JPH04289666A - Manufacture of solid electrolyte fuel battery - Google Patents

Manufacture of solid electrolyte fuel battery

Info

Publication number
JPH04289666A
JPH04289666A JP3029540A JP2954091A JPH04289666A JP H04289666 A JPH04289666 A JP H04289666A JP 3029540 A JP3029540 A JP 3029540A JP 2954091 A JP2954091 A JP 2954091A JP H04289666 A JPH04289666 A JP H04289666A
Authority
JP
Japan
Prior art keywords
solid electrolyte
air electrode
molded body
mold
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3029540A
Other languages
Japanese (ja)
Inventor
Ryoichi Okuyama
良一 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP3029540A priority Critical patent/JPH04289666A/en
Priority to US07/915,699 priority patent/US5290323A/en
Priority to EP92900502A priority patent/EP0514552B1/en
Priority to DE69132207T priority patent/DE69132207T2/en
Priority to PCT/JP1991/001701 priority patent/WO1992010862A1/en
Publication of JPH04289666A publication Critical patent/JPH04289666A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To control shrinkage in baking a complex mold and porosity of an air electrode by constituting the complex mold having an air electrode mold on an electrolyte mold of slurry incorporating metal oxide and carbon powder therein. CONSTITUTION:An electrolyte mold is formed by the use of slurry containing zirconia incorporating a stabilizer therein, and then, slurry including metal oxide and carbon powder is poured into the electrolyte mold, thus constituting an air electrode mold. The resultant complex mold is baked, thereby forming a solid electrolyte-air electrode complex having an air electrode 7 at one surface and a solid electrolyte film 8 at the other surface. Since the solid electrolyte film 8 and the air electrode 7 can be integrally constituted and a porous degree and mechanical strength can be arbitrarily adjusted, it is possible to achieve high performance of a solid electrolyte fuel battery.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、固体電解質燃料電池の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing solid electrolyte fuel cells.

【0002】0002

【従来の技術】固体電解質燃料電池としては、リン酸型
燃料電池、溶融炭酸塩型燃料電池と類似した構造の平板
型、米国のアルゴンヌ国立研究所によって提案されたモ
ノリシック型、日本の電子技術総合研究所によって開発
中の円筒多素子型、米国のウェスティングハウス社によ
って提案された円筒単素子型が知られているが、現在は
高温におけるガスシールの容易さ、スタック構成の容易
さの点でウェスティングハウス社の円筒単素子型が注目
されている。
[Prior Art] Solid electrolyte fuel cells include a phosphoric acid fuel cell, a flat plate type with a structure similar to a molten carbonate fuel cell, a monolithic type proposed by Argonne National Laboratory in the United States, and a Japanese electronics technology complex. The cylindrical multi-element type currently being developed by the Institute, and the cylindrical single element type proposed by Westinghouse Corporation in the United States, are well known, but currently Westing House is currently developing a cylindrical multi-element type that is being developed by Westinghouse, Inc. in the United States. Guhaus' cylindrical single-element type is attracting attention.

【0003】このような固体電解質燃料電池に用いられ
る固体電解質の製造方法としては、プラズマ溶射法、化
学蒸着法(CVD)、電気化学蒸着法(EVD)、有機
金属ジルコニウム塩の熱分解法などが知られているが、
緻密な固体電解質膜が得られる方法としては、プラズマ
溶射法、電気化学蒸着法(EVD)があるのみである。
Methods for manufacturing the solid electrolyte used in such solid electrolyte fuel cells include plasma spraying, chemical vapor deposition (CVD), electrochemical vapor deposition (EVD), and thermal decomposition of organometallic zirconium salts. Although it is known,
The only methods for obtaining a dense solid electrolyte membrane are plasma spraying and electrochemical vapor deposition (EVD).

【0004】さらに、上記のような緻密な固体電解質膜
を作成する方法としては、図5のように安定化ジルコニ
ア粉末3をスラリーにし、基材1上に塗布して焼成する
試みもなされている。
Furthermore, as a method for producing a dense solid electrolyte membrane as described above, an attempt has been made to make a slurry of stabilized zirconia powder 3, apply it onto a base material 1, and sinter it as shown in FIG. .

