JPH0429026B2 - - Google Patents

Info

Publication number
JPH0429026B2
JPH0429026B2 JP56125239A JP12523981A JPH0429026B2 JP H0429026 B2 JPH0429026 B2 JP H0429026B2 JP 56125239 A JP56125239 A JP 56125239A JP 12523981 A JP12523981 A JP 12523981A JP H0429026 B2 JPH0429026 B2 JP H0429026B2
Authority
JP
Japan
Prior art keywords
gas
oil
chamber
concentration
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56125239A
Other languages
Japanese (ja)
Other versions
JPS5827068A (en
Inventor
Motoyasu Ichikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP12523981A priority Critical patent/JPS5827068A/en
Publication of JPS5827068A publication Critical patent/JPS5827068A/en
Publication of JPH0429026B2 publication Critical patent/JPH0429026B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/14Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature
    • G01N27/18Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of an electrically-heated body in dependence upon change of temperature caused by changes in the thermal conductivity of a surrounding material to be tested

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Description

【発明の詳細な説明】 本発明は油入変圧器等の油入電器の油中に溶存
するガスの濃度を自動的に検出し、電器の内部異
常の有無を監視する、油入電器の油中溶存ガス自
動監視装置に関する。
Detailed Description of the Invention The present invention automatically detects the concentration of gas dissolved in the oil of oil-filled electrical equipment such as oil-filled transformers, and monitors the presence or absence of internal abnormalities in the electrical equipment. This invention relates to automatic dissolved gas monitoring equipment.

油入電器の内部異常の監視には油中に溶存する
ガス(内部部分放電や、局部過熱により油又は絶
縁物の分解により発生する)の濃度を測定する方
法が有力であり、従来から行なわれて来た。しか
し従来の方法は、油入電器の採油弁から油を採油
し、工場又は研究所に持ち帰つた後、この油のガ
ス分析を行なうと言つた時間と手間のかかるもの
であつた。
An effective method for monitoring internal abnormalities in oil-filled appliances is to measure the concentration of gas dissolved in the oil (generated by internal partial discharge or decomposition of oil or insulators due to local overheating), and this method has not been used in the past. I came. However, in the conventional method, oil is sampled from the oil sampling valve of an oil-filled electric appliance, and the oil is then taken back to a factory or research institute and then subjected to gas analysis, which is a time-consuming and labor-intensive process.

そこで近年、採油→持ち帰り→分析という手間
と時間を省く為に、油入電器に気体のみを透過さ
せるガス透過装置を装着し、このガス透過装置か
ら透過したガスの濃度を、ガスクロマトグラフ
や、ガスセンサー等で自動的に検出し、油中溶存
ガス濃度を自動的かつ定期的に監視する方法が開
発されつつある。
Therefore, in recent years, in order to save the time and effort of extracting oil, taking it home, and analyzing it, a gas permeation device that only allows gas to pass through the oil-filled electric appliance has been installed, and the concentration of the gas that has permeated through this gas permeation device can be measured using a gas chromatograph or a gas permeation device. Methods are being developed to automatically detect the concentration of dissolved gases in oil using sensors, etc., and to automatically and periodically monitor the concentration of dissolved gases in oil.

ガス濃度の検出にガスクロマトグラフを用いる
方法は、クロマトグラフ本体、キヤリアガスボン
ベ、キヤリアガスの開閉の為の電磁弁等を必要と
する為装置全体が大規模で複雑となり装置のメイ
ンテナンス上にも問題があり実用的ではない。
The method of using a gas chromatograph to detect gas concentration requires the chromatograph itself, a carrier gas cylinder, a solenoid valve to open and close the carrier gas, etc., making the entire device large and complex, which also poses problems in terms of device maintenance. Not practical.

一方ガスセンサーを用いる方法については、触
媒燃焼方式のガスセンサーを用いた例として第1
図に示すような装置が発表されている。
On the other hand, regarding the method using a gas sensor, the first example uses a catalytic combustion type gas sensor.
A device as shown in the figure has been announced.

