore diameter of approximately 20 μm or less even when the thickness is 0.5 mm or less. The present invention provides a method for manufacturing an excellent sintered separator that is adjusted to the desired temperature.The method involves mixing thermoplastic resin powder with an organic dispersion medium to prepare a dispersion, and forming the dispersion into a sheet. The wet molded sheet obtained is then slowly heated to evaporate the organic dispersion medium to dry the molded sheet, and then the dry molded sheet is sintered. do.

【0006】[0006]

【作用】該樹脂粉末の分散物の成形シートを該有機系分
散媒を緩徐に加熱蒸発させることにより、その蒸発に伴
って該樹脂粒子間に空隙が生ずるので、該樹脂粒子が該
空隙を埋めるべく互いに接近し、遂には最密又は擬最密
充填構造をとる。従って、孔径に大きなバラツキのない
成形全体に亘り均一な微孔をもった乾燥成形シートが得
られる。次で該乾燥成形シートを、該有機系分散媒の沸
点より高い温度で加熱して該樹脂粉末に付着している有
機系溶媒微粒子は完全に蒸発すると共に該樹脂粉末の均
一な焼結が行われて、有機系分散媒の残留しない而も大
きなバラツキのない、即ち、最大孔径と平均孔径との間
に殆ど差がない略均一な孔径をもつ本発明の最密充填構
造の焼結セパレータが得られる。
[Action] By slowly heating and evaporating the organic dispersion medium on a molded sheet of the dispersion of the resin powder, voids are created between the resin particles as the organic dispersion medium evaporates, and the resin particles fill the voids. They approach each other as much as possible, and eventually assume a close-packed or quasi-close-packed structure. Therefore, a dry molded sheet can be obtained that has uniform micropores throughout the molding without large variations in pore diameter. Next, the dry molded sheet is heated at a temperature higher than the boiling point of the organic dispersion medium to completely evaporate the organic solvent fine particles adhering to the resin powder and uniformly sinter the resin powder. Therefore, the sintered separator of the present invention having a close-packed structure has no residual organic dispersion medium and has substantially uniform pore diameters without large variations, that is, with almost no difference between the maximum pore diameter and the average pore diameter. can get.

【0007】この場合、該樹脂粉末としては、重量平均
分子量3×105以上のポリエチレン、ポリプロピレン
、ポリブデンなどのポリオレフィン系樹脂粉末を使用す
れば、耐酸化、耐熱性の焼結式セパレータが得られ、そ
の平均粒径を60〜30μmの範囲のものを使用すると
きは、最大孔径約30μm以下の略均一な微孔を有する
焼結式セパレータが得られる。
In this case, if a polyolefin resin powder such as polyethylene, polypropylene, or polybutene having a weight average molecular weight of 3×10 5 or more is used as the resin powder, an oxidation-resistant and heat-resistant sintered separator can be obtained. When using particles with an average particle diameter in the range of 60 to 30 μm, a sintered separator having substantially uniform micropores with a maximum pore diameter of about 30 μm or less can be obtained.

【0008】又、該樹脂粉末と該有機系分散媒の配合比
は、重量で1対1〜2の範囲の割合で混合して分散物を
つくり、これを型ヘ流し込み所定のシート状に成形する
ことが円滑且つ容易に行われる。
[0008] Also, the resin powder and the organic dispersion medium are mixed at a ratio of 1:1 to 2 by weight to form a dispersion, which is poured into a mold and formed into a predetermined sheet shape. This can be done smoothly and easily.

【0009】更に、該有機系分散媒をその沸点以下で加
熱して蒸発させた後、その乾燥成形シートをその沸点以
上の温度の温度で焼結させることにより、上記した作用
が良好に行われる。
[0009] Furthermore, the above-mentioned effects can be effectively achieved by heating the organic dispersion medium at a temperature below its boiling point to evaporate it, and then sintering the dry formed sheet at a temperature above its boiling point. .