【0005】[0005]

【発明が解決しようとする課題】上記した前者の製造方
法では、高価な製造装置を必要とするうえに、固体電解
質膜を必要とする部分と必要としない部分とを構成する
マスキングに時間がかかるため、電池の量産性に問題が
あった。
[Problem to be Solved by the Invention] The former manufacturing method described above requires expensive manufacturing equipment and takes time to mask the parts that require a solid electrolyte membrane and the parts that do not. Therefore, there was a problem with the mass production of batteries.

【0006】また、後者の製造方法では、焼成時に安定
化ジルコニア粉末3が収縮するため、基材1の上に構成
された固体電解質膜8に割れ2を生じたり、固体電解質
膜8が剥離するという問題があった。
Furthermore, in the latter manufacturing method, since the stabilized zirconia powder 3 shrinks during firing, cracks 2 may occur in the solid electrolyte membrane 8 formed on the base material 1 or the solid electrolyte membrane 8 may peel off. There was a problem.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
、本発明は、安定化剤を添加したジルコニアを含有する
スラリーを成形して電解質成形体とする工程と、前記電
解質成形体の一方の面に、金属酸化物と炭素粉末とを含
有するスラリーを成形して空気極成形体を構成し、電解
質成形体と空気極成形体とを一体化した複合成形体を得
る工程と、この複合成形体を焼成して固体電解質−空気
極複合体を得る工程と、この固体電解質−空気極複合体
の固体電解質側に燃料極を形成することを特徴とするも
のである。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a step of forming an electrolyte molded body by molding a slurry containing zirconia to which a stabilizer has been added, and a step of forming one of the electrolyte molded bodies. A step of forming a slurry containing metal oxide and carbon powder on a surface to form an air electrode molded body to obtain a composite molded body that integrates the electrolyte molded body and the air electrode molded body, and this composite molding. This method is characterized by a step of firing the solid electrolyte-air electrode composite to obtain a solid electrolyte-air electrode composite, and forming a fuel electrode on the solid electrolyte side of the solid electrolyte-air electrode composite.

【0008】[0008]

【作用】上記のように、本発明は、空気極成形体中に含
有させた炭素粉末により、電解質成形体と空気極成形体
とを一体化した複合成形体を焼成して固体電解質−空気
極複合体とする時、前記炭素粉末が酸化されて一酸化炭
素もしくは二酸化炭素として外部に放出されるので、含
有させる炭素粉末の量をコントロールすると、空気極側
の収縮を固体電解質膜側の収縮に近似させることができ
る。
[Function] As described above, the present invention provides a solid electrolyte-air electrode by firing a composite molded body in which the electrolyte molded body and the air electrode molded body are integrated using carbon powder contained in the air electrode molded body. When forming a composite, the carbon powder is oxidized and released to the outside as carbon monoxide or carbon dioxide. Therefore, by controlling the amount of carbon powder contained, the shrinkage on the air electrode side can be reduced to the shrinkage on the solid electrolyte membrane side. It can be approximated.

【0009】また、炭素粉末の粒度をコントロールする
ことにより、空気極側の多孔度を変化させることができ
る。
Furthermore, by controlling the particle size of the carbon powder, the porosity on the air electrode side can be changed.

【0010】さらに、本発明は、複合成形体を焼成して
いるので、空気極の強度が高まり基材としての作用もす
る。
Furthermore, in the present invention, since the composite molded body is fired, the strength of the air electrode is increased and it also functions as a base material.

【0011】[0011]

【実施例】図1は、本発明の固体電解質燃料電池の製造
方法によって形成した電解質成形体5の断面図で、石膏
のような吸水性を有する材料からなる型4に安定化剤と
してのイットリアを添加したジルコニア、水、分散材、
バインダー、消泡剤からなるスラリーを流し込んで一定
時間放置した後、余剰のスラリーを除去した状態を示す
[Example] Fig. 1 is a cross-sectional view of an electrolyte molded body 5 formed by the method for producing a solid electrolyte fuel cell of the present invention. zirconia, water, dispersion material,
The state is shown in which a slurry consisting of a binder and an antifoaming agent is poured in, left to stand for a certain period of time, and then the excess slurry is removed.