第1図は油仕切弁9を介した油入電器のタンク
壁8に、ガス透過装置1を取付け、油7内に溶存
しているガスをガス室2に透過させ、さらに電磁
弁5を開くことによりセンサー室6に透過したガ
スを導入し、触媒燃焼式のガスセンサー3により
このガスの濃度を電気信号に変換し、入出力装置
4に出力する装置である。
In Figure 1, a gas permeation device 1 is attached to the tank wall 8 of an oil-filled appliance via an oil gate valve 9, and the gas dissolved in the oil 7 is permeated into the gas chamber 2, and then the solenoid valve 5 is opened. This device introduces the gas that has permeated into the sensor chamber 6, converts the concentration of this gas into an electrical signal using the catalytic combustion type gas sensor 3, and outputs it to the input/output device 4.

触媒燃焼式のガスセンサーは、透過したガスを
触媒を用いて比較的低温(200〜500℃)で燃焼さ
せてガスの濃度を検出する原理であるため、透過
したガスは次々とガスセンサーにより消費され
る。従つて上述のように、透過したガスを一担ガ
ス室2に封入し、ガス室2内のガス濃度が、油中
のガス濃度と平衡に達してから、電磁弁5を開い
てセンサー室6に透過したガスを導入する構造と
せざるを得ない。
A catalytic combustion type gas sensor works on the principle of detecting the concentration of gas by burning the permeated gas at a relatively low temperature (200 to 500℃) using a catalyst, so the permeated gas is consumed one after another by the gas sensor. be done. Therefore, as described above, the permeated gas is first sealed in the gas chamber 2, and after the gas concentration in the gas chamber 2 reaches equilibrium with the gas concentration in the oil, the solenoid valve 5 is opened and the sensor chamber 6 is filled. There is no choice but to adopt a structure that introduces the gas that has permeated through the tube.

このためこの方式では一担電磁弁5を開いた後
再びガス室2内のガス濃度が油中のガス濃度と平
衡に達するまでの間は、ガス濃度の検出は出来な
い。また定期的にセンサー室6に透過ガスを送り
込む為の電磁弁5等が必要となり装置が複雑とな
ると言つた欠点がある。
Therefore, in this method, the gas concentration cannot be detected until the gas concentration in the gas chamber 2 again reaches equilibrium with the gas concentration in the oil after the solenoid valve 5 is opened. Another disadvantage is that a solenoid valve 5 or the like is required to periodically feed the permeate gas into the sensor chamber 6, making the device complicated.

本発明は以上説明の従来技術の欠点を除去する
ためになされたもので、構造が簡単で、かつ連続
的に油入電器の油中溶存ガス濃度を検出できる装
置を提供することを目的とする。
The present invention has been made in order to eliminate the drawbacks of the prior art described above, and an object of the present invention is to provide a device that has a simple structure and can continuously detect the concentration of dissolved gas in oil of an oil-filled electrical appliance. .

以下に本発明を図面に示す一実施例を参照して
説明する。
The present invention will be described below with reference to an embodiment shown in the drawings.

第2図は本発明による油中溶存ガス自動監視装
置の構成例を示すもので、油入電器のタンク壁8
に、ガス透過装置1を絶縁油に直接接触するよう
に取付け、油7内に溶存しているガスをガス室2
内に透過させ、このガス室2内のガス濃度を後に
説明する、ガス濃度検出部にて電気信号に変換
し、入出力装置4に出力するように構成したもの
である。
FIG. 2 shows an example of the configuration of an automatic monitoring device for dissolved gas in oil according to the present invention.
, the gas permeation device 1 is installed so as to be in direct contact with the insulating oil, and the gas dissolved in the oil 7 is passed through the gas chamber 2.
The gas concentration in the gas chamber 2 is converted into an electrical signal by a gas concentration detecting section, which will be explained later, and is output to the input/output device 4.

以上の構成においてガス濃度検出部3は第3図
に示すように、多孔質の保護カバー21内に2個
のサーミスター33,34を設置し、一方のサー
ミスター33はドライエアーの様な一定媒質32
内に封入し、他方のサーミスター34は、ガス室
内のガスに直接接する状態とし各々のサーミスタ
ーは直列接続とし、第3図のごとく3本の端子
a,b,cを引き出す構成とする。
In the above configuration, the gas concentration detection unit 3 has two thermistors 33 and 34 installed inside the porous protective cover 21, as shown in FIG. medium 32
The other thermistor 34 is in direct contact with the gas in the gas chamber, and each thermistor is connected in series, with three terminals a, b, and c drawn out as shown in FIG.