【0010】0010

【実施例】次に、本発明の実施例につき詳述する。原料
としては、熱可塑性樹脂粉末と有機系分散媒とを用意す
る。該熱可塑性樹脂粉末としては、塩化ビニル樹脂粉末
や化学的に安定で且つ高温耐熱性を有するポリオレフィ
ン系樹脂から撰んだポリエチレン、ポリプロピレン、ポ
リブデン等が好ましく、又、特に就中、重量平均分子量
1×105以上超高分子量のポリオレフィン系樹脂粉末
が好ましい。又、その樹脂粉末の平均粒径は30〜60
μmのものが一般に使用される。これを使用し、本法に
より製造した焼結式セパレータは、最大孔径15〜30
μm、平均孔径は最大孔径より僅か2〜3μm小さい1
3〜27μm程度のものができ、全体として孔径に殆ど
バラツキがなく、而も活物質が透過阻止される。
EXAMPLES Next, examples of the present invention will be described in detail. As raw materials, thermoplastic resin powder and an organic dispersion medium are prepared. The thermoplastic resin powder is preferably vinyl chloride resin powder or polyethylene, polypropylene, polybutene, etc. selected from polyolefin resins that are chemically stable and heat resistant at high temperatures, and particularly those having a weight average molecular weight of 1 Polyolefin resin powder having an ultra-high molecular weight of ×105 or more is preferable. In addition, the average particle size of the resin powder is 30 to 60
μm ones are generally used. The sintered separator manufactured using this method using this method has a maximum pore diameter of 15 to 30
μm, the average pore diameter is only 2-3 μm smaller than the maximum pore diameter1
A pore size of about 3 to 27 μm can be obtained, and there is almost no variation in the pore diameter as a whole, and the active material is blocked from permeation.

【0011】該有機系分散媒としては、いわゆる有機溶
媒であるが、ポリエチレン樹脂に対して親和性のある、
つまり該粉末が濡れて分散し、流動性をもつ状態にでき
る性質をもつもので、例えば、プロパノール、トルエン
、n−ブタノール、ヘキサノール、エタノールなどの芳
香族炭化水素系エーテル系、トリクレンなどのハロゲン
系など各種の有機溶媒が使用できるが、一般に沸点80
℃〜200℃程度の低沸点のものが好ましい。
[0011] The organic dispersion medium is a so-called organic solvent, and has an affinity for polyethylene resin.
In other words, it has properties that allow the powder to become wet and dispersed and have fluidity, such as aromatic hydrocarbon-based ethers such as propanol, toluene, n-butanol, hexanol, and ethanol, and halogen-based materials such as trichlene. Various organic solvents can be used, but generally the boiling point is 80
Those having a low boiling point of about .degree. C. to 200.degree. C. are preferable.

【0012】該樹脂粉末と該有機系分散媒の配合は、重
量で1対1〜2の範囲が一般である。この範囲で両者を
混合すると、型に流してその分散物を所定の均一な厚さ
のシート状に成形することが円滑にできる。即ち、該有
機系分散媒が少なすぎるとシートの成形性が悪くなり、
多すぎると爾後の加熱蒸発作業に時間がかゝりすぎ、非
能率となる。型としては、例えば、固定式のセラミック
製、ステンレス製などの皿状のものを使用する。
[0012] The ratio of the resin powder and the organic dispersion medium is generally in the range of 1 to 2 by weight. When both are mixed within this range, the dispersion can be poured into a mold and smoothly formed into a sheet having a predetermined uniform thickness. That is, if the amount of the organic dispersion medium is too small, the formability of the sheet will deteriorate;
If there is too much, the subsequent heating and evaporation work will take too much time, resulting in inefficiency. As the mold, for example, a fixed plate-shaped mold made of ceramic or stainless steel is used.

【0013】該型内に、該分散物を流し所定の厚さのシ
ート状に成形した後、加熱して該有機系分散媒を蒸発せ
しめるのであるが、該シート状に分散した樹脂粉末粒子
が移動しないように、比較的低温で緩徐に加熱する。そ
の温度は、60〜70℃程度で加熱することが好ましい
。該有機系分散媒の各沸点又はその付近の温度で加熱す
れば、突沸を生じ、成形シートを構成する樹脂粒子の配
列が崩れて厚さが変化し、又大きな孔径を生ずる原因と
なるなどの不都合をもたらす。従って、その使用した有
機系溶媒の沸点よりかなり低く、樹脂粒子の移動を起こ
さない程度の高温であっても差し支えないが、要するに
、粒子の躍動を生じない温度で緩徐に加熱することが重
要である。
After pouring the dispersion into the mold and forming it into a sheet of a predetermined thickness, the organic dispersion medium is evaporated by heating, but the resin powder particles dispersed in the sheet are heated. Heat slowly at a relatively low temperature to avoid movement. The temperature is preferably about 60 to 70°C. If the organic dispersion medium is heated at or near its boiling point, bumping may occur, causing the arrangement of resin particles constituting the molded sheet to collapse, changing its thickness, and creating large pores. bring about inconvenience. Therefore, the temperature may be much lower than the boiling point of the organic solvent used and high enough not to cause movement of the resin particles, but it is important to heat slowly at a temperature that does not cause the particles to move. be.