【0012】図2は、前記電解質成形体5の一方の面、
すなわち内側の面に空気極成形体6を形成した状態の断
面図で、金属酸化物と炭素粉末とを含有するスラリーを
電解質成形体5の内側の面に流し込んで一定時間放置し
た後、余剰のスラリーを除去して電解質成形体5と空気
極成形体6とを一体化した複合成形体を形成した状態を
示す。
FIG. 2 shows one side of the electrolyte molded body 5,
In other words, this is a cross-sectional view of a state in which an air electrode molded body 6 is formed on the inner surface. After pouring a slurry containing metal oxide and carbon powder onto the inner surface of the electrolyte molded body 5 and leaving it for a certain period of time, the excess is removed. This figure shows a state in which the slurry has been removed to form a composite molded body in which the electrolyte molded body 5 and the air electrode molded body 6 are integrated.

【0013】図3は、図2の複合成形体を乾燥させて型
4を除去した後焼成して得た固体電解質−空気極複合体
の断面図で、内側に多孔性の空気極7が、外側に緻密な
固体電解質膜8が形成される。
FIG. 3 is a cross-sectional view of a solid electrolyte-air electrode composite obtained by drying the composite molded body of FIG. 2, removing the mold 4, and then firing it. A dense solid electrolyte membrane 8 is formed on the outside.

【0014】前記複合成形体の焼成時、空気極成形体6
中に含有させた炭素粉末は酸化されて一酸化炭素もしく
は二酸化炭素として外部に放出されるので、含有させる
炭素粉末の量を増加させると、空気極7側の収縮率は大
きくなる。これに対して、固体電解質膜8側の収縮率は
ほぼ一定であるから、空気極成形体6中に含有させる炭
素粉末の量をコントロールし、空気極7側の収縮率を固
体電解質膜8側の収縮率に近似させると、多孔性の空気
極7と緻密な固体電解質膜8とを同時に製造することが
できる。
During firing of the composite molded body, the air electrode molded body 6
Since the carbon powder contained therein is oxidized and released to the outside as carbon monoxide or carbon dioxide, increasing the amount of carbon powder contained increases the shrinkage rate on the air electrode 7 side. On the other hand, since the shrinkage rate on the solid electrolyte membrane 8 side is almost constant, the amount of carbon powder contained in the air electrode molded body 6 is controlled, and the shrinkage rate on the air electrode 7 side is adjusted to the solid electrolyte membrane 8 side. By approximating the shrinkage rate to , it is possible to simultaneously manufacture the porous air electrode 7 and the dense solid electrolyte membrane 8.

【0015】一方、添加するイットリアの量に応じてジ
ルコニアを立方晶ジルコニア、正方晶ジルコニア、部分
安定化ジルコニアにすることができ、固体電解質膜8の
強度をコントロールすることができるので、前述した炭
素粉末の量のコントロールと併用することにより、複合
成形体の焼成時の割れや剥離を防止することができ、固
体電解質−空気極複合体の性能を向上させることができ
る。
On the other hand, depending on the amount of yttria added, zirconia can be made into cubic zirconia, tetragonal zirconia, or partially stabilized zirconia, and the strength of the solid electrolyte membrane 8 can be controlled. By using it together with controlling the amount of powder, cracking and peeling of the composite molded body during firing can be prevented, and the performance of the solid electrolyte-air electrode composite can be improved.