また、サーミスター33,34から引き出され
た端子a,b,cはガス室外で、調整用の抵抗3
5,36,37と共に、第4図に示すようなブリ
ツジ回路を組み、a,b端子を電源38に接続
し、x,y端子の出力を検出する回路を構成し、
サーミスタ33,34をブリツジ回路の抵抗体と
して用いる。
In addition, the terminals a, b, and c drawn out from the thermistors 33 and 34 are connected to the adjusting resistor 3 outside the gas chamber.
5, 36, and 37 to form a bridge circuit as shown in FIG. 4, connect the a and b terminals to the power supply 38, and configure a circuit that detects the outputs of the x and y terminals.
Thermistors 33 and 34 are used as resistors of the bridge circuit.

以上の構成とすると、サーミスター33および
34には電流が流れ、各々のサーミスターは加熱
されるが、ガス室2内の気体の熱伝達率と、封入
媒質32の熱伝達率が異なれば、各々のサーミス
ターの温度は異なり、従つて各々のサーミスター
の抵抗値も異なつてくる。
With the above configuration, current flows through the thermistors 33 and 34 and each thermistor is heated, but if the heat transfer coefficient of the gas in the gas chamber 2 and the heat transfer coefficient of the enclosed medium 32 are different, The temperature of each thermistor is different, and therefore the resistance value of each thermistor is also different.

今、ガス室内の透過ガス濃度が零の時にx,y
端子の出力が零となるように35,36の抵抗を
選定しておけば、ガス室内の透過ガス濃度に応じ
て、ガス室内の熱伝達率が変化する為、ガス室内
のガスに接する状態にしたサーミスター34の温
度が変化する。この為サーミスター34の抵抗値
も変化し、第4図のブリツジ回路の平衡がくず
れ、透過ガス濃度に応じた出力がx,y端子間に
得られる。
Now, when the permeate gas concentration in the gas chamber is zero, x, y
If you select resistors 35 and 36 so that the output of the terminal is zero, the heat transfer coefficient in the gas chamber will change depending on the concentration of permeated gas in the gas chamber, so the terminal will be in contact with the gas in the gas chamber. The temperature of the thermistor 34 changes. For this reason, the resistance value of the thermistor 34 also changes, causing the bridge circuit shown in FIG. 4 to become unbalanced, and an output corresponding to the permeated gas concentration is obtained between the x and y terminals.

以上の様な構成とすれば、透過ガス濃度検出部
が透過ガスを消費することがないので、ガス濃度
検出部3を直接ガス室2の中に設置することが可
能となり、第1図の電磁弁5、センサー室6等が
不要なり装置全体が単純でコンパクトになると共
に、常時ガス濃度を監視することが可能となる。
With the above configuration, the permeated gas concentration detection unit does not consume permeated gas, so the gas concentration detection unit 3 can be directly installed in the gas chamber 2, and the electromagnetic Since the valve 5, the sensor chamber 6, etc. are not required, the entire device becomes simple and compact, and the gas concentration can be constantly monitored.

またサーミスターの温度による抵抗変化は非常
に大きいので透過ガスと直接接するサーミスタの
出力信号レベルも大きくなり、出力信号の増幅器
等も不要となり検出感度が上る長所もある。
Furthermore, since the resistance change of the thermistor due to temperature is very large, the output signal level of the thermistor that is in direct contact with the permeating gas also increases, and there is no need for an output signal amplifier or the like, which has the advantage of increasing detection sensitivity.

なお以上の構成とすると、ガス透過装置1を通
してガス室2内の空気が油に溶け込みガス室2内
の圧力が低下し、ガス室2内の熱伝達率が変化し
てしまう可能性がある。
Note that with the above configuration, there is a possibility that the air in the gas chamber 2 will dissolve into the oil through the gas permeation device 1, the pressure in the gas chamber 2 will decrease, and the heat transfer coefficient in the gas chamber 2 will change.