【0014】かゝる緩徐な加熱により、有機系分散媒は
蒸発し、これに伴い、その蒸発跡に空隙が生じてくるが
、その空隙の生成に伴い、この空隙を埋めるように周囲
の該樹脂粒子はその空間を充填する。かくして、該樹脂
粒子の最密充填又は擬最密充填状態の全体として均一な
微孔をもつ乾燥成形シートが得られる。
[0014] Due to such slow heating, the organic dispersion medium evaporates, and as a result, voids are created in the trace of the evaporation. The resin particles fill the space. In this way, a dry molded sheet having uniform micropores as a whole and in a close-packed or quasi-close-packed state of the resin particles is obtained.

【0015】この状態より、次にその樹脂粒子の焼結を
行う。即ち、該乾燥成形シートの焼結処理を行う。この
場合の加熱温度は、使用した有機系分散媒の沸点以上で
且つその樹脂粒子の焼結のできる温度である。かくして
、該加熱焼結により該樹脂粒子に付着している微量の有
機系分散媒粒子は、蒸発消失する一方、該粒子表面の相
互は溶融結着して一体的な本発明の最密充填型焼結式セ
パレータが得られる。この焼結処理において、該樹脂粒
子に付着していた微細な有機系分散液粒子は蒸発して分
散媒の存在しない樹脂粒子相互の焼結が得られる。かく
して、本発明によれば、0.2〜0.5mm程度の肉薄
の最密充填型焼結式セパレータの製造が可能となる。
From this state, the resin particles are then sintered. That is, the dry formed sheet is sintered. The heating temperature in this case is a temperature higher than the boiling point of the organic dispersion medium used and at which the resin particles can be sintered. In this way, a trace amount of organic dispersion medium particles attached to the resin particles due to the heating and sintering evaporates and disappears, while the surfaces of the particles are melted and bonded to each other to form an integral, close-packed type of the present invention. A sintered separator is obtained. In this sintering process, the fine organic dispersion liquid particles adhering to the resin particles are evaporated and the resin particles are sintered with each other in the absence of a dispersion medium. Thus, according to the present invention, it is possible to manufacture a close-packed sintered separator with a thickness of about 0.2 to 0.5 mm.

【0016】又、本発明の焼結式セパレータを連続的に
製造するには、例えば、ステンレス板などのベルトコン
ベヤ式の長尺シートの両側縁に沿い突枠壁をもつ横断面
コ字状の溝枠に形成された移動式型を一方ヘ移動させ乍
ら、これに該分散物を流し込み一定の厚さのシート状に
成形したものを、乾燥炉、焼結炉を順次通過させるよう
にして製造することができる。
Further, in order to continuously manufacture the sintered separator of the present invention, for example, a belt conveyor type long sheet such as a stainless steel plate having a U-shaped cross section with projecting frame walls along both side edges is used. While moving the movable mold formed in the groove frame to one side, the dispersion is poured into the mold and formed into a sheet of a constant thickness, which is passed through a drying furnace and a sintering furnace in sequence. can be manufactured.