【0016】図4は、前記固体電解質−空気極複合体の
固体電解質膜8の外側に燃料極9として、Ni−ZrO
2 サーメットをデイッピング法によって形成した状態
の断面図、すなわち本発明の製造方法によって得られた
固体電解質燃料電池の断面図である。なお、燃料極9の
形成方法としては、デイッピング法以外にスラリー塗布
法、溶射法等があり、特に限定するものでないことは言
うまでもない。
FIG. 4 shows Ni-ZrO as a fuel electrode 9 outside the solid electrolyte membrane 8 of the solid electrolyte-air electrode composite.
2 is a cross-sectional view of a state in which cermet is formed by a dipping method, that is, a cross-sectional view of a solid electrolyte fuel cell obtained by the manufacturing method of the present invention. Note that methods for forming the fuel electrode 9 include, in addition to the dipping method, a slurry coating method, a thermal spraying method, and the like, and it goes without saying that the method is not particularly limited.

【0017】こうして得られた図4のような固体電解質
燃料電池を作動温度である700℃から1000℃に昇
温し、燃料極9側に燃料を、空気極7側に空気を供給す
ると、燃料によって燃料極9中の酸化ニッケルが還元さ
れる。
When the solid electrolyte fuel cell thus obtained as shown in FIG. 4 is heated from the operating temperature of 700° C. to 1000° C. and fuel is supplied to the fuel electrode 9 side and air to the air electrode 7 side, the fuel The nickel oxide in the fuel electrode 9 is reduced by this.

【0018】従って、図4の燃料極9と空気極7とを外
部回路に接続すると、空気極7から取り入れられた酸素
は外部回路から供給される電子を取り込んで酸素イオン
となり、この酸素イオンは固体電解質膜8を通って固体
電解質膜8と燃料極9との界面に到達する。
Therefore, when the fuel electrode 9 and the air electrode 7 in FIG. 4 are connected to an external circuit, the oxygen taken in from the air electrode 7 takes in the electrons supplied from the external circuit and becomes oxygen ions. It passes through the solid electrolyte membrane 8 and reaches the interface between the solid electrolyte membrane 8 and the fuel electrode 9.

【0019】一方、この界面には燃料極9中を拡散して
きた水素もしくは一酸化炭素が存在し、この水素もしく
は一酸化炭素と前記酸素イオンとが反応して水蒸気およ
び二酸化炭素を生成するとともに、外部回路に電子を放
出するので、外部回路には空気極7を正極、燃料極9を
負極とした起電力が生じ、電池としての作用がなされる
ことになる。
On the other hand, hydrogen or carbon monoxide that has diffused through the fuel electrode 9 is present at this interface, and this hydrogen or carbon monoxide reacts with the oxygen ions to generate water vapor and carbon dioxide. Since electrons are emitted to the external circuit, an electromotive force is generated in the external circuit with the air electrode 7 as the positive electrode and the fuel electrode 9 as the negative electrode, and it functions as a battery.

【0020】以上の説明は、型4を用いて複合成形体を
形成しているが、カレンダーロール法やテープキャステ
ィング法を用いてスラリーをテープ状に成形すれば平板
型の複合成形体を形成できることは言うまでもない。
In the above explanation, a composite molded body is formed using the mold 4, but it is also possible to form a flat plate-shaped composite molded body by molding the slurry into a tape shape using the calendar roll method or tape casting method. Needless to say.

【0021】[0021]

【発明の効果】上記した如く、本発明は緻密な固体電解
質膜8と多孔性の空気極7とが容易に形成でき、その多
孔度は含有させる炭素粉末の粒度をコントロールするこ
とによって変化させることができ、その機械的強度は含
有させる炭素粉末の量をコントロールすることによって
変化させることができるので、高性能な固体電解質燃料
電池が得られる。
[Effects of the Invention] As described above, according to the present invention, a dense solid electrolyte membrane 8 and a porous air electrode 7 can be easily formed, and the porosity can be changed by controlling the particle size of the carbon powder contained therein. Since the mechanical strength can be changed by controlling the amount of carbon powder contained, a high-performance solid electrolyte fuel cell can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】型4にスラリーを流し込んで一定時間放置して
電解質成形体5とした後、余剰のスラリーを除去した状
態の断面図である。
FIG. 1 is a cross-sectional view of a state in which surplus slurry is removed after slurry is poured into a mold 4 and left for a certain period of time to form an electrolyte molded body 5. FIG.