このような場合には第2図に示したように片端
を大気中に開放した細管10をガス室2に取り付
けることにより、ガス室2内の圧力を大気圧に保
つと同時に、管長を調節することにより、細管か
らの透過ガスのリークを一定レベル以下とするこ
とができる。
In such a case, as shown in Figure 2, by attaching a thin tube 10 with one end open to the atmosphere to the gas chamber 2, the pressure inside the gas chamber 2 can be maintained at atmospheric pressure and the length of the tube can be adjusted. By doing so, leakage of permeated gas from the capillary can be kept below a certain level.

また、ガス室内2の内の湿度(水蒸気圧)の変
化によつても熱伝達率は変化するため、ガス室2
内の湿度の変化は誤差の要因となる。
In addition, the heat transfer coefficient also changes due to changes in the humidity (water vapor pressure) in the gas chamber 2.
Changes in humidity within the room will cause errors.

この誤差を防止するためにはガス室2内又は細
管10の途中に乾燥剤11を装着し、ガス室2内
の湿度を一定レベル以下に保つようにすればよ
い。
In order to prevent this error, a desiccant 11 may be installed in the gas chamber 2 or in the middle of the thin tube 10 to keep the humidity in the gas chamber 2 below a certain level.

また周囲温度により出力レベルが変化する場合
もあるがこの場合にはガス室2に温度センサーを
取付け、温度により出力を補正する回路とするこ
とにより周囲温度の変化による誤差を防止でき
る。
Further, the output level may change depending on the ambient temperature, but in this case, by attaching a temperature sensor to the gas chamber 2 and creating a circuit that corrects the output based on the temperature, errors due to changes in the ambient temperature can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は触媒燃焼式のガスセンサーを用いた場
合の油中溶存ガス自動監視装置の構成例を示す断
面図、第2図は本発明による油中溶存ガス自動監
視装置の構成例を示す断面図、第3図は本発明に
よるガス検出部の詳細図、第4図は本発明による
ガス濃度を電気信号に変換する為の回路の一実施
例を示す回路図である。 1…ガス透過装置、2…ガス室、3…水素セン
サー(水蒸検出部)、4…入出力装置、5…電磁
弁、6…センサー室、7…油、8…油入電器タン
ク壁、9…油仕切弁、10…細管、11…乾燥
剤、21…保護カバー、32…封入媒質、33,
34…サーミスター、35,36,37…調整用
抵抗、38…電源、a,b…入力端子、x,y…
出力端子。
FIG. 1 is a cross-sectional view showing an example of the configuration of an automatic monitoring device for dissolved gas in oil using a catalytic combustion type gas sensor, and FIG. 2 is a cross-sectional view showing an example of the configuration of an automatic monitoring device for gas dissolved in oil according to the present invention. 3 are detailed views of the gas detection section according to the present invention, and FIG. 4 is a circuit diagram showing an embodiment of a circuit for converting gas concentration into an electric signal according to the present invention. 1... Gas permeation device, 2... Gas chamber, 3... Hydrogen sensor (water vapor detection section), 4... Input/output device, 5... Solenoid valve, 6... Sensor chamber, 7... Oil, 8... Oil-filled electrical tank wall, 9... Oil gate valve, 10... Thin tube, 11... Desiccant, 21... Protective cover, 32... Enclosing medium, 33,
34... Thermistor, 35, 36, 37... Adjustment resistor, 38... Power supply, a, b... Input terminal, x, y...
Output terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁油に直接接触し気体のみを透過させるガ
ス透過装置と、このガス透過装置から透過したガ
スを溜めるガス室と、このガス室内のガスの濃度
を検出する装置とからなる、油入電器の油中溶存
ガス自動監視装置において、ガス濃度検出装置と
して、一定の媒質内に封入したサーミスターと、
ガス室内のガスと直接接する状態にしたサーミス
ターと、これらのサーミスターを夫々抵抗体とし
たブリツヂ回路とから形成したことを特徴とする
油入電器の油中溶存ガス自動監視装置。
1. An oil-filled electrical appliance consisting of a gas permeation device that directly contacts insulating oil and allows only gas to pass through, a gas chamber that stores the gas that has permeated from this gas permeation device, and a device that detects the concentration of gas in this gas chamber. In an automatic monitoring device for dissolved gas in oil, a thermistor sealed in a certain medium is used as a gas concentration detection device,
An automatic monitoring device for gas dissolved in oil for an oil-filled electrical appliance, characterized by comprising a thermistor in direct contact with gas in a gas chamber and a bridge circuit using each of these thermistors as a resistor.
JP12523981A 1981-08-12 1981-08-12 Automatic nonitoring apparatus for dissolved gas in oil of oil-immersed electric apparatus Granted JPS5827068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12523981A JPS5827068A (en) 1981-08-12 1981-08-12 Automatic nonitoring apparatus for dissolved gas in oil of oil-immersed electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12523981A JPS5827068A (en) 1981-08-12 1981-08-12 Automatic nonitoring apparatus for dissolved gas in oil of oil-immersed electric apparatus