【0017】次に、更に具体的な実施例を説明する。 実施例1 超高分子ポリエチレン粉末(三井石油化学工業株式会社
製ミペロンXM−220、重量平均分子量2.3×10
6、平均粒子径30μm)5gと有機系分散媒としてト
ルエン(沸点110.63℃)10gを充分に撹拌混合
し、その分散物を幅150mm、長さ300mm、深さ
10mmの長方形のステンレス皿に流し込み、肉薄のシ
ート状に成形し、この状態で、恒温器内に入れ、60℃
、30分加熱し該分散媒を蒸発させ、乾燥成形シートと
し、その後150℃恒温器内に入れ、150℃、30分
焼結して厚さ0.30mmの焼結式セパレータを製造し
た。 実施例2 実施例1のトルエンの代りにイソプロピルアルコール(
沸点82.4℃)を使用した以外は、実施例1と同じ方
法で厚さ0.32mmの焼結式セパレータを得た。 実施例3 実施例1のトルエンの代りにn−ブタノール(沸点11
7.2℃)を使用した以外は、実施例1と同じ方法で厚
さ0.31mmの焼結式セパレータを得た。 実施例4 実施例1の焼結処理工程時の温度150℃、30分に代
え、180℃、30分とした以外は、実施例1と同様に
処理した。 実施例5 実施例1のトルエンの代りにエタノール(沸点78.3
2℃)を使用した以外は、実施例1と同じ方法で焼結式
セパレータを得た。 比較例1 実施例1と同じ分散物を使用して型内に入れ肉薄のシー
ト状に成形した恒温器内に入れ、トルエンの沸点近傍の
100℃、20分で加熱蒸発して乾燥成形シートとした
後、次の150℃恒温器内で150℃、30分焼結処理
して厚さ0.31mmの焼結式セパレータを製造したが
、該セパレータにクラックが発生し製品にならなかった
。 比較例2 実施例1と同じ分散物を使用して型内に入れ肉薄のシー
ト状に成形したものを、恒温器内に入れ、トルエンの蒸
発処理と樹脂粒子の焼結処理とを150℃、30分で一
挙に行い、厚さ0.32mmの焼結式セパレータを製造
したが、該セパレータにクラックが発生し製品にならな
かった。 比較例3 実施例1のトルエンの代りにn−オクタノール(沸点1
95℃)を使用して分散物を調製し、これを型内に入れ
肉薄のシート状に成形したものを、恒温器内に入れ、1
50℃、30分焼結して厚さ0.30mmの焼結式セパ
レータを製造した。上記の本発明の焼結式セパレータ並
に比較例3の焼結式セパレータについて、機械的、物理
的特性を試験した。その結果を下記表1に示す。
Next, a more specific example will be explained. Example 1 Ultra high molecular weight polyethylene powder (Miperon XM-220 manufactured by Mitsui Petrochemical Industries, Ltd., weight average molecular weight 2.3 × 10
6. Thoroughly stir and mix 5 g (average particle diameter 30 μm) and 10 g of toluene (boiling point 110.63°C) as an organic dispersion medium, and place the dispersion in a rectangular stainless steel dish with a width of 150 mm, a length of 300 mm, and a depth of 10 mm. Pour it, form it into a thin sheet, and in this state put it in a thermostat at 60℃.
The sheet was heated for 30 minutes to evaporate the dispersion medium to form a dry molded sheet, which was then placed in a thermostat at 150°C and sintered at 150°C for 30 minutes to produce a sintered separator with a thickness of 0.30 mm. Example 2 Isopropyl alcohol (
A sintered separator with a thickness of 0.32 mm was obtained in the same manner as in Example 1, except that a sintered separator with a boiling point of 82.4° C. was used. Example 3 In place of toluene in Example 1, n-butanol (boiling point 11
A sintered separator with a thickness of 0.31 mm was obtained in the same manner as in Example 1, except that a temperature of 7.2° C.) was used. Example 4 The same process as in Example 1 was carried out except that the temperature in the sintering step of Example 1 was changed to 180° C. for 30 minutes instead of 150° C. for 30 minutes. Example 5 Ethanol (boiling point 78.3) was used instead of toluene in Example 1.
A sintered separator was obtained in the same manner as in Example 1, except that the temperature was 2°C. Comparative Example 1 Using the same dispersion as in Example 1, it was placed in a mold and molded into a thin sheet, placed in a constant temperature chamber, and heated and evaporated for 20 minutes at 100°C, near the boiling point of toluene, to form a dry molded sheet. After that, a sintered separator with a thickness of 0.31 mm was manufactured by sintering at 150° C. for 30 minutes in a 150° C. thermostat, but cracks occurred in the separator and the product could not be manufactured. Comparative Example 2 The same dispersion as in Example 1 was placed in a mold and formed into a thin sheet, which was then placed in a thermostat and subjected to toluene evaporation treatment and resin particle sintering treatment at 150°C. A sintered separator with a thickness of 0.32 mm was produced by carrying out all the steps in 30 minutes, but cracks occurred in the separator and the product could not be manufactured. Comparative Example 3 In place of toluene in Example 1, n-octanol (boiling point 1
Prepare a dispersion using 95°C), place it in a mold, form it into a thin sheet, place it in a thermostat, and heat it for 1
A sintered separator having a thickness of 0.30 mm was manufactured by sintering at 50° C. for 30 minutes. The mechanical and physical properties of the sintered separator of the present invention and the sintered separator of Comparative Example 3 were tested. The results are shown in Table 1 below.