【図2】図1の電解質成形体5の上にスラリーを流し込
んで一定時間放置して空気極成形体6とした後、余剰の
スラリーを除去して複合成形体とした状態の断面図であ
る。
FIG. 2 is a cross-sectional view of a state in which a slurry is poured onto the electrolyte molded body 5 of FIG. 1 and left for a certain period of time to form an air electrode molded body 6, and then excess slurry is removed to form a composite molded body. .

【図3】図2の複合成形体から型4を除去した後焼成し
て得た固体電解質−空気極複合体の断面図である。
3 is a sectional view of a solid electrolyte-air electrode composite obtained by firing after removing the mold 4 from the composite molded body of FIG. 2. FIG.

【図4】固体電解質−空気極複合体の外側に燃料極9を
形成した状態の断面図である。
FIG. 4 is a cross-sectional view of a state in which a fuel electrode 9 is formed on the outside of a solid electrolyte-air electrode composite.

【図5】従来の固体電解質燃料電池の製造方法により製
造された固体電解質膜8の断面図である。
FIG. 5 is a cross-sectional view of a solid electrolyte membrane 8 manufactured by a conventional solid electrolyte fuel cell manufacturing method.

【符号の説明】[Explanation of symbols]

4  型 5  電解質成形体 6  空気極成形体 7  空気極 8  固体電解質膜 9  燃料極 4 type 5 Electrolyte molded body 6 Air electrode molded body 7 Air electrode 8 Solid electrolyte membrane 9 Fuel electrode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】  安定化剤を添加したジルコニアを含有
するスラリーを成形して電解質成形体とする工程と、前
記電解質成形体の一方の面に、金属酸化物と炭素粉末と
を含有するスラリーを成形して空気極成形体を構成し、
電解質成形体と空気極成形体とを一体化した複合成形体
を得る工程と、この複合成形体を焼成して固体電解質−
空気極複合体を得る工程と、この固体電解質−空気極複
合体の固体電解質側に燃料極を形成することを特徴とす
る固体電解質燃料電池の製造方法。
1. A step of molding a slurry containing zirconia to which a stabilizer has been added to form an electrolyte molded body, and forming a slurry containing a metal oxide and carbon powder on one surface of the electrolyte molded body. Molded to form an air electrode molded body,
A step of obtaining a composite molded body in which an electrolyte molded body and an air electrode molded body are integrated, and a step of baking this composite molded body to form a solid electrolyte.
A method for producing a solid electrolyte fuel cell, comprising the steps of obtaining an air electrode composite, and forming a fuel electrode on the solid electrolyte side of the solid electrolyte-air electrode composite.
【請求項2】  安定化剤を添加したジルコニアは立方
晶ジルコニア、正方晶ジルコニア、部分安定化ジルコニ
アの単独物もしくは複数種の混合物からなることを特徴
とする請求項第1項記載の固体電解質燃料電池の製造方
法。
2. The solid electrolyte fuel according to claim 1, wherein the zirconia added with a stabilizer is composed of cubic zirconia, tetragonal zirconia, partially stabilized zirconia alone or in a mixture of multiple types. How to manufacture batteries.
【請求項3】  安定化剤は、イットリウム、カルシウ
ム、スカンジウム、イッテルビウム、ネオジウム、カド
リニウムの酸化物であることを特徴とする請求項第1項
記載の固体電解質燃料電池の製造方法。
3. The method for manufacturing a solid electrolyte fuel cell according to claim 1, wherein the stabilizer is an oxide of yttrium, calcium, scandium, ytterbium, neodymium, or quadrinium.
【請求項4】  金属酸化物は、希土類またはアルカリ
土類金属を添加したLaMnO3 、LaCoO3 、
CaMnO3 であることを特徴とする請求項第1項記
載の固体電解質燃料電池の製造方法。
4. The metal oxide is LaMnO3, LaCoO3, or LaMnO3 to which rare earth or alkaline earth metal is added.
2. The method for manufacturing a solid electrolyte fuel cell according to claim 1, wherein the solid electrolyte fuel cell is CaMnO3.
【請求項5】  焼成は、不活性気流中または還元雰囲
気中で行うことを特徴とする請求項第1項記載の固体電
解質燃料電池の製造方法。
5. The method for manufacturing a solid oxide fuel cell according to claim 1, wherein the calcination is performed in an inert gas flow or a reducing atmosphere.
【請求項6】  燃料極は、Ni−ZrO2 サーメッ
ト、Co−ZrO2 サーメットであることを特徴とす
る請求項第1項記載の固体電解質燃料電池の製造方法。
6. The method for manufacturing a solid oxide fuel cell according to claim 1, wherein the fuel electrode is made of Ni-ZrO2 cermet or Co-ZrO2 cermet.
JP3029540A 1990-12-10 1991-01-29 Manufacture of solid electrolyte fuel battery Pending JPH04289666A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP3029540A JPH04289666A (en) 1991-01-29 1991-01-29 Manufacture of solid electrolyte fuel battery
US07/915,699 US5290323A (en) 1990-12-10 1991-12-09 Manufacturing method for solid-electrolyte fuel cell
EP92900502A EP0514552B1 (en) 1990-12-10 1991-12-09 Method for manufacturing solid-state electrolytic fuel cell
DE69132207T DE69132207T2 (en) 1990-12-10 1991-12-09 METHOD FOR PRODUCING ELECTROLYTIC SOLID CELL
PCT/JP1991/001701 WO1992010862A1 (en) 1990-12-10 1991-12-09 Method for manufacturing solid-state electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3029540A JPH04289666A (en) 1991-01-29 1991-01-29 Manufacture of solid electrolyte fuel battery