Publications (2)

Publication Number Publication Date
JPS5827068A JPS5827068A (en) 1983-02-17
JPH0429026B2 true JPH0429026B2 (en) 1992-05-15

Family

ID=14905231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12523981A Granted JPS5827068A (en) 1981-08-12 1981-08-12 Automatic nonitoring apparatus for dissolved gas in oil of oil-immersed electric apparatus

Country Status (1)

Country Link
JP (1) JPS5827068A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190671A (en) * 1983-04-13 1984-10-29 Hitachi Ltd Abnormality monitor for oil-filled electric appliance
JPS6279227A (en) * 1985-10-02 1987-04-11 Agency Of Ind Science & Technol Wholly aromatic copolypyromellitic imide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4716917A (en) * 1971-01-29 1972-09-05
JPS5141823A (en) * 1974-08-09 1976-04-08 Westinghouse Electric Corp
JPS51132886A (en) * 1975-04-23 1976-11-18 Hitachi Ltd Device for monitoring for abnormalities in oil-filled equipment
JPS5421524A (en) * 1977-07-18 1979-02-17 Mitsubishi Electric Corp Gas monitoring device for transformer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4716917A (en) * 1971-01-29 1972-09-05
JPS5141823A (en) * 1974-08-09 1976-04-08 Westinghouse Electric Corp
JPS51132886A (en) * 1975-04-23 1976-11-18 Hitachi Ltd Device for monitoring for abnormalities in oil-filled equipment
JPS5421524A (en) * 1977-07-18 1979-02-17 Mitsubishi Electric Corp Gas monitoring device for transformer

Also Published As

Publication number Publication date
JPS5827068A (en) 1983-02-17

Similar Documents

Publication Publication Date Title
US4890478A (en) Gas-in-oil monitoring apparatus and method
US4627269A (en) Method of, and apparatus for, detecting reducing gases in a gas mixture
US3546086A (en) Device for oxygen measurement
US3960500A (en) Gas sampling analyzing system
CN101655472B (en) Constant temperature insulation system for thermal conductivity gas detection
CA2426420C (en) Catalytic sensor
JP3385248B2 (en) Gas sensor
US6042634A (en) Moisture extractor system for gas sampling
JPS635703B2 (en)
JP5159992B2 (en) Moisture concentration detector
US6348872B1 (en) Gas detector-alarm employing hot-wire gas sensor
KR950009267A (en) Insulation oil deterioration measuring method and its measuring device
JPH0429026B2 (en)
US4649736A (en) Moisture monitoring system
GB2091882A (en) Electrical catalytic gas detection systems
JPH03282247A (en) Detection of flammable gas
RU2132551C1 (en) Gas sensor operating process
US4017792A (en) Device for determining and/or measuring alcohol content in a gas and method of manufacturing a semi-conductor body for use in alcohol detection
US1627204A (en) Apparatus for indicating the presence and the concentration of gases and vapors in atmosphere
KR940022073A (en) Gas sensor characteristic measuring device
US2629253A (en) Moisture content recorder for gases under pressure
KR20170070019A (en) Ozone concentration analyzer and methods using same
JPH049574Y2 (en)
JPH0210452Y2 (en)
JPS6113147A (en) Diffusion-type combustible gas measuring method