【0018】[0018]

【表1】[Table 1]

【0019】表1から明らかなように、本発明の製造法
により製造した焼結式セパレータは全て、最大孔径は平
均孔径と殆ど変らず、大小のバラツキのない良好な機械
的特性の焼結セパレータが得られた。又、表1から明ら
かなように、本発明の製造法によれば、その最大孔径が
平均孔径より僅かな2μm大きいに過ぎず、全体として
極めて均一な微孔を有する焼結式セパレータが得られる
ことが分る。
As is clear from Table 1, all of the sintered separators produced by the production method of the present invention have a maximum pore diameter that is almost the same as the average pore diameter, and have good mechanical properties with no variation in size. was gotten. Furthermore, as is clear from Table 1, according to the manufacturing method of the present invention, a sintered separator whose maximum pore diameter is only 2 μm larger than the average pore diameter and has extremely uniform micropores as a whole can be obtained. I understand.

【0020】次に、実施例1,2の本発明セパレータ、
比較例3のセパレータ、及び従来の塩ビ樹脂粉末を焼結
して成る従来セパレータを夫々実用の自動車用電池に組
み込み、寿命試験を行った。該寿命試験は、SAE−J
240の4分間放電により行った。その結果は、表2に
示す通りである。表中実施例1,2の本発明の焼結式セ
パレータを組み込んだ電池を本発明電池1,2、比較用
セパレータを組み込んだ電池を比較電池1、従来セパレ
ータを組み込んだ電池を従来電池とした。
Next, the separators of the present invention of Examples 1 and 2,
The separator of Comparative Example 3 and the conventional separator made by sintering conventional PVC resin powder were each incorporated into a practical automobile battery, and a life test was conducted. The life test is based on SAE-J
240 for 4 minutes. The results are shown in Table 2. In the table, the batteries incorporating the sintered separators of the present invention of Examples 1 and 2 are referred to as present invention batteries 1 and 2, the battery incorporating the comparative separator is referred to as comparative battery 1, and the battery incorporating the conventional separator is referred to as conventional battery. .

【0021】[0021]

【表2】[Table 2]

【0022】表2から明らかなように、本発明の製造法
により製造した焼結式セパレータを組み込んだ電池の寿
命は、著しく向上することが認められた。これは、活物
質の透過阻止が極めて優れていることを裏付けるもので
ある。
As is clear from Table 2, it was found that the life of the battery incorporating the sintered separator manufactured by the manufacturing method of the present invention was significantly improved. This proves that the active material is extremely effective in blocking permeation.

【0023】尚、種々研究試験した結果、焼結式セパレ
ータとして活物質の透過を阻止するためには、孔径最大
30μm以下であれば足りるが、好ましくは、最大孔径
約20μm以下であることが良く、このためには、平均
粒径30μm程度の樹脂粉末を原料とすることが好まし
いことが分った。
[0023] As a result of various research tests, in order to prevent the permeation of active materials as a sintered separator, it is sufficient to have a maximum pore diameter of 30 μm or less, but preferably a maximum pore diameter of approximately 20 μm or less. It has been found that for this purpose, it is preferable to use resin powder with an average particle size of about 30 μm as a raw material.

【0024】尚、本法の製造法で製造した焼結式セパレ
ータには、必要に応じ、これに親水性を付与するため、
界面活性剤を含浸処理することができる。
[0024] If necessary, the sintered separator produced by this production method may be given hydrophilicity by
It can be impregnated with a surfactant.