Publications (1)

Publication Number Publication Date
JPH04289666A true JPH04289666A (en) 1992-10-14

Family

ID=12278950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3029540A Pending JPH04289666A (en) 1990-12-10 1991-01-29 Manufacture of solid electrolyte fuel battery

Country Status (1)

Country Link
JP (1) JPH04289666A (en)

Similar Documents

Publication Publication Date Title
WO1992010862A1 (en) Method for manufacturing solid-state electrolytic fuel cell
JPH11154525A (en) Solid electrolyte fuel cell and its manufacture
JP3050328B2 (en) Method for manufacturing solid electrolyte fuel cell
JPH04315769A (en) Manufacture of solid electrolyte fuel cell
JPH04289666A (en) Manufacture of solid electrolyte fuel battery
JP3050331B2 (en) Method for manufacturing solid electrolyte fuel cell
JPH04218264A (en) Manufacture of solid electrolyte fuel cell
JPH04322061A (en) Manufacture of solid electrolytic fuel cell
JP3392995B2 (en) Method for manufacturing solid oxide fuel cell
JPH1012252A (en) Solid electrolyte fuel cell and manufacture therefor
JPH0529008A (en) Manufacture of solid electrolyte fuel cell
JP2848551B2 (en) Method for producing electrolyte membrane for solid oxide fuel cell
JPH0529007A (en) Manufacture of solid electrolyte fuel cell
JPH05198305A (en) Manufacture of solid electrolyte fuel cell
JPH04289669A (en) Manufacture of solid electrolyte fuel battery
JPH04289668A (en) Manufacture of solid electrolyte fuel battery
JP3451627B2 (en) Method for manufacturing solid electrolyte fuel cell
JPH04218265A (en) Manufacture of solid electrolyte fuel cell
JPH05144450A (en) Manufacture of fuel cell with solid electrolyte
JPH05101841A (en) Manufacture of solid electrolytic fuel cell
JPH0629031A (en) Manufacture of solid electrolyte fuel cell
JP2001015129A (en) Solid electrolyte type fuell cell
JPH11126617A (en) Solid electrolyte-type fuel cell and its manufacture
JPH1050331A (en) Solid electrolyte fuel cell and manufacture thereof
JPH06283178A (en) Manufacture of electrolytic film for solid electrolytic fuel cell