【0025】[0025]

【発明の効果】このように本発明によるときは、熱可塑
性樹脂粉末を有機系分散媒と共に混合して分散物を調製
し、これを型に流し込んでシート状に成形し、次で該有
機系分散媒を緩徐に蒸発させて該シート状成形体を乾燥
するときは、該有機系分散媒の蒸発に伴い、生ずる空隙
は徐々に該樹脂粉末により最密充填又は擬最密充填され
るので、バラツキの殆どない均一な孔径をもつ乾燥成形
シートが得られる。次でこの状態より、該樹脂粉末の焼
結を行うことにより、有機系分散媒を含まず、従って、
電池に悪影響を与えない、而もバラツキのない均一な微
孔をもつ焼結式セパレータが得られる効果をもたらす。 この場合、該樹脂粉末として、重量平均分子量1×10
5以上で且つ平均粒径60〜30μmのポリオレフィン
径樹脂粉末を使用するときは、耐酸化性、耐高温性で活
物質の透過阻止に優れた最大孔径約20μm以下の焼結
式セパレータを得ることができる効果をもたらす。又、
該有機系分散媒の沸点以下で加熱し蒸発乾燥させた後、
その成形シートをその沸点以上の温度で焼結するときは
、歪みやクラックのない焼結式セパレータが確実且つ円
滑に得られる効果をもたらす。又、該樹脂粉末と該有機
系分散媒の配合比を1対1〜2で配合するときは、樹脂
粉末の分散性が良く、又湿潤成形シートの加熱蒸発乾燥
処理を比較的短時間に行うことができるなどの効果を有
する。而して、本発明の上記の製造法により製造した焼
結式セパレータを電池に組み込むときは、活物質の透過
を阻止し、従来の焼結式セパレータを組み込んだものに
比し、その電池寿命の増大をもたらす効果を有する。
As described above, according to the present invention, a dispersion is prepared by mixing a thermoplastic resin powder with an organic dispersion medium, and the dispersion is poured into a mold to form a sheet, and then the organic dispersion medium is When drying the sheet-like molded body by slowly evaporating the dispersion medium, as the organic dispersion medium evaporates, the resulting voids are gradually filled with the resin powder close-packed or pseudo-close-packed. A dry formed sheet with a uniform pore size with almost no variation can be obtained. Next, by sintering the resin powder from this state, it contains no organic dispersion medium, and therefore,
This brings about the effect that a sintered separator having uniform micropores without any adverse effect on the battery can be obtained. In this case, the resin powder has a weight average molecular weight of 1×10
When using polyolefin resin powder with a diameter of 5 or more and an average particle size of 60 to 30 μm, it is possible to obtain a sintered separator with a maximum pore size of about 20 μm or less, which is oxidation resistant, high temperature resistant, and excellent in blocking active material permeation. It brings about the effect that can be achieved. or,
After heating and evaporating to dryness below the boiling point of the organic dispersion medium,
When the formed sheet is sintered at a temperature higher than its boiling point, a sintered separator without distortion or cracks can be reliably and smoothly obtained. Furthermore, when the resin powder and the organic dispersion medium are blended in a ratio of 1:1 to 2, the resin powder has good dispersibility and the wet molded sheet can be heated and evaporated in a relatively short time. It has the following effects: Therefore, when the sintered separator manufactured by the above manufacturing method of the present invention is incorporated into a battery, the permeation of the active material is blocked, and the battery life is longer than that of a battery incorporating a conventional sintered separator. It has the effect of increasing the

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】  熱可塑性樹脂粉末を、有機系分散媒と
共に混合して分散物を調製し、該分散物をシート状に成
形し、次で、得られた湿潤成形シートを緩徐に加熱して
該有機系分散媒を蒸発させて該成形シート状を乾燥せし
めた後、該乾燥成形シートの焼結処理することを特徴と
する蓄電池用焼結式セパレータの製造法。
Claim 1: A thermoplastic resin powder is mixed with an organic dispersion medium to prepare a dispersion, the dispersion is molded into a sheet, and the resulting wet molded sheet is then slowly heated. A method for producing a sintered separator for a storage battery, which comprises drying the formed sheet by evaporating the organic dispersion medium, and then sintering the dry formed sheet.
【請求項2】  該樹脂粉末は、重量平均分子量1×1
05以上で平均粒径60〜30μmを有するポリオレフ
ィン系樹脂粉末である請求項1の蓄電池用焼結式セパレ
ータの製造法。
Claim 2: The resin powder has a weight average molecular weight of 1×1
2. The method for producing a sintered separator for storage batteries according to claim 1, wherein the powder is a polyolefin resin powder having an average particle size of 0.05 to 30 μm.
【請求項3】  該樹脂粉末と該有機系分散媒の配合比
は、略1対1〜2であることを特徴とする請求項1又は
2の蓄電池用焼結式セパレータの製造法。
3. The method for producing a sintered separator for a storage battery according to claim 1, wherein the blending ratio of the resin powder and the organic dispersion medium is approximately 1:1 to 2.
【請求項4】  該有機系分散媒を、その沸点以下で加
熱して蒸発乾燥させた後、該乾燥成形シートを該有機系
分散媒の沸点以上の温度で焼結することを特徴とする請
求項1,2又は3の蓄電池用焼結式セパレータの製造法
4. A claim characterized in that the organic dispersion medium is heated to a temperature below its boiling point to evaporate and dry, and then the dried formed sheet is sintered at a temperature above the boiling point of the organic dispersion medium. A method for producing a sintered separator for storage batteries according to item 1, 2 or 3.
【請求項5】  平均粒径60〜30μmの該樹脂粉末
を原料とし、請求項1〜4のいずれか1つの製造法によ
り製造した最大孔径約30μm以下の均一な孔を有する
焼結式セパレータ。
5. A sintered separator having uniform pores with a maximum pore diameter of about 30 μm or less, which is produced using the resin powder having an average particle size of 60 to 30 μm as a raw material and produced by the manufacturing method according to any one of claims 1 to 4.
JP3130848A 1991-03-20 1991-03-20 Manufacture of sintered type separator for storage battery Pending JPH04292856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3130848A JPH04292856A (en) 1991-03-20 1991-03-20 Manufacture of sintered type separator for storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3130848A JPH04292856A (en) 1991-03-20 1991-03-20 Manufacture of sintered type separator for storage battery

Publications (1)

Publication Number Publication Date
JPH04292856A true JPH04292856A (en) 1992-10-16

Family

ID=15044110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3130848A Pending JPH04292856A (en) 1991-03-20 1991-03-20 Manufacture of sintered type separator for storage battery

Country Status (1)

Country Link
JP (1) JPH04292856A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013171883A1 (en) * 2012-05-17 2013-11-21 トヨタ自動車株式会社 Method for manufacturing cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013171883A1 (en) * 2012-05-17 2013-11-21 トヨタ自動車株式会社 Method for manufacturing cell
JPWO2013171883A1 (en) * 2012-05-17 2016-01-07 トヨタ自動車株式会社 Battery manufacturing method

Similar Documents

Publication Publication Date Title
JP5196752B2 (en) Polyethylene microporous membrane, method for producing the same, and battery separator
US5338320A (en) Flat plate-like ribbed porous carbon material and manufacturing method therefor
Aubert et al. Low-density, microcellular polystyrene foams
JP5512976B2 (en) Polyolefin microporous membrane, method for producing the same, battery separator and battery
JPH0136670B2 (en)
EP3711070A1 (en) Polymer matrix composites comprising dielectric particles and methods of making the same
JP2009537638A (en) Polyolefin microporous membrane, method for producing the same, battery separator and battery
DE2005571C3 (en) Process for the powder-metallurgical production of thin, porous moldings
JP2010540691A (en) Microporous membranes and methods of making and using such membranes
US11926717B2 (en) Polymer matrix composites comprising thermally insulating particles and methods of making the same
JP2004196871A (en) Polyolefin fine porous membrane and method for producing the same and use
US5091087A (en) Fabrication of microporous PBI membranes with narrow pore size distribution
CN113056324B (en) Apparatus and method for preparing a slurry and coating a substrate with the slurry
US7008576B2 (en) Microporous ceramic materials and the producing method of the same
TWI710521B (en) Porous carbon material
KR20160033856A (en) Conducting film and method of manufacturing the same
JPH04292856A (en) Manufacture of sintered type separator for storage battery
DE112009005392B4 (en) Method of making a porous article
CN110382605A (en) Polyolefin micro porous polyolefin membrane and the battery for having used the polyolefin micro porous polyolefin membrane
US8703027B2 (en) Making carbon articles from coated particles
KR102545578B1 (en) A polyphenylene sulfide/porogen composite, a porous separator for lithium secondary battery comprising the same, method for manufacturing the polyphenylene sulfide/porogen composite and method for manufacturing the porous separator for lithium secondary battery
US3438912A (en) Porous plate of polyvinyl chloride resin and method for producing the same
JPH04296447A (en) Manufacture of sintering type separator
CN114195490A (en) Preparation method of ceramic resistor, ceramic resistor and electronic circuit device
JP2005289695A (en) Conductive ceramic product and method of manufacturing the same